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Abstract 
The existence and uniqueness of the state for 2 × 2 Dirichlet cooperative el-
liptic systems under conjugation conditions are proved using Lax-Milgram 
lemma, then the boundary control for these systems is discussed. The set of 
equations and inequalities that characterizes this boundary control is found 
by theory of Lions, Sergienko and Deineka. The problem for cooperative 
Neumann elliptic systems under conjugation conditions is also considered. 
Finally, the problem for n × n cooperative elliptic systems under conjugation 
conditions is established. 
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1. Introduction 

In today’s rapidly progressing science and technology, the field of control theory 
is at the forefront of the creative interplay of mathematics, engineering, and 
computer science. 

Control theory has two objectives:  
To understand the fundamental principle of control, and to characterize them 

mathematically. 
The control problem is to choose the control space U to minimize an energy 

functional J(u), subject to constraints on the control such as Uad (set of admissi-
ble control) is a closed convex subset of U. 

Various optimal control problems, of systems governed by finite order elliptic, 
parabolic and hyperbolic operators with finite number of variables have been in-
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troduced by Lions [1]. These problems have been extended to non-cooperative 
systems in [2] [3] and cooperative systems in [4] [5] [6] [7]. The control prob-
lems for infinite order hyperbolic operators have been studied in [8] [9]. 

Some existence results have been established for nonlinear systems in [10] 
[11] [12] [13] [14]. 

Some applications for control problems were introduced for example in [2] 
[15]. 

New optimal control problems of distributed systems described by an elliptic, 
parabolic and hyperbolic operators with conjugation conditions and by a qua-
dratic cost functional have been studied by Sergienko and Deineka [16] [17] 
[18]. 

In the present work, using the theory of Lions [1], Sergienko and Deineka [16] 
[17] [18], the boundary control for some cooperative elliptic systems of the form  

1
in , , 1, 2,3, , ,

n

i ij j i
j

h a h f i j n
=

−∆ = + Ω =∑               (1) 

under conjugation conditions is discussed, where 

0 .ija i j> ∀ ≠                          (2) 

System (1), where (2) is satisfied is called cooperative system. Such systems 
appear in some biological and physical problems [19]. 

Our paper is organized as follows: In Section 2, we first prove the existence 
and uniqueness of the state for 2 × 2 Dirichlet cooperative system under conju-
gation conditions, then we study the optimal boundary control of this system. 
Section 3 is devoted to discuss the boundary control for 2 × 2 Neumann cooper-
ative elliptic system under conjugation conditions. In Section 4, we generalize 
the discussion which has been introduced in Section 2, to n × n Dirichlet coop-
erative system with conjugation conditions. Finally in Section 5, we generalize 
the problem which has been established in Section 3 to n × n Neumann coopera-
tive elliptic system under conjugation conditions. 

2. Boundary Control for 2 × 2 Dirichlet Elliptic Systems 

In this section, we study the boundary control for the following 2 × 2 coopera-
tive Dirichlet elliptic system  

1 1 2 1

2 1 2 2

1 2

in ,
in ,

0 on ,

h ah bh f
h ch dh f

h h

−∆ = + + Ω
−∆ = + + Ω
 = = Γ

                    (3) 

under conjugation conditions:  

[ ]

[ ]

1 1
1 2 1

2 2
1 2 2

on ,

on ,

A A

A A

h hR R h
v v

h hR R h
v v

δ γ

δ γ

− +

− +

    ∂ ∂
 + = +   

∂ ∂    

    ∂ ∂

+ = +    ∂ ∂   

              (4) 

https://doi.org/10.4236/apm.2021.115032


H. M. Serag et al. 
 

 

DOI: 10.4236/apm.2021.115032 459 Advances in Pure Mathematics 
 

( )

( )

1 1
1

, 1

2 2
2

, 1

cos , on ,

cos , on ,

n

i
i jA j

n

i
i jA j

h h v x w
v x

h h v x w
v x

γ

γ

=

=

   ∂ ∂
= =   ∂ ∂     


  ∂ ∂

= =   ∂ ∂    

∑

∑
             (5) 

where  
a, b, c and d are given numbers such that b, c > 0, 
and  

( )1 2 1 2 1 2 0 0, , , , , 0, 0, constant.R R w C R R R R R Rδ γ∈ ≥ + ≥ > =      (6) 

We first prove the existence of the state of systems (3) under the following 
conditions:  

( )( )
, ,

,
a d

a d bc
µ µ

µ µ
< <

 − − >
                       (7) 

where µ  is a positive constant determined by Friedrich inequality:  
2 2d d .h x h xµ

Ω Ω
≤ ∇∫ ∫                       (8) 

Then, we prove the existence of boundary control for this system and we find 
the set of equations and inequalities that characterizes this boundary control. 

Existence and uniqueness of the state 
By Cartesian product, we have the following chain of Sobolev spaces:  

( )( ) ( )( ) ( )( )2 2 21 2 1
0 .H L H −Ω ⊆ Ω ⊆ Ω  

On ( )( )21
0H Ω , we define the bilinear form:  

( )
( )
[ ][ ] [ ][ ]

1 1 2 2

1 1 2 1 1 2 2 2

1 1 2 2

1 2 1 2

, d d

d

d d .

a h h x h x

ah bh ch dh x

h h
R R R Rγ γ

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ
γ γ

Ω Ω

Ω

= ∇ ∇ + ∇ ∇

− + + +

+ +
+ +

∫ ∫
∫

∫ ∫

           (9) 

Then, we have  
Lemma 2.1 The bilinear form (9) is coercive on ( )( )21

0H Ω ; that is, there ex-
ists a positive constant C such that  

( )
( )

{ } ( )( )21
0

22 1
1 2 0, , .

H
a h h C h h h h H

 Ω 

≥ ∀ = ∈ Ω           (10) 

Proof. 
As in [19], we choose m is large enough such that 0a m+ >  and 0d m+ > . 
Then,  

( ) ( ) ( )

[ ][ ] [ ][ ]

2 2 2 2
1 1 2 2

2 2
1 2 1 2

1 1 2 2

1 2 1 2

1 1, d d

d d 2 d

d d .

a h h h m h x h m h x
b c

a m d mh x h x h h x
b c
h h
R R R Rγ γ

ψ ψ
γ γ

Ω Ω

Ω Ω Ω

= ∇ + + ∇ +

+ +
− − −

+ +
+ +

∫ ∫

∫ ∫ ∫

∫ ∫
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From (6), we get  

( ) ( ) ( )2 2 2 2
1 1 2 2

2 2
1 2 1 2

1 1, d d

d d 2 d .

a h h h m h x h m h x
b c

a m d mh x h x h h x
b c

Ω Ω

Ω Ω Ω

≥ ∇ + + ∇ +

+ +
− − −

∫ ∫

∫ ∫ ∫
 

By Cauchy Schwartz inequality  

( ) ( ) ( )

( ) ( )

2 2 2 2
1 1 2 2

2 2
1 2

1 1
2 22 2

1 2

1 1, d d

d d

2 d d .

a h h h m h x h m h x
b c

a m d mh x h x
b c

h x h x

Ω Ω

Ω Ω

Ω Ω

≥ ∇ + + ∇ +

+ +
− −

−

∫ ∫

∫ ∫

∫ ∫

 

From (8), we deduce  

( ) 2 2
1 2 1 2

1 1 2, 1 1 .a m d ma h h h h h h
b m c m mµ µ µ
   + +

≥ − + − −   + + +   
 

Therefore (7) implies  

( ) ( )
( )

( )( )21
0

22 2 2 1
1 2 0, ,

H
a h h C h h C h h H

 Ω 

≥ + = ∀ ∈ Ω  

which proves the coerciveness condition of the bilinear form (2.7). Then using 
Lax-Milgram lemma, we can prove the following theorem: 

Theorem 2.1 For a given ( ) ( )( )22
1 2,f f f L= ∈ Ω  there exists a unique solu-

tion ( ) ( )( )21
1 2 0,h h h H= ∈ Ω  for systems (3) with conjugation conditions (4) 

and (5) if conditions (7) are satisfied.  
Formulation of the control problem 

The space ( )( )22U L= Γ  is the space of controls. For a control  

{ } ( )( )22
1 2,u u u L= ∈ Γ , the state ( ) ( ) ( ){ }1 2,h u h u h u=  of the system is given 

by the solution of 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 1 2 1

2 1 2 2

1 1 2 2

in ,

in ,

, on ,

h u ah u bh u f

h u ch u dh u f

h u u h u u

−∆ = + + Ω

−∆ = + + Ω
 = = Γ

               (11) 

under conjugation conditions  

( ) ( ) ( )

( ) ( ) ( )

1 1
1 2 1

2 2
1 2 2

on ,

on ,

A A

A A

h u h u
R R h u

v v

h u h u
R R h u

v v

δ γ

δ γ

− +

− +

 ∂ ∂       + = +      ∂ ∂       

 ∂ ∂      + = +      ∂ ∂      

         (12) 

( ) ( ) ( )

( ) ( ) ( )

1 1
1

, 1

2 2
2

, 1

cos , on ,

cos , on .

n

i
i jA j

n

i
i jA j

h u h u
v x w

v x

h u h u
v x w

v x

γ

γ

=

=

  ∂ ∂ 
= =   ∂ ∂     


 ∂ ∂ 

= =   ∂ ∂    

∑

∑
          (13) 
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The observation equation is given by:  

( ) ( ) ( ){ } ( ) ( ) ( ){ } ( ) ( ){ }1 2 1 2 1 2, , ,z u z u z u Ch u C h u h u h u h u= = = =  

For a given { } ( )( )22
1 2,d d dz z z L= ∈ Γ , the cost functional is given by  

( ) ( )
( )

( )
( )

( ) ( )( )22
2 2

2 2
1 2

1 2 , ,d d L
A AL L

h v h v
J v z z Nv v

v v Γ
Γ Γ

∂ ∂
= − + − +

∂ ∂
    (14) 

where N is a hermitian positive definite operator such that:  

( ) ( )( ) ( )( )
22 22

2, , 0.L L
Nv v Q v Q

Γ Γ
≥ >               (15) 

The control problem then is to:  

{ } ( )( )( )
( ) ( )

22
1 2Find , closed convex subset of  such that :

.

ad

ad

u u u U L

J u inf J v v U

 = ∈ Γ

 = ∀ ∈

 (16) 

The cost functional (14) can be written as  

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )( )

2

2

22

2
1 1 1

1

2
2 2 2

2

0 0

0 0

, .

d
A A A L

d
A A A L

L

h v h h
J v z

v v v

h v h h
z

v v v

Nv v

Γ

Γ

Γ

∂ ∂ ∂
= − + −

∂ ∂ ∂

∂ ∂ ∂
+ − + −

∂ ∂ ∂

+

 

If we let:  

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )( )

2

2

22

1 1 1 1

2 2 2 2

0 0
, ,

0 0
,

, .

A A A A L

A A A A L

L

h u h h v h
u v

v v v v

h u h h v h
v v v v

Nu v

π
Γ

Γ

Γ

∂ ∂ ∂ ∂ 
= − − 

∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ 
+ − − 

∂ ∂ ∂ ∂ 

+

 

and  

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

2

2

1 1 1
1

2 2 2
2

0 0
,

0 0
, .

d
A A A L

d
A A A L

h h v h
f v z

v v v

h h v h
z

v v v

Γ

Γ

∂ ∂ ∂ 
= − − 

∂ ∂ ∂ 

∂ ∂ ∂ 
+ − − 

∂ ∂ ∂ 

 

Then  

( ) ( ) ( ) ( )
( )

( )
( )2 2

2 2
1 2

1 2

0 0
, 2 .d d

A AL L

h h
J v v v f v z z

v v
π

Γ Γ

∂ ∂
= − + − + −

∂ ∂
 

From (15), ( )
( )( )22

2,
L

v v M vπ
Γ

≥ . Using the theory of Lions [1], there exists a 

unique optimal control of problem (16), moreover it is characterized by 
Theorem 2.2 Let us suppose that (10) holds and the cost functional is given 
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by (14), then the boundary control u is characterized by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2

2 1 2

1 2
1 1 2 2

1 2

, ,

1 2
1

1 2

0 in ,
0 in ,

, on ,

cos , cos , 0 on ,

1 ,

d d
A A

n n

i i
i j i jj j

A A

p u ap u cp u
p u bp u dp u

h u h u
p u z p u z

v v

p u p u
v x v x

x x

p u p u
p u

v R R v

γ

±

−∆ − − = Ω
−∆ − − = Ω

∂ ∂   
= − − = − − Γ   

∂ ∂   
   ∂ ∂

= =   
∂ ∂      

∂ ∂      =      ∂ + ∂    

∑ ∑

( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )( )

2

22
2

2
1 2

1 1
1

2 2
2

1 on ,

0
,

0
, , 0,

A A L

L
A A L

p u
R R

h v u h
p u

v v

h v u h
p u Nu v u

v v

γ
±

Γ

Γ
Γ












 =    +
 ∂ − ∂ 

− 
∂ ∂ 


∂ − ∂ + − + − ≥  ∂ ∂ 

 

together with(11), (12) and (13), where ( ) ( ) ( ){ }1 2,p u p u p u=  is the adjoint 
state.  

Proof. 
The optimal control u is characterized by [1]  

( ) ( ), 0 .adu v u L v u u Uπ − − − ≥ ∀ ∈  

Then  

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2

22
2

2

2

1 1 1 1

2 2 2 2

1 1 1
1

2 2 2
2

0 0
,

0 0
, ,

0 0
,

0 0
, 0.

A A A A L

L
A A A A L

d
A A A L

d
A A A L

h u h h v u h
v v v v

h u h h v u h
Nu v u

v v v v

h h v u h
z

v v v

h h v u h
z

v v v

Γ

Γ
Γ

Γ

Γ

∂ ∂ ∂ − ∂ 
− − 

∂ ∂ ∂ ∂ 

∂ ∂ ∂ − ∂ 
+ − − + − 

∂ ∂ ∂ ∂ 

∂ ∂ − ∂ 
− − − 

∂ ∂ ∂ 

∂ ∂ − ∂ 
− − − ≥ 

∂ ∂ ∂ 

 

So  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )( )

2

22
2

1 1 1
1

2 2 2
2

0
,

0
, , 0.

d
A A A L

d L
A A A L

h u h v u h
z

v v v

h u h v u h
z Nu v u

v v v

Γ

Γ
Γ

∂ ∂ − ∂ 
− − 

∂ ∂ ∂ 

∂ ∂ − ∂ 
+ − − + − ≥ 

∂ ∂ ∂ 

   (17) 

Since the model A of the system is given by  

( ) ( ) ( )1 2 1 1 2 2 1 2, , ,Ah x A h h h ah bh h ch dh= = −∆ − − −∆ − −  

and since  

( ) ( ), , ,A p h p Ah∗ =  
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then  

( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

1 1 1 2 2 2 1 2

1 1 2 1 2 1 2 2

,

, ,

, ,

p u Ah u

p u h u ah u bh u p u h u ch u dh u

p u ap u cp u h u p u bp u dp u h u

= −∆ − − + −∆ − −

= −∆ − − + −∆ − −

 

and since the adjoint state is defined by:  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1 2

2 1 2

1
1 1

2
2 2

1 2

1 2
1 2

1 2 1 2

0 in ,
0 in ,

on ,

on ,

0 on ,

1 1,

d
A

d
A

A A

A A

p u ap u cp u
p u bp u dp u

h u
p u z

v

h u
p u z

v

p u p u
v v

p u p u
p u p u

v R R v R R

γ
∗ ∗

∗ ∗

± ±

−∆ − − = Ω
−∆ − − = Ω

∂ 
= − − Γ 

∂ 
∂ 

= − − Γ 
∂ 

   ∂ ∂
= =   

∂ ∂      

   ∂ ∂   = =         ∂ + ∂ +      
on ,γ



















 

hence (17) implies  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )( )

2

22
2

1 1
1

2 2
2

0
,

0
, , 0.

A A L

L
A A L

h v u h
p u

v v

h v u h
p u Nu v u

v v

Γ

Γ
Γ

∂ − ∂ 
− 

∂ ∂ 

∂ − ∂ 
+ − + − ≥ 

∂ ∂ 

 

3. Boundary Control for 2 × 2 Neumann Elliptic Systems 

In this section, we study the boundary control for 2 × 2 cooperative Neumann 
elliptic system in the form  

1 1 1 1

2 1 2 2

1 2
1 2

in ,
in ,

, on ,

n

n

A A

h ah bh f R
h ch dh f R

h hg g
v v

−∆ = + + Ω ⊂

−∆ = + + Ω ⊂

∂ ∂ = = Γ∂ ∂

             (18) 

with conjugation conditions (4) and (5), where ( )( )22
ig L∈ Γ , 1, 2i = . For this, 

we introduce again the bilinear form (9) which is coercive on ( )( )21H Ω , since  

( )( ) ( )( )2 21 1
0 .H HΩ ⊆ Ω  

Then, by Lax-Milgram lemma, there exists a unique solution ( )1 2,h h h=  for 
system (18) such that:  

( ) ( ) ( )( )21, ,a h L Hψ ψ ψ= ∀ ∈ Ω               (19) 

where  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ]

( )[ ]

1 1 2 2

2 1 1
1 1 2 2

1 2

2 2 2
1 1 2 2

1 2

d d

d d d

d d d ,

gL f x x x f x x x

R w
g x x g x x

R R
R w

w w
R R

γ

γ γ γ

ψ ψ ψ

δ ψ
ψ ψ γ

δ ψ
γ ψ γ ψ γ

Ω Ω

Γ Γ

+ +

= +

−
+ Γ + Γ +

+

−
+ − −

+

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

is a continuous linear form defined on ( )( )21H Ω . Then, applying Green’s for-
mula, we get  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 2 1 2 1 2 2

1 2 1
1 2 1

2
2 1 1 2 2

d d

d d d

d , d d ,

A A A

A

h ah bh x x h ch dh x x

h h hx x x

h x a h f x f x

γ

γ

ψ ψ

ψ ψ ψ γ
ν ν ν

ψ γ ψ ψ ψ
ν

Ω Ω

Γ Γ

Ω Ω

−∆ − − + −∆ − −

∂ ∂ ∂
= − Γ − Γ −

∂ ∂ ∂
∂

− + = +
∂

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

using (19), the state ( ) ( ) ( )( )1 2,h u h u h u=  of the system is given by the solu-
tion of  

( ) ( ) ( )
( ) ( ) ( )

( )

( )

1 1 2 1 1 2

2 1 2 2 1 2

1
1 1

2
2 2

in ,
in ,

on ,

on ,

A

A

h u ah u bh u f
h u ch u dh u f

h u
g u

h u
g u

ν

ν

−∆ = + + Ω = Ω Ω
−∆ = + + Ω = Ω Ω
∂ = + Γ ∂
∂
 = + Γ

∂





         (20) 

under conjugation conditions (12), (13). For a given ( ) ( )( )22
1 2,d d dz z z L= ∈ Γ , 

the cost functional is again given by (14), then there exists a unique optimal 
control adu U∈  for (16) and we deduce: 

Theorem 3.1 If the cost functional is given by (14), there exists a unique 
boundary control  

( ) ( )( )22
1 2,u u u L= ∈ Γ , such that:  

( ) ( ) ( )( )22 ,adJ u J v v U L≤ ∀ ∈ ⊂ Γ  

moreover it is characterized by the following equations and inequalities 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1 1 2

2 1 2

1
1 1

2
2 2

1 2

21
1 2

1 2 1 2

0 in ,
0 in ,

on ,

on ,

0 on ,

1 1, on ,

d
A

d
A

A A

A A

p u ap u cp u
p u bp u dp u

p u
h u z

v

p u
h u z

v

p u p u
v v

p up p u p u
v R R v R R

γ

γ

∗

∗

∗ ∗

∗ ∗

± ±

−∆ − − = Ω
−∆ − − = Ω
∂
 = − Γ
∂


∂ = − Γ
∂

   ∂ ∂
= =   

∂ ∂      

   ∂∂   = =         ∂ + ∂ +      
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( )( )( ) ( )( )( )1 1 1 1 2 2 2 2d d 0.p u Nu v u p u Nu v u
Γ Γ

+ − Γ + + − Γ ≥∫ ∫  

Together with (20), (12) and (13).  

4. Boundary Control for n × n Cooperative Dirichlet Systems 

In this section, we generalize the discussion which has been introduced in sec-
tion 2 to n × n cooperative Dirichlet system of the form  

1 in ,

0 on , 1,2, , ,

n
i ij j ij

i

h a h f

h i n
=

−∆ + = Ω


= Γ =

∑


           (21) 

under conjugation conditions 

[ ]1 2 on ,i i
i

A A

h h
R R h

v v
δ γ

− +
   ∂ ∂

+ = +   
∂ ∂   

            (22) 

and 

( )
, 1

cos , on , 1,2, , .
n

i i
i i

i jA j

h h
v x w i n

v x
γ

=

  ∂ ∂
= = =  ∂ ∂    
∑ 

       (23) 

To prove the existence of the state of system (21), we assume that: 

( )the matrex is a non-singular -matrix which means
that all the principal minors extracted from it are positive,

MI Mµ −



     (24) 

where, I is identity matrix and µ  is a positive constant determined by Frie-
drich inequality(8). 

By Cartesian product, we have the following chain of Sobolev spaces:  

( )( ) ( )( ) ( )( )1 2 1
0 .

n n n
H L H −Ω ⊆ Ω ⊆ Ω  

On ( )( )1
0

n
H Ω , the bilinear form is defined by:  

( ) [ ][ ]
1 , 1 1 1 2

, d d d .
n n n

i i
i i ij i i

i i j i

h
a h h x a h x

R Rγ

ψ
ψ ψ ψ γ

Ω Ω
= = =

= ∇ ∇ + +
+∑ ∑ ∑∫ ∫ ∫      (25) 

As in lemma 2.1, (24), implies  

( )
( )( )

( )( )1
0

2 2 1
0

1
, , .n

n n

i
Hi

a h h C h C h h H
Ω=

≥ = ∀ ∈ Ω∑         (26) 

Now, let 

( ) ( ) ( ) ( )[ ]2

1 1 11 2

d d d ,
n n n

i
i i i i

i i i

R w
L f x x x w

R Rγ γ

δ ψ
ψ ψ γ ψ γ+

Ω
= = =

−
= + −

+∑ ∑ ∑∫ ∫ ∫   (27) 

be a continuous linear form on ( )( )1
0

n
H Ω , then using Lax-Milgram lemma, 

there exists a unique solution ( )( )1
0

n
h H∈ Ω  such that:  

( ) ( ) ( ) ( )( )1
01

, .
nn

i i
a h L Hψ ψ ψ ψ

=
= ∀ = ∈ Ω  

Then, we have 
Theorem 4.1 For { } ( )( )2

1

nn
i i

f f L
=

= ∈ Ω  there exists a unique solution  
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( )( )1
0

n
h H∈ Ω  for cooperative Dirichlet system (21) with conjugation condi-
tions (22) and (23) if condition (24) is satisfied.  

So, we can formulate the corresponding control problem: 

The space ( )( )2 n
U L= Γ  is the space of controls. For a control  

{ } ( )( )2
1 2, , ,

n

nu u u u L= ∈ Γ , the state ( ) ( ) ( ) ( ){ }1 2, , , nh u h u h u h u=   of the 

system is given by the solution of  

( ) ( ) ( )
( )

1 in ,

on , 1,2, , ,

n
i ij j ij

i i

h u a h u f u

h u u i n
=

−∆ + = Ω


= Γ =

∑


       (28) 

under conjugation conditions: 

( ) ( ) ( )

( ) ( ) ( )

1 2

, 1

on ,

cos , on , 1,2, , .

i i
i

A A

n
i i

i i
i jA j

h u h u
R R h u

v v

h u h u
v x w i n

v x

δ γ

γ

− +

=

 ∂ ∂       + = +      ∂ ∂       


 ∂ ∂ 
= = =   ∂ ∂    
∑ 

   (29) 

The observation may be takes as  

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 2 1 2

1 2

, , , , , ,

, , , ,
n n

n

z u z u z u z u Ch u C h u h u h u

h u h u h u

= = =

=

 



 

the cost functional is given by 

( ) ( )
( )

( ) ( )( )2
2

2

1
, ,n

n
i

id L
i A L

h v
J v z Nv v

v Γ
= Γ

∂
= − +

∂∑              (30) 

where N is a hermitian positive definite operator such that: 

( ) ( )( ) ( )( )2 2

2, , 0, .n nL L
Nv v M v M v U

Γ Γ
≥ > ∀ ∈             (31) 

The control problem then is to find: 

{ }
( ) ( )

1 2, , , such that :

,
n ad

ad

u u u u U

J u inf J v v U

 = ∈


= ∀ ∈



                 (32) 

where adU  is closed convex subset of ( )( )2 n
L Γ . The cost functional (30) can 

be written as  

( ) ( ) ( ) ( )
( )

( ) ( )( )2
2

2

1

0 0
, ,n

n
i i i

id L
i A A A L

h v h h
J v z Nv v

v v v Γ
= Γ

∂ ∂ ∂
= − + − +

∂ ∂ ∂∑  

if we let  

( ) ( ) ( ) ( ) ( )
( )

( ) ( )( )2
21

0 0
, , , ,n

n
i i i i

L
i A A A A L

h u h h v h
u v Nv v

v v v v
π

Γ
= Γ

∂ ∂ ∂ ∂ 
= − − + 

∂ ∂ ∂ ∂ 
∑  

and  

( ) ( ) ( ) ( )
( )21

0 0
, ,

n
i i i

id
i A A A L

h h v h
L v z

v v v= Γ

∂ ∂ ∂ 
= − − 

∂ ∂ ∂ 
∑  
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then  

( ) ( ) ( ) ( )
( )2

2

1

0
, 2 .

n
i

id
i A L

h
J v v v L v z

v
π

= Γ

∂
= − + −

∂∑  

From (31),  

( )
( )( )2

2, ,n
L

v v N vπ
Γ

≥  

using the theory of Lions [1], there exists a unique optimal control of prob-
lem(32); moreover it is characterized by 

Theorem 4.2 Let us suppose that (26) holds and the cost functional is given 
by (13), then the boundary control u is characterized by 

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

1

1 2

1

0 in ,

on ,

0, on ,

1 , on ,

d 0,

n
i ij ij

i
i id

A

i

A

i
i

A

n i
i i ii

A

p u a p u

h u
p u z

v

p u
v

p u
p u

v R R

p u
Nu v u

v

γ

γ

∗

∗

∗

=

±

= Γ

−∆ + = Ω

 ∂ 
 = − − Γ 

∂  

 ∂

=  ∂  

  ∂  =     ∂ +  


∂ − Γ ≥ ∂

∑

∑ ∫

            (33) 

together with (28) and (29) where ( ) ( ) ( ) ( ){ }1 2, , , np u p u p u p u=   is the ad-
joint state.  

Proof. The optimal control { } ( )( )2
1

nn
i i

u u L
=

= ∈ Γ  is characterized by:  

( ) ( ) { }1 2, , , , ,n adu v u L v u v v v v Uπ − ≥ − ∀ = ∈  

( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )( )

2

2
2 2

1

1

,

0 0
,

0 0
, ,

0,

n
i i i i

i A A A A L

n
i i i

i i i idL
i A A A L L

u v u L v u

h u h h v u h
v v v v

h h v u h
Nu v u z

v v v

π

= Γ

Γ
= Γ

− − −

∂ ∂ ∂ − ∂ 
= − − 

∂ ∂ ∂ ∂ 

∂ ∂ − ∂ 
+ − − − − 

∂ ∂ ∂ 

≥

∑

∑
 

then  

( ) ( ) ( )
( )

( ) ( )2
21 1

0
, , 0,

n n
i i i

id i i i L
i iA A A L

h u h v u h
z Nu v u

v v v Γ
= =Γ

∂ ∂ − ∂ 
− − + − ≥ 

∂ ∂ ∂ 
∑ ∑    (34) 

since the adjoint state is defined by (33), (34) implies 

( ) ( ) ( )
( )

( ) ( )2
21 1

0
, , 0.

n n
i i

i i i i L
i iA A L

h v u h
p u Nu v u

v v Γ
= =Γ

∂ − ∂ 
− + − ≥ 

∂ ∂ 
∑ ∑  

Applying Green’s formula, we obtain  
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( ) ( )( ) ( )

( ) ( )
( )

( ) ( )( ) ( ) ( )

2
2

2

*

1 1

1

, ,

, , 0.

n n
i

i i iLi i A L

n

i i i L
i

p u
A p u h v u h v u

v

a p u h v u Nu v u

∗
Ω

= =
Γ

Γ
=

 ∂
− + −  ∂ 

+ − + − ≥

∑ ∑

∑

 

Since  

( ) ( ) ( )* *, , , and 0,p Ah A p h a p h A p= = =  

we obtain by using equation (28),  

( )

( )

( ) ( )2

21 1
, , 0,

n n
i

i i i i i L
i iA L

p u
v u Nu v u

v ∗
Γ

= =
Γ

 ∂
− + − ≥  ∂ 

∑ ∑  

hence  

( ) ( )
1

d 0.
n

i
i i i

i A

p u
Nu v u

v ∗
Γ

=

∂
− Γ ≥

∂∑∫  

5. Boundary Control for n × n Cooperative Neumann  
Systems 

We generalize here, the results which have been established in section (3) to the 
following n × n Neumann elliptic system 

1 in ,

on , 1,2, , ,

n
i ij j ij

i
i

A

h a h f

h
g i n

ν

=
−∆ + = Ω

 ∂

= Γ =
∂

∑



            (35) 

with conjugation conditions (22) and (23), where { } ( )( )2
1 2, , ,

n

ng g g g L= ∈ Γ  
are given functions. Since  

( )( ) ( )( )1 1
0 ,

n n
H HΩ ⊆ Ω  

the bilinear form (25) is coercive on ( )( )1 n
H Ω . 

Then using Lax-Milgram lemma, there exists a unique solution y for system 
(35) such that:  

( ) ( ) ( )( )1, , ,
n

Na h L Hψ ψ ψ= ∀ ∈ Ω  

where 

( ) ( ) ( ) ( ) ( )

( )[ ]
1 1

2

1 11 2

d d

d d ,

n n

N i i i i
i i

n n
i

i
i i

L f x x x g x x x

R w
w

R Rγ γ

ψ ψ ψ

δ ψ
γ ψ γ

Ω Γ
= =

+

= =

= +

−
+ −

+

∑ ∑∫ ∫

∑ ∑∫ ∫
 

is a continuous linear form defined on ( )( )1 n
H Ω . Let us multiply both sides of 

first equation of (35) by ( )( )1 n
Hψ ∈ Ω  and integrate over Ω , we get  

( )
1 1 1

d d .
n n n

i ij j i i i
i j i

h a h x x f xψ ψ
Ω Ω

= = =

 
−∆ + = 
 

∑ ∑ ∑∫ ∫  

Applying Green’s formula, 
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( )

[ ][ ]
1 1 1

1 1 1 2

1 1

d d d

d d

d d

n n n
i

i i ij i i i
i i i A

n n
i ii

i
i iA
n n

i i i i
i i

h
h x a h x

v
hh

v R R

g f x

γ γ

ψ ψ ψ

ψ
ψ γ γ

ψ ψ

Ω Ω Γ
= = =

= =

Γ Ω
= =

∂
−∆ − − Γ

∂

∂
− +

∂ +

= Γ +

∑ ∑ ∑∫ ∫ ∫

∑ ∑∫ ∫

∑ ∑∫ ∫

 

( ) ( )

( ) [ ][ ]
1 1 1

1 1 1 2

1 1

d d

d d

d d ,

n n n
i

i ij j i i
i j i A

n n
i ii

i
i iA

n n

i i i i
i i

h
h a h x x x

hh
x

R R

g f x

γ γ

ψ ψ
ν

ψ
ψ γ γ

ν

ψ ψ

Ω Γ
= = =

= =

Γ Ω
= =

   ∂
−∆ − − Γ   ∂  
 ∂

− + ∂ + 

= Γ +

∑ ∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∑∫ ∫

 

then from  

( ) ( ), ,Na h Lψ ψ=  

we obtain the Neumann conditions  

on .i
i

A

h
g

ν
∂

= Γ
∂

 

Then, we have the corresponding control problem: 
The space ( )( )2 n

U L= Γ  is the space of controls, the state  
( ) ( ) ( ) ( ){ }1 2, , , nh u h u h u h u=   of the system is given by the solution of 

( ) ( ) ( )
( )

1 in ,

on ,

n
i ij j ij

i
i i

A

h u a h u f u

h u
g u

ν

=
−∆ + = Ω

∂

= + Γ
∂

∑
            (36) 

under conjugation conditions (29), where { }1 2, , , nu u u u=   is a given control 
in ( )( )2 n

L Γ . For a given { } ( )( )2
1 2, , ,

n

d d d ndz z z z L= ∈ Γ , the cost functional is 
again given by (30). As in theorem (4.2), we can prove: 

Theorem 5.1 Let us suppose that (26) holds and the cost functional is given 
by (30), there exists a unique optimal control u, such that:  

( ) ( ) ( )( )2 ,
n

adJ u inf J v v U L= ∀ ∈ ⊂ Γ  

moreover it is characterized by the following equations and inequalities 

( ) ( )

( ) ( )

( )

( ) ( )

1

1 2

0 in ,

on ,

0 on ,

1 on ,

n

i ij i
j

i i
id

AA

i

A

i
i

A

p u a p u

p u h u
z

v v

p u
v

p u
p u

v R R

γ

γ

∗

∗

∗

=

±

−∆ + = Ω

∂ ∂ 
 = − Γ 
∂ ∂  


 ∂ = 

∂  
 ∂  =      ∂ +  

∑
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( )( ) ( )( ) ( ) ( )( )22
1

, , 0, 1, 2, , ,nn

n

i i i LL
i

p u v u Nu v u i n
ΓΓ

=

− + − ≥ =∑   

together with(36) and (29), where ( ) ( ) ( ) ( ){ }1 2, , , np u p u p u p u=   is the ad-
joint state. 

6. Conclusion 

In the present work, we concentrated on optimal control problems for coopera-
tive elliptic systems under conjugation conditions. We proved the existence and 
uniqueness of the state for 2 × 2 Dirichlet cooperative elliptic system. Then we 
discussed the existence and uniqueness of the optimal control of boundary type 
for this system and we gave the set of equations and inequalities that characte-
rizes this control. Also, we studied the problem with Neumann condition. At 
last, we generalized the discussion to n × n cooperative elliptic systems under 
conjugation conditions. 
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