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Abstract 
Deep learning can train models from a dataset to solve tasks. Although deep 
learning has attracted much interest owing to the excellent performance, se-
curity issues are gradually exposed. Deep learning may be prone to the mem-
bership inference attack, where the attacker can determine the membership of 
a given sample. In this paper, we propose a new defense mechanism against 
membership inference: NoiseDA. In our proposal, a model is not directly 
trained on a sensitive dataset to alleviate the threat of membership inference 
attack by leveraging domain adaptation. Besides, a module called Feature 
Crafter has been designed to reduce the necessary training dataset from 2 to 
1, which creates features for domain adaptation training using noise addictive 
mechanisms. Our experiments have shown that, with the noises properly 
added by Feature Crafter, our proposal can reduce the success of membership 
inference with a controllable utility loss.  
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1. Introduction 

Deep learning progressively participates in society and our daily life owing to 
excellent performance. For example, in the field of computer vision, deep learn-
ing is widely used for image classification, object detection, and facial recogni-
tion [1] [2]. Except for computer vision, deep learning is also used in recom-
mendation [3] or disease prediction [4] [5]. According to the report released by 
Technavio [6], the market of deep learning can reach 7.2 billion USD in 
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2020-2024. 
Despite the fancy performance of deep learning, the models can face plenty of 

threats during deployment, one of which will severely expose deep learning 
models to privacy risk. Attacks aiming at the private information of deep learn-
ing models, such as model inversion and attribute inference [7] [8] [9] are pro-
posed in recent years. Among these attacks, membership inference attacks are 
widely studied [10] [11] [12] [13] [14]. Briefly speaking, in a membership infe-
rence attack, the attacker’s target is to guess whether a given sample is a training 
sample of the victim model, which is called a member. The attacker has various 
variables to leverage to initiate the attack. Commonly, the direct outputs asso-
ciated with a given sample sent back by the victim model are exploited. 

Membership inference attacks can cause severe privacy breaches in some cir-
cumstances, especially when a deep learning model is trained by a dataset con-
taining sensitive user data. Liu et al. [15] propose a membership inference attack 
against patients’ medical records, which can result in disease discrimination is-
sues. Pyrgelis et al. [16] propose another membership inference attacker against 
aggregate location data, in which a user’s history locations or activity trace can 
be stolen by the attacker. These leakages may introduce pecuniary losses or legal 
violations to individuals or organizations that provide deep learning for service. 
For example, it is forced by GDPR (General Data Protection Regulation) [17] to 
protect user’s privacy. The failure in the protection of user privacy can result in a 
large amount of penalty. 

Since membership inference exposes deep learning models in privacy threat, 
efforts have been put to counter the attack. These efforts can be categorized into 
three types: Regularization-based defenses; Adversarial-example-based defenses 
and Differential-privacy-based defenses. Regularization-based defenses choose 
to utilized regularization techniques to design defense mechanisms. For exam-
ple, Shokri et al. [10] shown that Dropout and L2 Regularization can be used to 
alleviate membership inference. Salem et al. [11] leverage an ensemble learning 
technique called model stacking to build defenses. Adversarial-example-based 
defenses utilize adversarial examples to design defenses. However, the defenses 
incur large overhead such as time consumed in deploying the defenses. Differen-
tial-privacy-based defenses make use of the differential privacy techniques to 
add noises to model gradients during model training. Jayaraman et al. [18] show 
the effectiveness of such defenses. However, this type of defense will incur large 
utility losses. The main goals of the defense mechanisms are to 1) reduce the 
success of membership inference; 2) keep the maximum utility of the victim 
model, which is also the requirement of our defense mechanism. 

The reason for the success of membership inference is attributed to the phe-
nomenon of overfitting [10] [19]. Because of overfitting, a model may treat the 
training data in a special pattern. This unique pattern can be leveraged by the 
attacker to deploy membership inference. Consider a sensitive dataset, to protect 
the membership information from leakage; a simple idea is not to train the 
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model directly on the sensitive dataset. To train a model without directly using 
the complete sensitive dataset is the first challenge. We solve the problem by le-
veraging transfer learning, specifically, the domain adaptation technique, inspired 
by DAMIA [20]. Since in domain adaptation, a model is trained with two data-
sets: the source domain dataset and the target domain dataset. Note the model is 
directly trained on the source domain dataset and the knowledge is transferred 
to tackle the problem on the unlabeled target domain dataset. In other words, 
the model is not directly trained on the target domain dataset, which can be the 
sensitive dataset. However, in this design, another challenge is that an extra da-
taset should be collected or generated to be the source domain dataset, which 
brings inconvenience in deploying the defenses. We solve the problem by creat-
ing the data for domain adaptation based on the sensitive dataset. Instead of 
creating samples fed to the model, we choose to create the feature in the middle 
layer of the model based on the one extracted from the sensitive dataset. These 
two features will be used for domain adaptation training. To avoid complex data 
generation, which will introduce a burden in the defense, we solve the problem 
by adding noises following noise mechanisms to the target domain feature, where 
two “addictive” (more noise means more privacy) noise mechanisms are designed. 

Based on the idea above, we propose NoiseDA. Our proposal consists of three 
phases during applying the defenses: 1) feature extraction; 2) feature crafting and 
3) model training. In feature extraction, features will be extracted from the sensi-
tive dataset (i.e. the target domain features), these features are then sent to Feature 
Crafter in the feature crafting phase. In this phase, the source domain feature 
will be created. Afterward, the source and target domain features are then used 
for the later domain adaptation training. 

We conduct experiments to evaluate our proposal. The experiment results show 
that NoiseDA can resist membership inference attacks by reducing the mem-
bership inference accuracy. Besides, with proper noises added, the utility loss can 
be controlled. 

Contributions. Our paper makes the following contributions: 
 We propose a new defense mechanism leveraging domain adaptation and 

further reduce the necessary training dataset from 2 to 1. 
 We design two noise-adding strategies in our proposal; both of the strategies 

can create suitable training features. 
 We design and evaluate noise-adding strategy based on differential privacy. 

Results show the capability to leverage differential privacy in our proposal. 
 We conduct experiments on the benchmark datasets to evaluate our propos-

al, which indicates the effectiveness of the proposal. 
Roadmap: The rest of the paper is organized as follows. In Section 2, we in-

troduce related works on membership inference attack and defenses. In Section 
3, we provide preliminary, the insight and the design of our proposal. In Section 
4, we introduce the experiment setup and evaluate the effectiveness and utility of 
NoiseDA. Finally, we conclude the paper in Section 5. 
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2. Related Works 
2.1. Membership Inference Attack 

Shokri et al. [10] propose the first membership inference against deep learning, 
which explores the vulnerability of deep learning models. 

To simplify the attack by decreasing the number of shadow models, as well as 
the datasets required to train these models, Salem et al. [11] propose a new me-
thod to initiate membership inference. Considered that the classical membership 
inference attack requires numerous models and datasets, despite the simplifica-
tion, the new attack is still of effectiveness. Owing to the effectiveness and sim-
plicity, this method is adopted as the membership inference attack in our expe-
riments. 

Yeom et al. [19] and Salem et al. [11] propose new attacks by comparing the 
confidence score of the target class with a predefined threshold. Mathematically 
speaking, given a victim DL model M trained on a dataset D. It is presumed that 
the victim model can categorize inputs into n categories. A sample is  fed into 
M results in an output ( )1 2, , , , ,i j no p p p p= � � , where jp  is the confidence 
score. To infer the membership, the attack compare according to the rule as fol-
lows, where kp  is the confidence score of the target class. 
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However, compared with the shadow-model-based attack, these attacks re-
quire more information [11] [19]. 

Apart from attacks under the black-box access, there are other attacks pro-
posed under the white-box access. In this access model, an attacker has the abil-
ity to access more information; therefore, the attacker has more options to in-
itiate the attack rather than only using the outputs from the models. Nasr et al. 
[11] shown that, in this scenario, an attacker can leverage other useful informa-
tion, such as the activation values, gradients to perform the attack. Especially, in 
federated learning [21] scenario, the attacker can also use the information of pa-
rameter updates as the role of parameter aggregator. In spite of the effectiveness, 
these attacks are less practical compared with those in a black-box manner, since 
in the real world, deep learning models usually provide service under an MLaaS 
(i.e. Machine-Learning-as-a-Service) scenario, where less information of the 
model, except that the output is sent to the users. 

Some membership inference attacks aiming at the real-world application are 
also proposed. Pyrgelis et al. [16] propose an attacker to infer the membership of 
a given user in aggregate location data and further acquire the user’s location. 
Liu et al. [15] propose another membership inference attack to acquire the 
membership of patients, whose data are used to train a disease prediction model. 

Although the membership inference attack exposes the vulnerability of deep 
learning models and the privacy of the training dataset in danger, the attacker 
itself enhances the understanding of deep learning. Besides, membership infe-
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rence also serves as a method for the information leakage of a deep learning mod-
el, which is usually utilized to reflect the performance of defenses. 

2.2. Defenses against Membership Inference Attack 

Given that membership inference attacks may breach the privacy of the training 
set, especially when the dataset is sensitive, defenses are explored and proposed. 
Current defenses against membership inference can be categorized into three 
groups: regularization-based defenses, adversarial-example-based defenses, and 
differential-privacy-based defenses. 

2.2.1. Regularization-Based Defenses 
The possible reason for the success of membership inference attacks can be at-
tributed to the phenomenon of overfitting [19]. A deep learning model can be 
viewed as a machine processing the input layer-by-layer; the output varies ac-
cording to a specific input. If a model heavily overfits the training data, the 
model may have a special pattern in processing the training samples, and thus 
this pattern can reside in the output. This pattern can further reside in the asso-
ciated output, which can later be exploited by the attacker to initiate member-
ship inference attacks. Therefore, one way to ease the problem of membership 
inference is to remove this pattern. In other words, narrowing down the difference 
between the processing of a training sample and the processing of a non-training 
sample can be a solution to the membership inference attack. Shokri et al. [10] 
showed that the overfitting prevention mechanisms, such as Dropout [22] and 
L2 regularization [23] can be used to resist membership inference attacks. How-
ever, these methods are not stable since they are not practically designed for 
membership inference attacks. Nasr et al. [24] proposed a new regularization 
method called adversarial regularization as a defense. In their solution, a new 
regularization term is added to the loss function of the deep learning model, 
which involves the “gain of the inference” term. This term is determined during 
the training process. The object of the loss function is to first maximize the gain 
of the inference, and then minimize it, which is also called the max-min game. 
Since it is an adversarial training process, the difficulty to train a model increas-
es. Considered that ensemble learning can achieve better generalization, alle-
viating the phenomenon of overfitting of a single model, Salem et al. [11] pro-
pose a defense utilizing model stacking. In their design, a two-layer stacked en-
semble model is built, which includes a neural network, a random forest in the 
first layer, and a logistic regression model in the second layer. Although their 
design show effectiveness, this method involves more models to train, and thus 
more data are needed for training. In contrast, our defense does not have this 
limitation. 

2.2.2. Adversarial-Example-Based Defenses 
As mention in Section 2.1, typically, a membership inference attacker will train a 
binary classifier accepting the outputs from the victim model to perform attacks. 
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Usually, the binary classifier is a deep learning model; as a result, the vulnerabil-
ity of deep learning resides in the model, such as the vulnerability in facing ad-
versarial attacks [25]. Based on this insight, Jia et al. [26] propose a defense me-
chanism against membership inference attacks. In their design, carefully de-
signed noises are added to the victim model’s outputs to turn the outputs into 
adversarial examples. Therefore, the adversarial outputs can fool the attacker’s 
binary classifier, and thus fail the membership inference attack. Although the 
defense shows great performance, more time must be consumed in applying the 
defense. 

2.2.3. Differential-Privacy-Based Defenses 
Some defenses focus on the technique of differential privacy. Abadi et al. [27] 
propose DP-SGD algorithm to replace the original SGD for model training, their 
results show that differential privacy is effective. However, Rahman et al. [28] 
show that even with DP-SGD, the model is still possible to be compromised. 
Carlini et al. [29] exam different differential privacy training algorithms in the 
deep learning model to resist membership inference. Their results show that, al-
though differential privacy can be leveraged to resist membership inference, the 
utility of the model (i.e. the performance of a model on a specific task) is exten-
sively affected and is usually reduced on a large scale. Our defense makes use of 
differential privacy; however, it is not used for model training and training sam-
ple generation. 

3. Methodology 

In this section, the preliminary knowledge is demonstrated. Afterward, the threat 
model discussed in our work is defined. Finally, we clarify our idea to design 
NoiseDA and present the design details. 

3.1. Preliminary 
3.1.1. Membership Inference Attack 
Membership inference attacks against Deep Learning models are proposed by 
Shokri et al. [10]. The attack aims to infer whether a sample, fed to a Deep Learn-
ing model, is included in the training set of the model. A training sample of a 
Deep Learning model is also known as the “member”. 

Commonly, the membership inference attack is performed in a black-box 
manner, meaning that an attacker can only interact with the victim model in a 
query-answer manner. In this setting, the attacker can only exploit useful infor-
mation in the output sent back by the victim model, which is usually a posterior. 

Typically, to initiate a membership inference attack under the black-box sce-
nario, the attack must firstly train a group of models imitating the victim model, 
also known as “shadow models”. To train these models, the attacker obtains da-
tasets following the same distribution as the training set of the victim model. Af-
ter all the shadow models are trained, the attacker further feeds the training set 
and the test set to these models and collects all the outputs. The outputs are se-
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parated into two groups to form a new dataset: those associated with the training 
samples are labeled as members, and those associated with the training samples 
are labeled as non-members. Based on the new dataset, the attacker trains a bi-
nary classifier as the attack model. By feeding output from the victim model, the 
attacker can infer the membership of the sample associated with the output. 

3.1.2. Domain Adaptation 
Domain Adaptation (DA) is a branch of transfer learning [30], aiming to address 
the issue of insufficient labeled training data. 

Domain adaptation utilizes the knowledge of one or more relevant source 
domains to conduct new tasks in a target domain. Mathematically, we denote a 
domain as ( ){ }, P X=  , where   represents the feature space and ( )P X  
represents the margin probability distribution. Note that { }1 2, , , nX x x x= ∈�  . 
A task on a specific domain is denoted as ( ){ }, f x=  , where   is the label 
space and ( )f x  is the target prediction function. Therefore, a source domain 
can be represented as ( ){ },t t tP X=  . Correspondingly, ( ){ },s s sf x=   and 

( ){ },t t tf x=   are two tasks. The goal of DA is to leverage the latent knowledge 
from s  and s  to improve the performance of ( )tf x  in t , where s t≠  . 
Please note that in domain adaptation, s t=  . 

Basically, the approach achieves the knowledge transferring by driving the mod-
el to learn the shared representation of the source domain and target domain.  

3.1.3. Differential Privacy 
Differential privacy is introduced by Dwork [31], this technique protects user 
privacy by adding noises to the data in a dataset. However, the noises will not 
affect meaningful analysis on the dataset. In other words, the statistical proper-
ties are mostly preserved. Formally, the definition of differential privacy is as 
follows. 

Given a randomized algorithm A, a particular result x and pairs of datasets D 
and D′ , where D is almost the same as D′  with one record missing. A achieve 
 -differentially privacy if and only if the following inequality holds: 

( ) ( )Pr A D x e Pr A D x′= = × =      
  

Therefore, various algorithms satisfy this condition, one of which is the Lap-
lace mechanism [31]. 

Essentially, differential privacy is used to protect user privacy in a dataset. In 
this work, we concentrate on the property that differential privacy preserves the 
statistical properties of data and leverage this property to generate new data for 
domain adaptation training. 

3.2. Threat Model 

We define the threat model under the MLaaS scenario. Especially, in this scena-
rio, the deep learning model serves the public with limited APIs exposed. The 
model user, as well as the attacker, can only send the inputs to the model via a 
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predefined API and receives only the outputs from the models. In other words, 
attackers can only leakage the direct outputs from the model to initiate mem-
bership inference. 

More specifically, we make the following assumptions for the threat model: 
1) It is assumed that that the attacker can only access the victim model in a 

black-box manner. That is, the attacker does not know how the victim model 
will process the inputs fed by the attacker. The attacker only knows the output 
from the victim model. 

2) It is assumed that the distribution that the training data of the victim model 
is drawn from is known by the attacker. Note that this assumption is made in most 
of the membership inference threat model [10] [11] [19]. 

3) It is also assumed that the attacker has no knowledge of the implementation 
of the victim model, including the training algorithm, the hyperparameters, and 
the model’s architecture. 

3.3. Insights 

The insight of our design is based on that: the success of membership inference 
attacks is widely attributed to the phenomenon of overfitting, where the differ-
ence between the processing of training data and the processing of non-training 
data and the memorization phenomenon [29] can be utilized by attackers. There-
fore, to prevent membership inference attacks, one possible way is not to train a 
model directly on a sensitive dataset. To design a defense mechanism based on 
this idea, we will face the following challenges. 

Challenge 1: How to train the model so as the model can tackle the task on 
the sensitive dataset without being trained directly on the complete sensitive 
dataset? 

Using synthetic data produced by generative adversarial networks (GANs) is 
out of our consideration since the process is time-consuming. 

The technique of transfer learning shed light on another possible solution to 
this problem. Specifically, domain adaptation can be leveraged for our design to 
resist membership inference attacks. In domain adaptation, a model is trained by 
two datasets: a target domain dataset and a source domain dataset. The target do-
main dataset contains only the samples without labels. With the help of the source 
domain dataset, the model can have a good performance on the target domain 
dataset, which fits our need in Challenge 1. 

Challenge 2: How to avoid collecting or generating an extra dataset for the 
source domain when domain adaptation is adopted? 

We choose the classical domain adaptation method called Deep Domain Con-
fusion (DDC) [32] since it is simple and effective. In DDC, the source domain 
dataset and the target domain dataset are fed into a universal backbone network 
for feature extraction. Given that our goal is to avoid using source domain data, 
we can create a different feature according to the target domain data to bypass 
the usage of the source domain data. Since the crafted feature is based on the 
target feature, it should preserve better utility. 
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Challenge 3: How to craft a feature based on the target domain feature to 
replace the source domain feature? 

Instead of using time-consuming data generation techniques such as GAN, we 
adopt noise-adding mechanisms to achieve the goal. Specifically, a source domain 
feature is acquired by adding noises following certain rules to the target domain 
feature. In such a way, a source domain feature can be efficiently produced. Note 
that it still fits the need in Challenge 1 since the crafted feature is not identical to 
the target feature. 

3.4. Design 

Based on the insights in Section 4.2, in this subsection, we propose NoiseDA. The 
overview of our defense mechanism is illustrated in Figure 1. 

As shown in Figure 1, to train a model in our defense mechanism, three phases 
are involved. Note that three phases are included in each round of training. 

3.4.1. Feature Extraction 
In this phase, a backbone works as a feature extractor will take sensitive data as 
in-puts to extract the target domain features. Since neural networks show great 
potential in extracting lantern features for model training, in our design, neural 
networks are utilized as backbones. Note that, although in Figure 1, a Convolu-
tional Neural Network (CNN) takes the role of the backbone; other types of 
neural networks can be the backbone depending on a certain circumstance. 

3.4.2. Feature Crafting 
The phase of Feature Crafting is essential to our defense. In this phase, Feature 
Crafter is obligate to craft features by adding noises following certain rules to the 
target domain features. We design two feature crafting strategies for our defense 
mechanism: uniform noise strategy and differential privacy noise strategy. 
 

 
Figure 1. Overview of NoiseDA. 
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Uniform noise strategy. The uniform noise strategy is simple and easy to per-
form. In this strategy, noises added to the target domain features are sampled from 
the uniform distribution. The feature crafting algorithm is illustrated in Algo-
rithm 1. 

As shown in Algorithm 1, noises are firstly drawn from the uniform distribu-
tion, whose range is controlled by λ. With a smaller λ, the crafted source domain 
feature will be less different compared with the target domain features. In our 
design, the default λ is set as 1. Additionally, to avoid overflow or underflow, the 
crafted feature should be constrained in the fixed range, which is defined by max 
value and min value. 

Differential privacy noise strategy. Apart from the uniform noise strategy, 
we introduce another strategy leveraging differential privacy. We make use of 
the idea that, in differential privacy, the added noises can be controlled so that 
the useful information (e.g. statistical properties) of data is still preserved.  

As shown in Algorithm 2, noises are drawn from the Laplace distribution ac-
cording to the design in [31], whose form is controlled by sensitivity and  .   
is called the privacy budget, with a smaller  , the source domain feature will be 
more different compared with the target domain features, which should enhance 
the privacy protection, according to the definition of differential privacy. In our 
design, the default   is set as 0.1. 
 

 

Algorithm 1. Uniform noise feature crafting algorithm. 
 

 

Algorithm 2. Differential privacy noise feature crafting algorithm. 
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3.4.3. Model Training 
In this phase, the crafted source domain feature along with the target domain fea-
ture will be used to calculate the classification loss and the adaptation loss, which 
will guide the model to update its weights. 

The classification loss is calculated with the crafted source domain features, 
where labels are used. While the adaptation loss, involved with the two features, 
is calculated by MMD [32], which reflects the distance between these features. In 
our design, the SGD optimizer is utilized for minimizing both the classification 
loss and the adaptation loss. 

4. Evaluation 

In this section, we explore the performance of NoiseDA, that is, the effect of re-
sisting membership inference and the utility of the model after applying our de-
fense. We firstly introduce the experiment setup, including the experiment en-
vironment, as well as the experiment dataset involves in the evaluation. Second-
ly, we introduce metrics to reflect the performance of NoiseDA. Afterward, we 
present the experiment results. 

4.1. Experiment Environment 

Experiments are conducted on a Ubuntu 16.04 server, equipped with an Intel(R) 
Core(TM) i5-7500 CPU, an Nvidia GTX 1080Ti GPU, and memory with a size 
of 32 GB. 

We implement our design using Python, and Pytorch is adopted as the deep 
learning framework in our implementation. 

4.2. Experiment Datasets 

In this subsection, we introduce the dataset involved in our evaluation. Note that 
the experiment datasets are the benchmark datasets [10] [11] [28] for member-
ship inference attacks, involving image datasets and non-image datasets. 

CIFAR-100. The CIFAR-100 dataset consists of 60,000 color images with a 
size of 32 × 32. Samples in this image can be categorized into 100 classes, such as 
airplane, cat, dog, or horse, and so on. Usually, 50,000 images are used as train-
ing samples while the rest are test samples. Totally 40,000 samples are randomly 
selected to be our experiment dataset. 

Location. The Location dataset is constructed based on the foursquare data-
set, which contains 5010 samples. Each sample is a feature vector with a length 
of 466. The feature indicates the region or location types that a user visits. All the 
samples are categorized into 30 classes. 4500 samples are randomly selected to be 
our experiment dataset. 

Purchase. The Purchase dataset is constructed based on the dataset in Kag-
gle’s “acquire valued shoppers” challenge, which contains 311,540 samples. Each 
sample is a feature vector containing 600 binary features. The feature indicates 
whether a user has purchased a product. All the samples are grouped into 100 
classes. 30,000 samples are randomly selected to be our experiment dataset. 
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Texas. The Texas dataset is constructed based on the Hospital Discharge Data 
public user files released by the Texas Department of State Health Services, which 
contains 67,330 samples. Each sample is a feature vector containing 6170 binary 
features. The feature presents a patient’s specific medical information, as well as 
other sensitive information such as age and gender. All the samples are grouped 
into 100 classes. 30,000 samples are randomly selected to be our experiment da-
taset. 

Note that all the experiment datasets are further separated into training data-
sets (80%) and test datasets (20%) for evaluation. 

4.3. Metric 

In this subsection, we introduce the metrics to measure the performance of our 
defense mechanism. 

4.3.1. Effectiveness 
We utilize the accuracy of membership inference attacks on the victim models to 
reflect the effectiveness. Specifically, the accuracy of membership inference at-
tack is denoted as Accadv. The closer the Accadv is to 50%, the better effect the de-
fense has. Since if the Accadv is to 50%, that means the attacker infers the mem-
bership in a random guess manner, which indicates that the attack has no other 
information to leverage for membership inference. 

Note that in our evaluation, the simplified membership inference attack pro-
posed in [11] is used to calculate Accadv, since this attack is easier to perform and 
requires less information, which is more practical in the real-world setting, such 
as MLaaS. 

Concretely, the attack model is trained as follow: 
1) The attacker train only one local shadow model, whose behavior is similar 

to the victim model; 
2) The attacker collects the output from the shadow model by feeding the 

training data and non-training and labeled as member and non-member respec-
tively. Noted that these two datasets are of the same size; 

3) The attacker uses the collected output to train a binary classifier as the at-
tack model. 

4.3.2. Utility 
We utilize the test accuracy of the victim to reflect the utility of the victim mod-
el. Specifically, the test accuracy is denoted as Acctest. By comparing the utility of 
a victim model before and after applying the defenses, we can examine whether 
the defense mechanism incurs large utility loss. The less the utility loss is, the 
better the defense is. 

4.4. Evaluation of Uniform Noise Strategy 

Firstly, we evaluate our defense mechanism using the uniform noise strategy. Con-
cretely, we vary the λ in Algorithm 1 to examine the effectiveness and utility of 
our defenses. Experiment results are demonstrated in Table 1 and Table 2. 
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Table 1. Effectiveness of NoiseDA using uniform noise strategy. 

λ 0.01 0.1 0.5 1 10 25 50 100 w/o Defense 

Location 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 87.80% 

Purchase 61.98% 61.44% 62.74% 59.62% 59.06% 56.68% 55.83% 51.75% 62.95% 

Texas 70.91% 71.86% 71.52% 72.03% 71.77% 61.46% 55.74% 52.99% 75.44% 

CIFAR-100 59.60% 58.90% 58.60% 58.84% 59.29% 59.29% 59.29% 59.19% 72.39% 

 
Table 2. Utility of NoiseDA using uniform noise strategy. 

λ 0.01 0.1 0.5 1 10 25 50 100 w/o Defense 

Location 48.00% 48.00% 48.00% 49.00% 46.00% 47.00% 39.00% 41.00% 59.20% 

Purchase 45.00% 45.00% 47.00% 47.00% 47.00% 43.00% 31.00% 24.00% 57.76% 

Texas 43.00% 43.00% 44.00% 42.00% 44.00% 42.00% 29.00% 23.00% 44.10% 

CIFAR-100 24.00% 24.00% 25.00% 18.00% 1.00% 0.00% 0.00% 1.00% 27.50% 

 
As shown in Table 1 and Table 2, we can observe that with our defense ap-

plied, and the Accadv is always reduced. Besides, although utility loss is inevitable, 
similar to other defenses [11] [18], the utility loss in our defense is within a small 
range, and can be controlled by adjusting the noise parameter.  

With a proper λ chosen, the utility of the victim is overall close to the one 
without defense. For example, for the task on dataset Location, λ can be chosen 
as 0.5 to achieve better performance; for Purchase, λ can be chosen as 25. Since 
in uniform noise strategy, the parameter λ is used to control the number of 
noises to add, unexpectedly, as λ getting large, our defense achieves better effec-
tiveness, although larger utility loss will occur. The tendency can be observed in 
Figure 2, where the results of Purchase and Texas are plotted in Figure 2(a) and 
Figure 2(b). 

4.5. Evaluation on Uniform Noise Strategy 

We further evaluate our defense mechanism using the differential privacy noise 
strategy. This time, we vary the epsilon in Algorithm 2 to examine the effec-
tiveness and utility of our defenses. Experiment results are demonstrated in Ta-
ble 3 and Table 4.  

With a proper   chosen, the utility of the victim is overall close to the one 
without defense, such as 10 for Location and 0.1 for Texas. Compared with uni-
form noise strategy, the differential privacy noise strategy using Laplace noise is 
better at dealing with simpler task, such as the task on Location. 

In differential privacy noise strategy,  , called the privacy budget, is the pa-
rameter to control the number of noises to add. As   ascends, the defenses 
have a better utility, while the effectiveness is weakened, meaning that Accadv in-
creases. Therefore, a smaller   can be considered first to achieve better effec-
tiveness and further finetune the parameter to obtain better utility. Likewise, we 
plot the results of Purchase and Texas in Figure 3(a) and Figure 3(b) to show 
the tendency. 
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(a)                                        (b) 

Figure 2. Trend of effectiveness and utility as λ increases. (a) Trend on purchase dataset; 
(b) Trend on Texas dataset. 
 

  
(a)                                        (b) 

Figure 3. Trend of effectiveness and utility as   desreases. (a) Trend on purchase data-
set; (b) Trend on Texas dataset. 
 
Table 3. Effectiveness of NoiseDA using differential privacy noise strategy. 

є 0.01 0.05 0.1 0.25 0.5 1 10 100 w/o Defense 

Location 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 87.80% 

Purchase 50.12% 52.20% 53.60% 56.48% 58.12% 58.62% 61.97% 61.27% 62.95% 

Texas 50.57% 55.84% 64.25% 69.85% 70.67% 72.00% 73.58% 72.58% 75.44% 

CIFAR-100 58.98% 59.32% 58.99% 59.68% 59.35% 59.36% 59.26% 59.38% 72.39% 

 
Table 4. Utility of NoiseDA using differential privacy noise strategy. 

є 0.01 0.05 0.1 0.25 0.5 1 10 100 w/o Defense 

Location 43.00% 44.00% 47.00% 49.00% 49.00% 44.00% 50.00% 48.00% 59.20% 

Purchase 10.00% 33.00% 35.00% 41.00% 44.00% 42.00% 45.00% 47.00% 57.76% 

Texas 5.00% 24.00% 43.00% 44.00% 44.00% 44.00% 43.00% 43.00% 44.10% 

CIFAR-100 1.00% 1.00% 1.00% 1.00% 1.00% 0.00% 9.00% 23.00% 27.50% 
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In a nutshell, both noise strategies are all appliable in NoiseDA. Both show the 
ability to protect the model from membership inference. The differential privacy 
noise strategy shows that the technique of differential privacy is compatible with 
our design, indicating the possibility of applying other differential privacy me-
chanisms in our design. 

Although we can observe that the utility loss is inevitable and may get larger 
when more noises are added. It can be attributed to the technique of domain adap-
tation in extracting useful information from both features. We leave the im-
provement in our future work. Besides, parameters in both noise strategies are 
currently chosen empirically. Automatic parameter searching algorithms are al-
so our focus in the future. 

5. Conclusion 

In this paper, we propose a new defense mechanism against membership infe-
rence attacks. The proposal leverages domain adaptation to avoid direct training 
on a sensitive dataset. Besides, the Feature Crafter module is designed to create a 
feature for domain adaptation training by utilizing addictive noise mechanisms, 
which can reduce the necessary dataset from 2 to 1. We further design noise-adding 
strategies for the module. We show in the experiment that our proposal can res-
ist the membership inference attack. Besides, with proper noises added, the util-
ity loss can be controlled. The next stage of our works is to reduce the gaps be-
tween effectiveness and utility by designing better addictive noise mechanisms and 
domain adaptation training methods, and design automatic parameter searching 
algorithms for our noise-adding strategies. 
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