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Abstract 

Abiotic stressors like drought and salinity are major causes for loss of agri-
cultural productivity. Comparison of expressed sesquence tags (ESTs) under 
different abiotic stresses provides insight into underlying mechanism of stress 
response, and candidate genes to improve tolerance to abiotic and biotic 
stresses via breading and transgenic methods. In order to identify and com-
pare stress-specific ESTs from drought and salinity stressed Hyacinth Bean, 
ten days old seedlings were subjected to respective stresses and RNA was ex-
tracted from control and stressed leaves for EST identification. 31 and 12 
ESTs, respectively, were characterized from leaves of drought and salinity 
stressed seedlings of Hyacinth Bean, Lablab purpureus by differential display 
RT-PCR using identical combinations of 48 primers and validated using 
quantitative RT-PCR. Relative fold expression was higher under salt stress 
than drought stress. Whereas 19 EST overexpressed under drought, 12 EST 
were down regulated. Of the 12 EST under salinity, 9 EST were downregu-
lated and 3 EST upregulated. Putative functions predicted from sequence 
homology indicated that 11 drought specific EST corresponded to metabolic 
functions, and 4 of them corresponded to transcription regulation. Under sa-
linity, 4 and 2 EST, respectively, corresponded to metabolic and RNA associ-
ated functions. Under both stresses, there were ESTs associated with un-
known functions, whose characterization may throw light on the regulatory 
mechanism. Differing number of ESTs differentially expressed under drought 
and salt stress, and their predicted functionalities, suggested distinct set of 
response genes involved under these two stresses, despite a good number of 
physiological players being common. From the predicted functions of ESTs, 
the paper attempts to explain the possible mechanism of response of Hya-
cinth Bean to these two stresses. 
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1. Introduction 

Growing economy in many ways has led to climatic change by increasing global 
temperature, thereby rise in sea level resulting in increased salinity of ground-
water and arid land [1]. Also, increase in global temperature has increased fre-
quency of drought [2] posing a big challenge for agriculture [3]. Drought and sa-
linity affected soils contain high concentration of ions such as chloride, sodium, 
calcium and magnesium in soil [4] or are nutrient deficient. Thereby, forcing the 
use of chemical fertilizers leading to increased cost of crop production environ-
mental pollution. Breeding techniques have been beneficial in creating new cul-
tivars resistant to drought and salinity. Also, understanding the tolerant geno-
types response towards stress gives insights into improving the tolerance of 
crops. 

Plant response to drought and salinity have been studied in terms of altera-
tions in metabolism [5], detoxification [5], ABA induced response [6], proteome 
[7], transcriptome [8]. Transcriptome networks [9] and differential gene expres-
sion studies with model plants under abiotic stress [10] [11] have provide can-
didate genes for improving tolerance and productivity. Plant hormones play a 
role in inducing osmotic effects eliciting overlapping responses under drought 
and salinity [12]. Transcription factor families like NAC [13], WRKY [14], 
DERB [15] [16], are reported to be differentially regulated under stress. Specific 
protein like defensins, SpPKE1 [17], cysteine proteases [18], RING finger protein 
[19] an E3 ubiquitin ligase [20] and genes modified using RNAi mediated gene 
silencing [21] are known to increase tolerance towards abiotic stress. 

Among food crops, legumes form a major source of protein and contribute to 
enhancement of soil quality through their nitrogen fixing ability. A Fabaceae 
member, Lablab purpureus L. (Hyacinth Bean) HA4 variety is extensively grown 
in south India for its pods, and previous reports have indicated its tolerance to 
drought [22] and salinity [23]. Transcriptomic variations, in root tissue, under 
drought stress [24] have given insight into the expression pattern. A comparative 
account of leaf specific transcripts expressed under drought and salinity stress in 
Lablab purpureus L. (Hyacinth Bean) variety HA4, are described herein with the 
objective of delineating the mechanism of stress response in terms of differen-
tially expressed ESTs. 

2. Material and Methods 

2.1. Plant Growth, Stress Induction and Total RNA Isolation 

The seeds of L. purpureus (cv. HA-4) were obtained from National Seed Project, 
University of Agricultural Sciences, GKVK, Bangalore, India. Seeds were surface 
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sterilized with 0.1% (w/v) mercuric chloride for 30 s, rinsed immediately with 
distilled water several times and imbibed overnight in distilled water. The over-
night-soaked seeds were sown in plastic trays containing vermiculite and ac-
id-washed sand (1:1 w/w) and irrigated daily with distilled water. 

The germination was carried out under natural greenhouse conditions; 
day/night temperature and relative humidity were 30/25˚C, and 75/70%, respec-
tively. The average photoperiod was 12 h light/12 h dark. Plants were grown for 
10 days before inducing stress. Drought stress was induced by withdrawing wa-
ter for 6 Days whereas control plants were watered. Salt stress was induced using 
half strength Hoagland media with 300 mM NaCl, and 150 mM CaCl2 for 48 h. 
Control plants were grown in half strength Hoagland media without 300 mM 
NaCl. After stress exposure leaves were collected from both control and stress 
plants. The samples were immediately ground to a fine powder in liquid ni-
trogen and used for total RNA isolation. Total RNA was isolated using 
Tri-Reagent (Sigma-Aldrich) according to the manufacturer’s instructions. 
The quality of total RNA was observed by electrophoresis on 1.5% Formalde-
hyde-MOPS gel. The purity was assessed by reading the A260/A280 ratios and 
A260/A230 ratios using Biomate 3S UV-Visible spectrophotometer (Thermo 
Scientific). 

2.2. Differential Display Reverse Transcription  
Polymerase Chain Reaction 

Differential display was performed according to the method of Liang and Parde 
[25] with minor modifications. Total RNA was treated with RNase free DNase-I 
(0.1 U per mg RNA for 30 min) to remove the contaminating genomic DNA. In 
brief, first strand cDNAs was synthesized using 2 μg of Total RNA and 10 mM 
oligo dT primer. Initial incubation was at 70˚C for 5 min followed by quick 
chilling on ice. To this, 40 units of Superscript™ II RNase H RT (Thermo Scien-
tific), 20 units RNasin (Thermo Scientific), 0.5 mM dNTPs (Thermo Scientific) 
and 1X reverse transcriptase reaction buffer (250 mM Tris-HCl, pH 8.3, 250 mM 
KCl, 20 mM MgCl2 and 50 mM DTT) were added and made up to final volume 
of 20 µL. 

The reaction was performed in Eppendorf master cycler by incubating at 40˚C 
for 60 min, and terminated by heating at 70˚C for 10 min. All cDNA samples 
were stored at −80˚C until further use. A total of three anchor primer and 16 ar-
bitrary primer (Table 1) were used for DDRT-PCR. Amplification was carried 
out in a final reaction volume of 50 µL containing 1 µL of the cDNA as template, 
0.5 U Taq DNA polymerase (Thermo Scientific), 12.5 mM each of specific arbi-
trary primer and anchor primer with restriction sites of BamHI and HindIII, re-
spectively. 0.1 mM dNTPs and 1x Taq DNA polymerase reaction buffer (10 mM 
Tris-HCl, pH 9.0, 1.5 mM MgCl2, 50 mM KCl and 0.01% gelatin). The reaction 
conditions were: an initial denaturation step of 95˚C/4min, followed by 35 cycles 
of 94˚C/60s (denaturation), 50˚C to 55˚C (according to primer combination)/60s 
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Table 1. List of primer used in DDRT-PCR. 

Anchore primers Sequence 

DST-PR/1 AAGCTTTTTTTTTTTTTG 

DST-PR/2 AAGCTTTTTTTTTTTTTG 

DST-PR/3 AAGCTTTTTTTTTTTTTA 

Arbitrary primers Sequence 

DST-PR/9 AAGCTTGATTGCC 

DST-PR/15 AAGCTTTCCTGGA 

DST-PR/17 AAGCTTCTFCTGG 

DST-PR/18 AAGCTTACGATGC 

DST-PR/19 AAGCTTAGCAGCA 

DST-PR/22 AAGCTTCCTGCAA 

DST-PR/23 GAGGATCCGATTGCC’ 

DST-PR/24 GAGGATCCCAAGACC 

DST-PR/25 CGGGATCCTATTTAT 

DST-PR/26 GCGGATCCCGACTGT 

DST-PR/27 GTGGATCCGCCTTTA 

DST-PR/28 GTGGATCCCTTTGGT 

DST-PR/29 CAGGATCCGCACCAT 

DST-PR/30 CAGGATCCAGAGGCA 

DST-PR/31 CTGGATCCTCATATG 

DST-PR/32 CTGGATCCTTGAGGT 

 
for annealing and 72˚C/60s for extension and 72˚C for 15 min for final exten-
sion. Each reaction was run in triplicate, and products obtained were subjected 
to denaturing 6% urea gel electrophoresis at a voltage of 0.45 V/cm2 for 12 h at 
room temperature. DNA was visualized by staining with ethidium bromide and 
documented using Alpha Imager gel doc. Differential bands were excised and 
cloned into pGEM-T-easy vector (Promega) according to manufacturer’s in-
structions. Plasmid expressing the band of interest was sequenced on an auto-
mated sequencer (ABI PRISM 3700) using Bio Rad Taq cycle sequencing kit 
(Amersham Pharmacia Biotech,). Sequence analysis was performed using 
BLASTn (http://www.ncbi.nlm.nih.gov/blast). All of these ESTs were submitted 
to the dbEST database at NCBI (http://www.ebi.ac.uk). 

2.3. Quantitative Real Time PCR 

qRT-PCR was carried out using iQ SYBR green supermix (Biorad, India) on 
Biorad iQ5 Multicolor Real Time PCR Detection System. The reaction mix con-
tained 0.5 µL cDNA, 10 µL 2X SYBR green mix, 0.5 µL of 1 µM forward primer 
and 0.5 µL of 1 µM reverse primer in 20 µL reaction volume. The cycling condi-
tions were: initial denaturation of 95˚C/3 min followed by 40 repetitive cycles at 
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95˚C for 20 s for denaturation, 60˚C for 30 s for annealing (according to primer 
combination) and 72˚C for 30 s for extension. Melt curve analysis was per-
formed at 55˚C - 95˚C. β-Actin was used as the endogenous control and analysis 
was carried out in three replicates. The Cq values were converted to relative 
quantities using the formula: 2−ΔΔCt [26]. 

3. Results 

DDRT-PCR was performed using 48 combinations of primers. Bands with clear 
differential expression were excised from polyacrylamide gels, amplified and se-
quenced. All obtained ESTs were submitted to NCBI EST database. After re-
moving the redundant sequences, 31 differentially expressed ESTs were obtained 
under drought stress and 12 under salinity stress. All the sequenced fragments 
were of the expected length as ascertained from their positions in the gel and 
ranged between 98 - 423 bp for ESTs under drought, and 137 - 311 bp for ESTs 
under salinity stress. Sequence homology of the expressed fragments expressed 
under stress ranged between 73% - 93% similarity to sequence in Reference 
mRNA database. The ESTs showed similarity to sequences from legume family. 
Quantitative real time PCR was carried out to ascertain expression pattern 
(Figure 1 and Figure 2). The ESTs from salinity stress showed homology to 
genes encoding sugar transporter, ion transporter, chromatin remodeling compo-
nents and RNA splicing components. Expression profile of salinity induced ESTs 
indicated that 3 ESTs were up regulated and 9 were down regulated. Eight EST cor-
responded to genes with putative functions (Table 2) and 4 were hypothetical  

 

 
Figure 1. Differential expression of 31 ESTs under drought stress. Actin gene used as control. The ESTs expression 
below zero are down regulated, above zero are up regulated. Changes in gene expression are calculated using ΔΔCt 
method. The plotted values are average of triplicates. (On the X-axis are the EST (Number assigned and their cor-
responding Genbank accession number are; 1-JZ515981, 2-JZ515982, 3-JZ168400, 4-JZ168401, 5-JZ168402, 
6-JZ168403, 7-JZ168404, 8-JZ168405, 9-JZ168406, 10-JZ168407, 11-JZ168408, 12-JZ168409, 13-JZ515983, 14-JZ515984, 
15-JZ515985, 16-JZ515986, 17-JZ515987, 18-JZ515988, 19-JZ515989, 20-JZ515990, 21-JZ546398, 22-JZ546399, 
23-JZ546400, 24-JZ546401, 25-JZ546402, 26-JZ546404, 27-JZ546405, 28-JZ546406, 29-JZ546407, 30--JZ546408 
and 31-JZ546409). 
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Figure 2. Differential expression of 12 ESTs transcripts under salinity. Actin gene is used as control. The ESTs with fold expres-
sion below zero are down regulated, above zero are up regulated. Changes in gene expression are calculated using ΔΔCt method. 
The plotted values are average of triplicates. On the X-axis are the EST (Number assigned and their corresponding Genbank acces-
sion number are 1-JZ515991, 2-JZ515992, 3-JZ515993, 4-JZ515995, 5-JZ515996, 6-JZ515997, 7-JZ515998, 8-JZ515999, 9-JZ516000, 
10-JZ516001, 11-JZ516002 and 12-JZ516003). 
 
Table 2. List of ESTs differentially regulated under drought and salinity stress. 

Up/Down  
regulated. 

GenBank  
accession  
number 

Similar protein Size (bp) E value Condition 
Fold  

change. 

Upregulated ESTs 

Metabolism  
associated 

JZ546402 Poly (A) binding protein (PABP) RBP45 360 9e−58 Drought 1.8 

JZ515990 Mitochondrial ATP synthase F1 complex assembly factor2 194 9e−28 Drought 1.5 

JZ515983 carbon catabolite repressor protein 4 like (CCRP) 205 8e−41 Drought 1.474 

JZ168409 cell wall associated hydrolase 127 2e−49 Drought 1.265 

JZ515981 Cytochrome c oxidase (COX) 149 3e−18 Drought 1.17 

JZ546401 Ubiquitin carboxyl-terminal hydrolase 267 1e−80 Drought 1.14 

JZ515984 vesicle associated membrane protein 727 like. VAMP727 387 1e−110 Drought 1.117 

JZ515999 plastidic glucose transporter 234 9e−23 Salinity 2.907 

Transcriptional  
regulators 

JZ546408 mediator of RNA polymerase II transcription subunit 26b-like 106 0.17 Drought 2.09 

JZ168404 MYB transcription factor 149 5e−23 Drought 1.47 

JZ515989 Calmodulin-binding Transcription Activator 3 like (CAMTA3) 
302 

 
7e−83 Drought 1.453 

JZ515988 nuclear TF-Y subunit A-7 like 204 6e−05 Drought 1.319 

Ribosome associated 
JZ515982 30S ribosomal subunit protein S7 148 7e−50 Drought 1.8 

JZ168407 Ribosomal protein L22 261 9e−86 Drought 1.443 

Down regulated ESTs 

Metabolism  
associated 

JZ546398 clatherin interactor EPSIN 1-like protein 157 1e−25 Drought 2.234 

JZ168405 maturase K 532 1e−151 Drought 1.4 

JZ546400 E3 ubiquitin-protein ligase PUB22-like 161 2e−15 Drought 1.48 
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Continued 

 

JZ546405 MLP -like protein 28 -like 230 3e−09 Drought 2.158 

JZ515992 5’-adenylyl sulphate reductase 192 2e−37 Salinity 9.25 

JZ515991 cell wall associated hydrolase 272 2e−73 Salinity 1.48 

 
JZ515993 nitrate transporter 1.5 like 294 9e−62 Salinity 1.8 

Chloroplast  
associated 

JZ546399 short chain dehydrogenase TIC32 98 4e−25 Drought 1.21 

JZ168408 chlorophyll a/b binding protein 196 8e−11 Drought 5.85 

JZ546409 Photosystem II CP47 308 3e−116 Drought 1.474 

JZ516002 chlorophyllide-b reductase 329 1e−31 Salinity 7.6 

RNA associated 

JZ168401 rRNA-processing protein EBP2 128 2e−07 Drought 1 

JZ515998 pre-mRNA-splicing factor CWC22 179 5e−18 Salinity 8.9 

JZ515997 pentapeptide repeat protein family 269 2e−72 Salinity 1.839 

Chromatin associated  
protein 

JZ516003 SSRP1 of FACT chromatin remodeling complex 137 3e−43 Salinity 4.438 

 
proteins. Thirty-one ESTs characterized under drought stress exhibited homol-
ogy to transcription factors, chlorophyll, ribosome and RNA polymerase asso-
ciated proteins, enzymes involved in protein degradation and general metabol-
ism. Expression profile of ESTs indicated that 19 ESTs were up regulated and 12 
down regulated. While 21 of the EST corresponded to genes with putative func-
tions (Table 2) 10 of them corresponded to hypothetical proteins. 

4. Discussion 

Lablab purpureus has been reported to exhibit quantitative and qualitative varia-
tions in biochemical markers of stress responses under salinity and drought 
stress [22] [23]. These variations indicate distinctive set of players involved in 
stress perception and response biochemistry. This is also corroborated by dis-
tinct set of differentially expressed ESTs characterized under drought and salin-
ity stress using DDRT-PCR, employing a common set of 48 primers. The dis-
tinction was also clear from the fact that 31 ESTs were characterized under 
drought stress, while only 12 ESTs were characterized under salinity stress rela-
tive to their respective controls. Annotation of ESTs, suggested different func-
tionalities involved in drought and salt stress response in Lablab purpureus. 
Even among 12 ESTs differentially expressed under salinity stress, none of them 
were observed to be similar to those identified under drought stress (Table 2). 
Broadly the annotated ESTs, from both drought and salt stress, were associated 
with metabolism, photosynthesis, energy production and post transcriptional 
regulation, such as alteration in mRNA levels. 

Metabolic adjustment is crucial to cope with abiotic stress. These changes may 
involve selective regulation of genes associated with the maintenance of metabo-
lite levels. While synthesis and storage of starch in plastids takes place during the 
day, under applied drought, the increase in demand for energy and reduced 
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photosynthetic ability induces the breakdown of starch [27]. The breakdown 
product, Glucose-6-phosphate, is transported across the plastidic membrane via 
the Glucose-6-phosphate transporter [27]. Upregulation of EST homologous to 
Plastidic Glucose Transporter suggested breakdown of starch under salinity 
stress. A homologue of this transporter has been reported to be upregulated in 
Arabidopsis thaliana during increased sink demand [28] [29] [30]. 

Transcript abundance of several genes encoding mitochondrial proteins are 
known to be upregulated in response to stress [31]. An EST homologous to cy-
tochrome-c oxidase (COX) was differentially regulated under drought stress 
with 1.17-fold over expression. COX expression has been shown to be associated 
with thermotolerance as observed in Arabidopsis thaliana [32] [33] and mono-
cots such as maize [34]. Therefore, upregulated EST suggested may also contrib-
ute to drought tolerance of Lablab purpureus, also Lablab is also known for 
thermotolerance which has been shown through biochemical studies [35] COX 
may also play a role. Another EST showing homology to F1 complex assembly 
factor 2-like of F0F1 ATP synthase known to help in the stabilization of ATPase 
complex and facilitate the formation of ATP [36] [37], was upregulated under 
drought, is in conformity with increased demand for ATP during stress. 

Catabolite repression is a general mechanism utilized by prokaryotes and 
lower eukaryotes to regulate carbon and nitrogen metabolism. Plant homologs 
are involved in catabolite regulation of various metabolites [38] [39]. Upregula-
tion of EST homologues to CCRP suggested a vital role for its mRNA turnover 
during drought stress [33]. Plants respond to environmental cues by altering ri-
gidity of the cell wall. Cell wall hydrolases have been shown to be crucial in cell 
wall dynamics [40] [41]. While an EST homologue to cell wall hydrolase was 
upregulated under drought, another homologue was down regulated under sa-
linity stress. While upregulation of hydrolases has been reported to have protec-
tive effects under drought stress [42] their down regulation has been found to be 
effective under salinity stress [43]. 

Cell volume is modulated by alteration in plasma membrane size which is due 
to dynamics of endocytic vesicles. Endocytosis in plants can be mediated by 
formation of clathrin-dependent vesicles or clathrin-independent vesicles. 
EPSIN (Eps15 interactor) has been identified as a key protein under clathrin- 
mediated endocytosis in flowering plants [44]. In Lablab purpureus, the down-
regulation of EPSIN homologue indicated the role of clathrin independent en-
docytosis under drought stress. Another vesicle associated EST showed homol-
ogy to VAMP727, which is associated with ARA6 a QSNARE [45] [46] [47], was 
differentially expressed under drought stress. Overexpression under drought stress 
but not under salt stress, suggested different set of inducers under drought and sa-
linity in Lablab. Dehydration leads to protein aggregation and damage [48] [49]. 
One of the key enzymes in protein turnover, ubiquitin carboxy-terminal hy-
drolase, catalyses hydrolysis of ubiquitin polymers to monomers and release of 
ubiquitin from tagged protein [50]. An EST showing homology to this gene was 
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upregulated under drought as observed in Brassica napus [51]. E3 ligase is a key 
protein which transfers the ubiquitin onto target protein, an EST corresponding 
to PUB22 U-box-containing E3 ligase is down-regulated under drought. First 
identified in Arabidopsis [52], PUB22 expression was shown to have negative in-
fluence on water stress response [52]. The increased activity of hydrolase and 
reduced E3 ligase indicated the reduction in protein turnover under drought in 
L. purpureus. 

Survival of plants under stress is critically dependent on storage and utiliza-
tion of assimilated elements such as Sulphur and Nitrogen [53]. EST homolo-
gous to Adenosine-5’-phosphosulfate-kinase (APSK), involved in sulphur me-
tabolism, and nitrate transporter (NRT 1.5) 1.5 like were down regulated under 
salinity stress. Reduced APSK would result in reduced 3'-phosphoadenosine 
5’-phosphosulfate (PAPS), a principal sulphur donor in metabolism of sulphur 
containing compounds [54] [55]. Reduction in NRT 1.5 like would cause non 
mobilization of nitrate stores, with reduction in plant growth [56]. Similar 
downregulation of NRT homologue has been reported for Arabidopsis thaliana 
[57] under cadmium stress, suggesting the possibility of similar molecular sig-
nals prevailing under salinity and heavy metal stress. 

Stability and/or turnover of mRNA is one of the factors influencing gene ex-
pression under normal and stressed conditions [58]. Differential expression of a 
homologue of poly A binding protein RBP45 under drought stress suggested its 
role in stability of mRNA under drought [59]. But a similar response was not 
observed under salt stress when identical set of primers were employed for 
DDRT-PCR, although physiological response to dehydration by drought and sa-
linity have been reported to be similar. 

Transcription factors play key role in regulation of gene expression [60]. ESTs 
corresponding to MYB was upregulated under drought stress. MYB transcrip-
tion factors are known to be involved in cold tolerance [61], stress response [62], 
ABA induced drought tolerance mechanism [63]. Another EST homologue to 
NF-Y A7 like has shown to be important in embryonic development, plastid 
biogenesis, abiotic stress tolerance [64] [65]. Upregulation of MYB and NF-Y A7 
like members strongly indicate priming of transcription regulation under 
drought stress in Lablab purpureus. 

Another EST homologous to transcriptional activator CAMTA3, a major 
regulator in biotic defence [66] [67] and regulator of rapid stress response ele-
ment [68] was differentially expressed under drought. Considering the fact that 
CAMTA3 mutants accumulate greater DNA damage [69], its upregulation in 
Lablab purpureus suggested its protective role under drought stress. As most of 
the gene regulation by transcription factors are mediated by mediator com-
plexes, up and down regulation of mediators [70] [71] [72] [73] would have an 
impact on the extent of regulation by a given transcription factor [74]. Upregu-
lation of homologue of Med26 under drought suggested its positive effect in 
drought tolerance. 

https://doi.org/10.4236/ajps.2021.125057


S. Kokila, V. R. Devaraj 
 

 

DOI: 10.4236/ajps.2021.125057 849 American Journal of Plant Sciences 
 

Post transcriptional regulation via siRNA and miRNA have been shown to 
contribute to stress response either positively, or negatively [75] [76]. Down 
regulation of a homologue of Maturase K under drought stress, which is known 
to be involved in splicing group II introns, in relation to plant development in-
dicated non processing of the transcripts [77] [78] and has protective role in 
Lablab purpureus. As part of post transcriptional regulation of gene expression, 
modification of mRNA also plays a key role. Pentatricopeptide repeat proteins 
(PPR) are known to be associated with mRNA splicing and processing compo-
nents of organelles, and overexpression of a PPR gene in A. thaliana has been 
shown to contribute to tolerance to salinity stress [79] [80] [81]. Down regula-
tion of an EST homologous to pentapeptide repeat protein family (PPRP family) 
and pre-mRNA-splicing factor (CWC22) under salinity, indicate reduced stabil-
ity of mRNAs under salt stress. 

Abiotic stress responses are also known to be epigenetically regulated [82]. A 
homologue of SSRP1, which is known to associate with FACT (Facilitates chro-
matin transcription complex) complex [83] [84], required for transcription 
elongation by RNA polymerase II, was down regulated under salinity. This indi-
cated significant role for FACT mediated epigenetic regulation under salt stress. 

Environmental stress has been shown to influence ribosomal synthesis [85]. 
Two EST homologous of ribosomal subunits, chloroplast encoded S7 and the 
nucleus encoded L22, were upregulated suggesting the dynamics of ribosome 
under drought stress. A similar observation with upregulation of S7 has been 
observed in Tomato [86]. An EST homologous to rRNA-processing protein 
EBP2 mRNA [87] [88] showed down regulation under drought. In Arabidopsis 
this protein expression is altered in salt hypersensitive mutant 9 (sahy9) mutant 
under salinity stress [89]. The down regulation of predicted EBP2 in Lablab 
purpureusmight slowdown the progression of mitosis and effect salinity induced 
ribosomal protein alteration in biogenesis. 

Drought and salinity stress are known to affect the photosynthetic capacity, 
which is linked to chlorophyll content [90]. Two ESTs one homologous to chlo-
rophyll a/b binding protein, and another showing homology to Photosystem II 
CP47, a component of Light harvesting complex component was down regulated 
under drought stress, suggesting reduced photosynthetic capacity in Lablab 
purpureus. Declined photosynthetic activity due to down regulation of LHCB 
protein family has been shown in Arabidopsis [91] and pepper [92]. 

Downregulation of salt stress specific differentially expressed EST, homolo-
gous to chlorophyll reductase in Lablab, which indicated delay in senescence 
[93] [94] under salt stress as observed in stay green phenotypes of Oryza sativa 
[95]. Another EST homologous to TIC32, a short chain dehydrogenase, which is 
part of Toc-Tic complex involved in regulation of protein import [96] in re-
sponse to calcium sensing was down regulated under drought. A similar down 
regulation has been observed in O. sativa under drought stress [97]. Apart from 
these known homologs, there were ESTs matching the unknown function giving 

https://doi.org/10.4236/ajps.2021.125057


S. Kokila, V. R. Devaraj 
 

 

DOI: 10.4236/ajps.2021.125057 850 American Journal of Plant Sciences 
 

a scope for identification of new roles. 
Previous studies have shown that Lablab purpureus exhibits more or less 

similar pattern of biochemical parameters such as antioxidants and antioxidant 
enzymes under drought and salt stress. However, the foregoing discussion shows 
a contrasting response in terms of relative abundance of transcripts under these 
two conditions. Further, the transcripts identified under these two conditions were 
altogether different despite identical set of primers employed in DDRT-PCR 
method. Compared to other study on root transcriptome, only one EST (MYB) 
showed similarity. Therefore, it can be concluded that, at transcription level, dis-
tinct signalling molecules and elicitors are employed by the plants under 
drought and salinity stress. Nevertheless, the observed levels of transcripts may 
not always indicate the expected levels of translation products, as the stability of 
mRNAs and translational regulation further add a layer of regulation to stress. A 
clear picture may require exhaustive transcript profiling and study of epigenetic 
regulation to compare the molecular events that distinguish response of the 
plant to drought and salt stress. 
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