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Abstract 
Differences of the time periods in two independent quantum systems are 
examined on a semiclassical level. The systems are the electron in the hydro-
gen atom and a free-electron particle moving in a one-dimensional potential 
box, respectively. It is demonstrated that in both systems the relativistic cor-
rection to the time interval can be expressed as a multiple of the same quan-
tum of time. The size of the quantum is proportional to the ratio of the 
Planck’s constant and the rest energy of the electron particle. 
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1. Introduction 

The problem of the time calculation seldom discussed in the quantum theory 
can remain actual even for very simple quantum systems. These systems are of-
ten of the periodic character, so we need the time periods of the electron motion 
as parameters. This kind of parameter is usually approached in a semiclassical 
way. Perhaps the best known example concerns the time periods of the electron 
orbital motion in the hydrogen atom [1] [2]. 

Other well-known examples of a semiclassical motion are the free particle in a 
potential box and the harmonic oscillator. In the last case a difficulty concerning 
time is provided by an unstable size of the velocity connected with a moving 
particle. 

In order to make the problem of calculations of the time periods to be very 
simple, only the electron in the hydrogen atom and the particle moving in a 
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one-dimenssional potential box are considered exactly in the paper. The time 
quanta in the harmonic oscillator are calculated only in an approximate way. 

The main aim of the paper was to point out that a relativistic change of a dif-
ference between two oscillation periods of time in a quantum system can be ob-
tained with the aid of the time quantum which has its size independent of the 
examined system. 

2. Electron Circulating in the Hydrogen Atom  
and Its Time Periods 

A successful Bohr theory of the atom (see e.g. [1]) assumed planar circular orbits 
about the nucleus. The radius of the nth orbit is defined by formula [2] 

2 2

2n
nr
me

=
                            (1) 

and the quantum numbers of the orbits are labelled by 

1,2,3, , .n = ∞                         (2) 

m is the electron mass, - e - electron charge. The electron velocity on the nth 
orbit is [2] 
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so the time period Tn connected with the electron circulating along the same or-
bit is deduced from the formula 
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giving 
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The task is to calculate the difference 

2 1n nT T−                            (6) 

transformed into a relativistic interval of time (see Sec. 3) for an arbitrary pair of 
the quantum states, say 2n  and 1n . Let us assume that 

2 1,n n>                           (6a) 

so the difference in (6) is a positive number. 

3. Relativistic Difference of the Time Periods Given in (6) 

In order to improve (6) we apply the relativistic theory in the sense that the 
components entering (6) should be multiplied respectively by the factors (see 
e.g. [3] [4]) 
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1 1

2 2

2 2

11 1 .
2

n nv v
c c

− ≈ −                        (8) 

In effect we get a proper relativistic change of the time periods connected with 
the difference (6). Two terms in each of the power expansions (7) and (8) seem 
to be sufficient because 

2nv c                            (9) 

and 

1
.nv c                           (10) 

We obtain: 
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Therefore 
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At the end of (12) appeared a supplement having a dimension of time and 
being proportional to the difference 

2 1.n n−                            (13) 

Also we have that 

2 1 2 1n nT T n n− −                        (14) 

because 

( )( )2 2 3 2 2 2 2 3 3 3
2 1 2 2 1 1 2 1 2 2 1 2 1 2 1 1 2 1 .n n n n n n n n n n n n n n n n n n− + + = − + − + − = −    (15) 

These results make (6) proportional to both (13) and (15). 

4. Electron Oscillation in a One-Dimensional Potential Box 
and Its Properties 

For a constant potential within the potential box of length L we have the electron 
energy states [5] 

2 2

28n
n hE
mL

=                          (16) 

where n is the integer quantum number, m the electron mass, and h is the 
Planck constant. 

Formula (16) is equivalent to the kinetic energy expression 

2 ,
2n n
mE v=                          (17) 
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therefore by putting (16) equal to (17) we obtain the electron velocity in the po-
tential box: 

.
2n
nhv
mL

=                          (18) 

For a given n this velocity can be considered as having a constant value for the 
whole length L. 

Due to the boundary conditions at the box ends, the electron behaves like a 
free particle oscillating along the length 

2L L L+ =                          (19) 

for each oscillation time period Tn. A non-relativistic approach to Tn gives from 
(18): 

22 4 .n
n

L mLT
v nh

= =                        (20) 

Our aim is to examine the difference 

2 1
.n nT T−                           (21) 

The assumption of 2 1n n>  implies a negative time difference in (21); see 
(20). 

5. A Relativistic Difference of the Time  
Periods Entering (21) 

A constant velocity (18) implies an approximately free-electron motion along 
the distance L entering (19). A relativistic modification of the time difference 
(21) becomes similar to that obtained in the case of the difference (6): 
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where the term in brackets in (22) is a positive number; see (24). We have 
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because of the assumption done below (21). But in the next step: 
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A sum of results obtained in (23) and (24) (taken with a minus sign) gives 

( )
2 1 2 1

rel rel
2 122n n n n

hT T T T n n
mc

− = − − −                (25) 

which is formally equal to the result calculated in (12). Evidently see (23) the 
difference 

2 1n nT T−
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is proportional to 1 2n n− . The component (24)—because of its minus sign in 
(22) makes the whole expression (25) to get the same property of proportionali-
ty. 

A supplement obtained at the end of (25) is identical to that entering (12) 
calculated for the hydrogen atom. This enables us to consider the term having 

22
h

mc
                           (26) 

as a quantum of time correcting the difference of the time periods 

2 1n nT T−                           (27) 

obtained either for the hydrogen atom, or in the potential box. 

6. Approximate Approach to the Time Quanta  
in Case of the Harmonic Oscillator 

In this case we assume—for the sake of simplicity—that the time periods T be-
longing to different quantum states are equal giving the circular frequency 

2 k
T m

ω =
π
=                         (28) 

where k is the oscillation constant and m is the mass of the oscillator [6]. All 
energy states are given by the formula 

( ) ( )
2

kin pot

2
n

n m n
ka

E E E= + =                     (29) 

where na  is the oscillator amplitude characteristic for state n. 
The states are equally separated by the terms ω : 

2

.
2

n
n

ka
E n ω= =                        (30) 

The velocity nv  of the oscillating particle between the limits 

n na x a− < <                          (31) 

has its maximum at a central particle position 0x = . 
In calculating the relativistic correction to the time period T we take into ac-

count—for the sake of simplicity—the average particle velocity 

4
.n

n
a

v
T

=                           (32) 

In effect the relativistic correction to T becomes: 
2 22
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2 2 2

4 41 1 11 1 1 .
2

n n n
n

v a a
T T T T

T Tc c c

    ≅ − ≅ − ≅ −    
     

      (33) 

But because of (30) we have 

2 2 n
n

E
a

k
=                           (34) 

which gives with the aid of the formula (28) for ω   
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7. Summary 

We examined the differences of the time periods possessed by the electron either 
in the case of its circulation in the hydrogen atom, or when the electron is enclosed 
as a particle moving in a one-dimensional potential box. The approach to the time 
properties of each of these physical systems is modified by the relativistic theory. 

It is found that contribution given by the relativistic term of time for both 
systems is the same. This enables us to consider the relativistic corrections in-
troduced to the differences of the time periods as representing the quanta of 
time: the size of quanta is proportional to the difference of the quantum num-
bers which define separately any of the time periods present in each system. 
Therefore, in order to obtain the correction, the quantum numbers multiply 
solely one term independent of the physics of the examined system. This term is 
a constant ratio 

20
2 0.4 10  sec

2
h

mc
−≅ ×                      (36) 

built up of the fundamental constants of nature. It can be noted that the deno-
minator entering the fraction in (36) is equal to the Dirac’s energy expression 
separating theseas of electron particles and antiparticles; see e.g. [7]. 

An approximate treatment concerning (36) was applied in calculating the time 
quanta of the harmonic oscillator. In this case the non-relativistic oscillation pe-
riods of time are assumed to be equal for all quantum levels and the relativistic 
correction concerns—in average—solely an individual oscillation period of time. 
In effect of the used approximations the result in (36) should be multiplied by a 
constant factor 

2

8
π

                            (37) 

which is not much different than unity. 
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