/
oo Resmurch
0.00 Publishing

Lr p-Harmonic

Advances in Pure Mathematics, 2021, 11, 427-439
https://www.scirp.org/journal/apm

ISSN Online: 2160-0384

ISSN Print: 2160-0368

1-Forms on #-Stable

Hypersurface in Space Form with
Nonnegative Bi-Ricci Curvature

Bakry Musa, Jiancheng Liu

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China

Email: bakrymusa444@gmail.com

How to cite this paper: Musa, B. and Liu,
J.C. (2021) Z¥ p-Harmonic 1-Forms on &-
Stable Hypersurface in Space Form with
Nonnegative Bi-Ricci Curvature. Advances
in Pure Mathematics, 11, 427-439.
https://doi.org/10.4236/apm.2021.115029

Received: April 7, 2021
Accepted: May 21, 2021
Published: May 24, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we investigate the space of Z# p-harmonic 1-forms on a com-
plete noncompact orientable J-stable hypersurface A#” that is immersed in
space form NI with nonnegative BiRic curvature. We prove the nonexis-
tence of ¥ p-harmonic 1-forms on A". Moreover, we obtain some vanishing
properties for this class of harmonic 1-forms.
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1. Introduction

Let x:M™ — NI, be a complete noncompact orientable stable hypersurface
M™ immersed in space form N with nonnegative BiRic curvature bounded
from below. Fixa point xeM andlet {e,---,e,, .} belocal orthogonal frame
of NI such that {e,-,e,} are tangent fields of M". Now we will use the
following convention on the ranges of induces: 1<i, j,K,---<m and

m+1<a <m+n.Let A denote the second fundamental form of x, is define by

AX.Y)=(V,Y.e,)e,, VX.YeTM, (1)

a
where V is the Levi-Civita connection on the ambient manifold NI, Here,
j— 2 a 2
we denote hf :<Veiej,ea> , then |A"=%" Z:H(hij ) denote the square

length of the norm of A and the mean curvature vector field /is define by

H=YH%, =3 Yhe,. @)
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The traceless second fundamental form @ is defined by

O(X,Y)=A(X.Y)=(X,Y)H, VXY eTM, 3)
where (,) is the metric of M™. A simple computational shows that
[ @] =[A-m]H[". (4)

In particular, if ||(D|| =0, then M™ s totally umbilical see ([1] [2] [3] [4]).
Definition 1.1, [5], Let M™ be an m-dimensional Riemannian manifold, u,
v be orthonormal tangent vectors at a point pe M™ and D be the 2-plane gen-

erated by x and v . The bi-Ricci curvature of the plane D is defined by
BiRiC(D) = BiRiC(y,v) = Ric(,u,,u)+5RiC(v,v)— R(u,v,y,v), (5)

where 6>0, R(,u,v,,u,v) denotes the sectional curvature and BiRiC(y,v) ,
denotes the BiRic curvature in the direction g,v . Observe that when m=3, we
have that

2BiRic(u,v)=R(u,v, u,v). (6)

In general, BiRic is the sum of the sectional curvatures overall mutually or-
thogonal 2-planes containing at least one of these tangent vectors (see [6]).

The vanishing theorems for 77 p-harmonic 1-forms on complete noncompact
submanifolds have been studied extensively by many mathematicians from var-
ious points of views. There are some relations between the geometry and topol-
ogy of a manifold and the space of Z# p-harmonic 1-forms. According to the de-
composition theorem by Hodge-Rham [7], 7 p-harmonic 1-forms completely
represent the ¥ cohomology of the underlying manifold. The nonexistence of
nontrivial 7 p-harmonic 1-forms on A" implies that any codimension one cycle
on M" must disconnect M™, also the uniqueness of the non-parabolic ends of the
underlying manifold. In [8], Li considers hypersurface M™(2<m<5) with
constant means curvature and then drives the same vanishing properties. In [9],
Dung studied immersed hypersurface in a weighted Riemannian manifold with
weighted BiRici curvature and proved that if such hypersurfaces are weighted
stable then the space of Z* weighted harmonic 1-forms is trivial. In [10], Tanno
studied a complete noncompact oriented stable minimal hypersurface immersed
in a Riemannian manifold with nonnegative BiRic curvature and proved that

there are no nontrivial Z* harmonic 1-forms on M™. In [11], Cheng generalized

- . ... m=5 .
Li’s results by assuming that BiRic > 0 H?, where H is the mean curvature

of M, and is normalized to be equal to the second fundamental form. In [5], the
Author proves that there are no nontrivial Z* harmonic 1-forms on a strongly
stable hypersurface M of a general Riemannian manifold N when the bi-Ricci
curvature of N is no less than certain lower bound, which gives a topological
obstruction for the stability of A In [12], Palmer considered I* harmonic
forms on a complete oriented stable minimal hypersurface A" in R™", and
proved that there exist no nontrivial Z? harmonic 1-forms on A™. In this direc-

tion, many Authors give us various results for Z* harmonic 1-forms on stable
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minimal hypersurfaces (see [13] [14]). In [15], the Author proved that the non-
existence of Z* harmonic 1-forms on a complete super stable minimal submani-
fold M in hyperbolic space.

The aim of this work is to investigate some vanishing theorems for Z# p-har-
monic 1-forms on a complete noncompact orientable stable hypersurface that
is immersed in space form with nonnegative BiRic curvature bounded from

below.

2. Preliminaries
Let M™ be an m-dimensional Riemannian manifold and the Riemannian struc-
ture under a local coordinate system given by

ds? = g;dx' ®dx’, (7)
where g is the Riemannian metric. We shall make use of the following conven-

tions about indices:
1=i,j,k,---=m, (8)

0
and shall agree that repeated indices are summed over their ranges. Denote P
X

by 0;. The Riemannian curvature tensor Ry, , the Ricci curvature tensor Ric;
and scalar curvature R are defined by (see [16] [17])
R(X\Y)Z=V,V,Z-V,V,Z-V, Z, )

where V denotes the Levi-Civita connectionon M™ and

Rya = (R(21,0,)81.8, ), Ricijzzk:g”qRiqu, F?:l g'Ric,.  (10)

<i,j<n

The Weyl conformal curvature tensor W, and Einstein tensor A; are de-

fined respectively by

1 . . .
Wi = Riw _m(Rlcjk gy —Ric; g — R'Cngjk)

(11)
+— ﬁ i il — YilYik )
(m—l)(m—Z) (glkgjl gng,k)
and
. 1 =
A; =Ric; —Hgin (12)
By direct computations, we obtain
|AF =|Ric] -~ R?, (13)
m
W[ =|Rf -—2|Ricf +— 2 _R®. (14)
m-2 (m-1)(m-2)
Now we define a new tensor By, of type (0,4) as follows:
1 -
Bija = (M —3)Ryq —(M—2)Wj, A R (gikgjl ~ 99 ) (15)
DOI: 10.4236/apm.2021.115029 429 Advances in Pure Mathematics
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It is clear that By, has all the symmetries of the curvature tensor R, and
the Weyl curvature W, .

Biw = —Bjin = By = Bjix = Byy- (16)

Biju = Bij + By =0. (17)

By direct computations, the BiRici curvature of the plane generated by 0,
0.

]

|a " |2 Bjjij = PP 7(Rigy +0uR; —2R; gy — Ry ). (18)
i AO; idjj — i

So BiRic behaves like a “sectional curvature” of the tensor By, .
Biu =R 9 + R —Ri9i — Ry i — Riju- (19)

From (19), we obtain

|B]* =|R[" +4(m-1)|Ric| + R (20)
And
2m-3)R 2m 3
Bij _ﬁ(gikgjl .|g,k) =B | - % R? (21)
Combining (13), (14) and (20), we obtain
2m 3
R @)
From (21) and (22), we obtain
— 2 2
2m-3)R 4(m-3
ijk|_ﬁ(gikgjl _gilgjk) :|W|2 +%|A|2' (23)

When the BiRic curvatures of all 2 planes are the same at a point, by the ar-

gument of polarization, we have
Bij =C(gikgj| _gilgjk)' (24)

(2m
m(m

curvature is constant.

3)R
We get C= )1) Therefore, W = A=0 by (24) and the Riemannian

3. The Estimation of the BiRic Curvature

Let M™ — N be a complete noncompact orientable stable hypersurface
M™ immersed in space form N['. We shall make use of the following con-

ventions about indices:

1<i,j, k- <mm+1l<a,f<m+n.

Denote by V, R, Ric and BiRic the Levi-Civita connection, sectional
curvature, Ric curvature and BiRic curvature of N'*' respectively.

The Gauss equation is
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Ijkl lek Z(hll; a hﬁ[hfli) (25)

we have

B = Ricy +Ric, =Ry = Z(ﬁikik

+ Rilil )_ ﬁklkl : (26)
By the Gauss Equation (25), we have

Ric(X,X) =2 R(X,e,X,&)+h(X,X)H - h(e,X)". (27)

Lemma 3.2. [9] Let (hij )mJ be a symmetric matrix mxm, mz23.
Andlet H :ZLhi and S —|A| Il 1(h”- )2 then

h(X,X)H—Zh(X,ei)Z

(28)

2|)r:—2|2{2(m—1)H2—(m—2)H\/(m—l)(mS—Hz)—m(m—l)S}.

Assume that X # 0. By the definition of the BiRic in Equation (5), we obtain

Ric(X,X)2 Y R(X,e, X,&)—(5S +p(H,S))|X[". (29)
Let us first assume that X #0 everywhere. By the definition, we have
Zﬁ(x,ei,x,ei):[BiRic(&—',N]—éRic(N,N)}|X|Z. (30)
Combining (29) with (30), we obtain
Ric(X,X)z{BiRic(&—',NJ—(p(H,S)—&(Ric(N,N)+S)}|X|z, (31)

where

m-1_slg_ 1 _ _ “h? }
o(H,S)= ( = 5)3 = {Z(m DH? ~(m-2)H,[(m-1)(ms —H?)|. (32)
From the Bochner formula [18], we have
A|co|2 = 2(|Va)|2 + Ric(, a))) (33)
Since
Alof =2(j@|Ale] +[V]e] ). (34)
Combining (33) with (34), we get
. 2 2 1 2
|a)|A|a)|—RIC(a),a))=|Va)| —|V|a)|| ZE|V|60” . (35)
Inparticular, we know

Ric(w, 0) > {BlRlc[&' NJ—gp(H,S)—é(RiC(N,N)+S)]|w|2. (36)

Weset = RiC(N,N)+S , thus
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Ric(a),a))z{BiRic(&—',NJ—(5q+(o(H,S))]|w|2. (37)

4. The Structure of §-Stable Hypersurfaces in NI

In this section, we assume that N™*' is a complete noncompact oriented space
form and M” is a complete noncompact oriented stable hypersurface of NI'"*.
Adapt the same notations as in the previous section and the second fundamental
form can be written as h= Zi,j @ ® ;. We assume that the mean curvature

vector is in the same direction asin €__,. We have

m+1

1
H _Eizh“ >0, (38)

Definition 4.1. [19], Let x:M™ — N™*, m>3, be a complete noncompact
hypersurface immersed in a Riemannian manifold N™". Then the first eigen-

value of the Laplacian of AM/is defined by
AM)[ 0" <], [Vol (39)

for all smooth function ¢ eCy(M).
Definition 4.2. [11], Let M™ be a complete noncompact manifold and let
H # 0, M™is said to be strongly stable if

1(9)=, (IVol ~(Ric(N,N)+8)g?Jav=0, ¥peCy (M),  (40)

where C; is the smooth functions and dv is the volume form.
Definition 4.3. [11], For some number 0< 6 <1, M™is &-stable if

()=, (Ve -8 (Ric(N,N)+5)p*Jdv=0, ¥peCi(M), (1)

where S is the square norm of the second fundamental form of A™. Obviously,
given o, > J,, di-stable implies J,-stable. So, that A/™ is stable implies that A is
J-stable.

M™ is said to be &-stable or weakly d-stableif |1 (¢)>0, V@eCy satisfying

jM ¢ =0. (42)

Remark. When H =0, ie. M™is minimal, then the immersion is called stable
if it is in the strong sense, which is different from the stability of the hypersur-

faces with constant mean curvature as said above.

5. The Vanishing Theorems

In this section, we presented some vanishing theorems as follows.

Theorem 5.1. Let x:M™ — N'C"“, m >3, be a complete noncompact orient-
able &-stable minimal hypersurface M™ immersed in space form NI with
nonnegative BiRic curvature bounded from below. If

BiRic(Y,N)z(mT_l—ﬁjS.
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Then there is no nontrivial Z# p-harmonic 1-form on M™.
Proof: Using (35) and (37), we obtain

[ofafo]z—{v]of + {s.m{| l J—(5q+¢(H,S))]|a)|z. (43)
Since
o Alo]? :F’T‘l\vwr +plof" |a]Alo] (44)
forany p>0. Combining (43) with (44), we get
|]" Ala]” > \Vlwl \ i ol "7 | laff

(45)

+ p[BlRlCG Tt J—(5q+¢)(H,S))]|a)|2p

Let neCy (M ) be a smooth function with compact supported. Multiplying
both sides of (45) by 7* and integrating over M, we obtain

m-2
fotlof o, fof P2

(46)
+p], (BlRlc[| Tt J—(5q+¢)(H,S))JnZ|a)|Zp
Applying the divergence theorem, we obtain
Jun’lel" Aol
2
= [, (i |ef V]of" )~ ], 7*[V]ol" _2jMn|w|p<vn,v|w|”> (47)

2
—] 7|V’ —2qu|w|°<vn,v|a)|">.

Combining (46) with (47), we get

(zp(m—n:gn—z)JW

p(m
<-pf, (BlRch X ]—(5q+(p(H,S))Jn2|w|2p (48)

_ZIMn|w|p<Vn,V|w|p>.
(2p(m—1)—(m—2)}j .

p(m-1)

<-pf, (B|R|0(| X[ ] (H, s}; |o|*? (49)

=2[, nlaf (Vu.V]al )+ ps], an?[of”.

From definition (4.2), we obtain

[ Vol* 2 [ ap’dv. (50)
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Replacing ¢ by 77|a)|p,we obtain

v(nlof)

Combining (49) with (51), we obtain

2p(m-1)—(m-2) )
[ p(m-1) JIM"
< pj (BlRlc(| X[ j (H,s) }72|a)|2p

_ZIMn|w|p<Vn,V|w|p> V(77|a)|p)2.

(Zp(m—l)‘(m_z)eré]J‘Mﬂz

p(m-1)

< —ij(BiRic(|§—|, NJ—(/J(H,S)J’72|“’|2p

—2( p5+1)JM 77|a)|p <V7],V|a)|p>+ pé‘jM |V77|2 |a)|2p

> IM an’ |(o|2ID dv.

Note that

_ZIM 7]|a)|p <V77,V|a)|p> < EJM 7’

for some constant £ >0.

2p(m-1)—(m-2) )

ol s o ot

[p5+|p qu V| |eof®.

Thus
AL 7|Vl +B[ 7ol <C]_ (Vo[ o
Set
2p(m-1)-(m-2
A= P p(nZ—g) )+p5—|p5+1|g,
X
B:p(BIRIC(M,N]—¢J(H,S)J
C= p5+|p5+]4.
&

2 1
o[ 2 fvafof”

(51)

(52)

(53)

(54)

(55)

(56)

(57)

Let B, be a geodesic ball of radius r>0 on A" centered at the point p.

Choose a cut-off function 7 satisfying
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n=0 inM\B,,

n=1 in B, (58)
|vn|s§ in B,, \B,.
Let 0<py<1. Using (56) with (58), we obtain
2 4
Af, V1ol <[ &1, ol (59)
Taking r — oo, we get V|a)|:0,and |a)|:|X| is constant. Hence,
2 m 2 X
Vol _m|v|w|| =0, BIRIC{M,NJ_(/J(H,S). (60)
By (60) we obtain
Ric(w,)+5(Ric(N,N)+S)=0. (61)

Moreover, since V|a)| =0, and |a)| = |X| is constant, the Bochner formula
implies
Ric(X,X):O. (62)
Thus, by (62) we can deduce
Ric(N,N)+S=0. (63)

Therefore, for any unite tangent vector Y; it follows from (31) and (63) that

Ric(Y,Y) 2 BiRic(Y,N)-5(Ric(N,N)+S)-p(H,S)

(64)
= BiRiC(Y,N)—(p(H,S)ZO.
Thus, using (32) with (64) we get
BiRiC(Y, N)
>(m_—1_5js _i{z(m—l)H2 —(m—2)H\/(m—1)(mS - HZ)} (©)
2|~ - .

Assume that M™ is a minimal stable hypersurface immersed in space form
N Hence H =0, and this implies

BiRic(Y,N)> (mnzl—ﬂs. (66)
Then there is no nontrivial Z# p-harmonic 1-forms on A/". Hence we get the
prove as assumption in theorem.
Corollary 5.2. Let x:M™ — NI, m>3, be a complete noncompact orien-
table J-stable minimal hypersurface A" immersed in space form N with
nonnegative BiRic curvature bounded from below. If BiRiC—(p(H,S) >0 for

any positive number J satisfy

Then there is no nontrivial Z# p-harmonic 1-form on A"
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Corollary 5.3. Let x:M™ — N, m>3, be a complete noncompact orien-
table &-stable hypersurface A" immersed in space form N[, If
BiRic = ¢(H,S) =0, then one of the following conditions holds

1) Mis minimal and S'is totally geodesic.
2) Mis minimal and ¢ = m—_l
m
Then there is no nontrivial Z# p-harmonic 1-form on M™.
Theorem 5.4. Let x:M™ — NI, m >3, be a complete noncompact orient-
able &-stable minimal hypersurface A" immersed in space form NI with

nonnegative BiRic curvature bounded from below. If A satisfy

BiRic[&r N]—go(H,S)

A(M)> -

Then there is no nontrivial Z# p-harmonic 1-form on AM™.
Proof: From the definition (4.1) and replacing ¢ by 77|a)|p we get
2
A (M )IM n? |a)|2p < IM V(n|a)|p) .

(67)

Thus,
2
AT A
Using Cauchy-Schwartz inequality

ZUM 77|a)|p <V7],V|a)|p>

2
Viol"| + [, IVal o +2[, nlol” (Vn.V]el").  (68)

2
<sfr[viof [ +<f, W aflef”. (@)

where s> 0, using (68) with (69), and multiplying both said by B we get

B( + 1]
B(L+s) 2+_SJM|VT7|2|w|2”. (70)

2
B.[M772|a)| pSTJMUZ V|a)|p p
Compining (56) with (70), we get
2
pf, 7" Vlel'| <Ef, [Vl |of*. (71)
Set
1
B(1+5) s[1+ )
D=A+ , E=C——2 (72)
A A
for some constant E >0
B[1+ 1)
E-c-—~ /50 (73)
A
Thus,
X 1
BiRic| — ,N |—¢@(H,S) || 1+=
po+1 p{ le J 4 ﬂ(*sj
po + > (74)
€ A
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Choosing & and S small enough, we get

BiRic[&rNJ—ﬂH,S)

M 75
A (M)> 5 (75)
Now we observe that
_s 2(m-1)H? (M-2)H(m-1)(mS-H?) ¢
(p(H,S):——( 2) + \/ > ( >g—. (76)
m m m m
This implies
BiRic L,N =£20. (77)
[X| m
Using (58) with (71), we obtain
2 4 2
o ol <€{ ol o

Taking r—> o, we get @=0. Then there are no nontrivial 7 p-harmonic
1-forms on M™. Hence we get the conclusion.
On the other hand, Dung and Seo [3] proved that
m-1. 2(m-1H? (M-2)H(m-1)(mS-H?) =g
— + <

S <
m m? m? 2

S.

In fact, in [3], Dung showed that

m-1 2(m—1)H2 (m—2)H\/(m_1)(mS_Hz)

S— +
m m? m’
2
_ym-1., ym-1 (m—Z)M—(\/m—ul)Hz (79)
2 2m? Jm-1+1
< m—1s_
2

This implies that go(H , S) g( v m2_1 —é‘JS . Therefore, Theorem 5.4 implies

the following conclusion.

Corollary 5.5. Let x:M™ — N™! m>3, be a complete noncompact J-sta-
ble minimal hypersurface immersed in space form N[** with nonnegative Bi-
Ric curvature bounded from below. Suppose that one of the following conditions
holds. Then there is no nontrivial Z# p-harmonic 1-form on A™.

1) If BiRiC[|§—|, N J = i =0, then S'is totally geodesic.
m

2) If BiRic :[ mT_l—éjs =0, then either §= ‘/mz_l or Sis totally geo-

desic.
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6. Conclusion

We investigated the space of Z# p-harmonic 1-forms on a complete noncompact
orientable J-stable hypersurfaces that are immersed in space form with nonneg-
ative BiRic curvature. We proved the nonexistence of ¥ p-harmonic 1-forms on
M™. Moreover, we obtained some vanishing properties for this class of harmonic

1-forms.
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