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Abstract 

Let ( )f u  and ( )g v  be two polynomials of degree k and   respectively, 

not both linear which split into distinct linear factors over q . Let  

[ ] ( ) ( ), , ,q u v f u g v uv vu= −  be a finite commutative non-chain ring. 

In this paper, we study polyadic codes and their extensions over the ring  . 
We give examples of some polyadic codes which are optimal with respect to 

Griesmer type bound for rings. A Gray map is defined from n k n
q→   which 

preserves duality. The Gray images of polyadic codes and their extensions 
over the ring   lead to construction of self-dual, isodual, self-orthogonal 
and complementary dual (LCD) codes over q . Some examples are also giv-

en to illustrate this. 
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1. Introduction 

Polyadic cyclic codes or simply called polyadic codes form an important class of 
cyclic codes. They have rich algebraic structures for efficient error detection and 
correction, which explains their preferred role in engineering. Polyadic codes 
generalize quadratic residue codes, duadic codes, triadic codes and m-adic resi-
due codes. 

Codes over finite rings have been known for several decades, but interest in 
these codes increased substantially after a break-through work by Hammons et 
al. in 1994, which shows that some well known binary non-linear codes like 
Kerdock codes and Preparata codes can be constructed from linear codes over 

4 . Since then, a lot of research has been done on cyclic codes, in particular on 
quadratic residue codes over different types of finite rings such as integer residue 
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rings m , Galois rings ( ),sGR p m , chain rings and non-chain rings. Kaya et al. 
[1] and Zhang et al. [2] studied quadratic residue codes over a non-chain ring 

p pv+  , where 2v v=  and p is an odd prime. Bayram and Siap [3] considered 
cyclic and constacyclic codes over [ ] p

p v v v− , where p is a prime. Kaya et 
al. [4] studied quadratic residue codes over 2

2 2 2u u+ +   , whereas Liu et al. [5] 
studied them over non-local ring 2

p p pu u+ +   , where 3u u=  and p is an 
odd prime. The authors [6] along with Kathuria extended their results over the 
ring 2 3

p p p pu u u+ + +    , where 4u u=  and ( )1 mod 3p ≡ . In [7], the au-
thors studied quadratic residue codes and their extensions over the ring 

2 1m
p p p pu u u −+ + + +    , where mu u= , m any integer greater than 1 and p 

is a prime satisfying ( )( )1 mod 1p m≡ − . In [8], the authors studied duadic 
codes over the ring [ ] m

q u u u− , where q is a prime power satisfying 
( )( )1 mod 1q m≡ − . In [9], the authors considered a more general non-chain ring 

[ ] ( )q u f u , where q is a prime power and ( )f u  is a polynomial of degree 
2m ≥ , which splits into distinct linear factors over q  and studied duadic and 

triadic codes over it generalizing all the previous results. In another paper [10], 
the authors have studied duadic negacyclic codes over the ring [ ] ( )q u f u . 
In [11], Kuruz et al. studied m-adic residue codes over [ ] 2

q v v v− .  
Recently people have started studying codes over finite commutative 

non-chain rings having 2 or more variables. Ashraf and Mohammad [12] stu-
died cyclic codes over [ ] 2 3, 1, ,p u v u v v uv vu− − − . They [13] also studied 
skew-cyclic codes over q q qu v+ +   , where 2 2, , 0u u v v uv vu= = = = . Srini-
vasulu and Bhaintwal [14] studied linear codes over 2 2 2 2u v uv+ + +    , 
where 2 20, ,u v v uv vu= = = , a non-chain extension of 2 2u+  . Yao, Shi and 
Solé [15] studied skew cyclic codes over q q q qu v uv+ + +    , where  

2 2, ,u u v v uv vu= = =  and q is a prime power. Islam and Prakash [16] studied 
skew cyclic and skew constacyclic codes over q q q qu v uv+ + +    , where 

2 2,u u v v= =  and uv vu= . Note that all the polynomials considered namely 
2 3, , pu u u u v v− − −  or mu u−  with ( )1 mod 1q m≡ −  etc. split into distinct 

linear factors over q . 
In this paper, we study cyclic and polyadic cyclic codes over a more general 

ring. Let ( )f u  and ( )g v  be two non-constant polynomials of degree k and 
  respectively (k and   not both 1), which split into distinct linear factors over 

q . Let [ ] ( ) ( ), , ,q u v f u g v uv vu= −  be a finite commutative non-chain 
ring. Here we discuss cyclic codes and their duals over the ring  , define po-
lyadic codes over   in terms of idempotent generators and study some of 
their properties. We also give examples of some codes that have optimal para-
meters with respect to Griesmer type bound for rings. A Gray map is defined 
from n k n

q→   which preserves linearity and in some special case preserves 
duality. The Gray images of polyadic codes over the ring   and their exten-
sions lead to construction of self-dual, isodual, self-orthogonal and complemen-
tary dual (LCD) codes over q . 

The paper is organized as follows: In Section 2, we give some preliminaries in-
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cluding Griesmer type bound for codes over rings, recall polyadic codes of 
length n over q  and give some of their properties. In Section 3, we study the 
ring  , cyclic codes over ring   and define the Gray map Φ : n k n

q→  . 
In Section 4, we study polyadic codes over  , their extensions, their Gray im-
ages and discuss Griesmer type bound for these codes. We give some examples 
to illustrate our theory. 

2. Preliminaries 

A cyclic code   of length n over q  can be regarded as an ideal of the ring 
[ ] 1n

n q x x= −  . It has a unique generating polynomial ( )g x  and a unique 
idempotent generator ( )e x . The set ( ){ }:  is a zero of  ii g xα , where α  is a 
primitive nth root of unity in some extension field of q , is called the defining 
set of  .  

A polynomial ( )  i
i nia x a x= ∈∑   is called even-like if ( )1 0a =  otherwise it 

is called odd-like. A code   is called even-like if all its codewords are even-like 
otherwise it is called odd-like. 

For ( ), 1a n = , :a n nµ →   defined as ( ) ( )moda i ai nµ =  is called a mul-
tiplier, where { }0,1,2, , 1n n= − . It is extended on n  by defining 

( ) ( )a ii
a i ii if x f xµµ =∑ ∑ . 
For a linear code   over q , the dual code ⊥  is defined as  

{ } | 0 for all n
qx x y y⊥ = ∈ ⋅ = ∈  , where x y⋅  denotes the usual Euclidean 

inner product.   is self-dual if ⊥=   and self-orthogonal if ⊥⊆  . A code 
  is called isodual if it is equivalent to its dual ⊥ . A linear code   whose 
dual ⊥  satisfies { }0⊥ =   is called a complementary dual (LCD) code.  

Let ( ) ( )2 11 1 nj x x x x
n

−= + + + + . The even weight [ ], 1,2n n −  cyclic code 

n  over q  has generating idempotent ( )1 j x− , its dual is the repetition 
code [ ],1,n n  with generating idempotent ( )j x . 

The following is a well known result, see [17]: 
Lemma 1: 1) Let   be a cyclic code of length n over a finite field q  with 

defining set T. Then the defining set of ( )aµ   is ( )1a
Tµ −  and that of ⊥  is 

( )1n Tµ−− .  
2) Let   and   be cyclic codes of length n over a finite field q  with de-

fining sets 1T  and 2T  respectively. Then    and +   are cyclic codes 
with defining sets 1 2T T  and 1 2T T  respectively. 

3) Let   and   be cyclic codes of length n over q  generated by the 
idempotents 1 2,E E  in [ ] 1n

q x x − , then    and +   are generated 
by the idempotents 1 2E E  and 1 2 1 2E E E E+ −  respectively. 

4) Let   be a cyclic code of length n over q  generated by the idempotent 
E, then ( )aµ   is generated by ( )a Eµ  and ⊥  is generated by the idempo-
tent ( )11 E x−− . 

A linear code   over a finite commutative ring R is an R-submodule of nR . 
Dual of a linear code over a finite commutative ring is defined in the same way 
and results in Lemma 1 (3) and (4) also hold true over any finite ring. 
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2.1. Griesmer Type Bound for Codes over Rings 

Let R be a finite commutative quasi-Frobenious ring. For a linear code C over R, 
the value ( )k C  is defined as the rank of minimal free R-submodules of nR   
which contain C. Let R Reαα∈Λ

= ⊕ , where eα  are central orthogonal idempo-

tents with, 1R eα
α∈Λ

= ∑ . Then R Reα α=  is also a QF ring for each α ∈Λ . Let  

( )J R  denote the Jacobson radical of R. If C is a linear code of length n over R, 
then C Ceα α=  is a linear code of length n over Rα .  

The following Griesmer type bound is due to Shiromoto and Storme ([18], 
Theorem 2.6). 

Theorem 1: Let R Reαα∈Λ
= ⊕  be a finite quasi-Frobenious ring such that Rα  

is a local ring for all α ∈Λ  and let qα  be the prime power such that  
( )R J R qα α α=  for each α ∈Λ . If C is a linear code of length n over R, then  

( ) ( )1

0

k C

i
i

d C
n

q

−

=

 
≥  

 
∑                        (1) 

where { }maxq qαα∈Λ
= , ( ) ( ){ }maxk C k Cαα∈Λ

=  and ( ) ( ){ }mind C d Cαα∈Λ
= . 

The code C over R is said to have parameters ( ) ( ), ,n k C d C   . 

2.2. Polyadic Cyclic Codes over q  

Let ( ), 1n q =  and suppose 

1 2 ,n mS S S S∞=                      (2) 

where 
1) 1 2, , , mS S S  and S∞  are union of q-cyclotomic cosets mod n, 
2) 1 2, , , mS S S  and S∞  are pairwise disjoint,  
3) there exists a multiplier aµ , ( ), 1a n =  such that ( ) 1a i iS Sµ += , for 

1 i m≤ ≤ , the subscripts are taken modulo m and ( )a S Sµ ∞ ∞= .  
It is clear that 0 S∞∈  always. Let { }0S S∞ ∞′ = − . 
Then codes, for 1 i m≤ ≤ , having iS S∞′  or ( )c

iS S∞  as their defining 
sets are called odd-like polyadic codes and the codes having ( )c

iS S∞′  or 

iS S∞  as their defining sets are the associated even-like polyadic codes. Let i  
denote the odd-like codes having iS S∞′  as their defining sets; i′  denote the 
odd-like codes having ( )c

iS S∞  as their defining sets; i  denote the 
even-like codes having ( )c

iS S∞′  as their defining sets; and i′  denote the 
even-like codes having iS S∞  as their defining sets.  

In the special case, when 2m =  and { }0S∞ = , polyadic codes are duadic 
codes [19]. When 3m = , polyadic codes are triadic codes as defined by Pless 
and Rushanan [20]. When n p= , an odd prime, ( )| 1m p − , { }0S∞ = , *

p b= ,  

1
1,1mr pS b r

m
− = ≤ ≤ 

 
, 1

1
i

iS b S−= , then polyadic codes are m-adic residue  

codes as defined by Job [21]. A polyadic code of prime length p exists if and only 
if q ia an m-adic residue mod p, see Brualdi and Pless [22]. When n is a prime 
power, the conditions for the existence of polyadic codes over q  were obtained 
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by Sharma et al. [23] and for general n see Bakshi et al. [24]. 
Clearly 1 2, , , m    are equivalent codes; 1 2, , , m′ ′ ′

    are equivalent; 

1 2, , , m    are equivalent; and 1 2, , , m′ ′ ′
    are equivalent codes. 

For 1 i m≤ ≤ , let ( )ie x  and ( )ie x′  be the even-like idempotent generators 
of even-like polyadic codes i  and i′  respectively, ( )id x  and ( )id x′  be 
odd-like idempotent generators of odd-like polyadic codes i  and i′  respec-
tively. 

As the defining set of 1  is { }2 3 0mS S S   , the defining set of 
( )1aµ   is { }( ) { }1 2 3 1 2 10 0m ma

S S S S S Sµ − −=      . Therefore 
( )1a mµ =   and hence ( )1a me eµ = . Similarly, ( ) 1a i ie eµ −=  for 1 i m≤ ≤  

and ( ) 1a i id dµ −=  for 1 i m≤ ≤ . Similar results hold for ie′  and id ′ .  
Let the set { }1,2, ,m  be denoted by A. Similar to the properties of triadic 

codes obtained in [9], we have the following results for polyadic codes over q . 
Proposition 1: For any subset { }1 2, , , rt t t A⊆ , where 2 r m≤ ≤ , we have  
1) 

1 21 2 rm t t t=         , 
2) ( )1 2 1 1m n x j x+ + + = = − = −    ,  
3) 

1 21 2 rm t t t+ + + = + + +       , 
4) ( )1 2 m j x=    , 
5) i i n+ =   , { }0i i =   for 1 i m≤ ≤ ,  
6) ( ) ( ) ( ) ( ) ( ) ( )

1 21 2 rm t t te x e x e x e x e x e x=  ,  
7) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 1m me x e x e x m e x e x e x j x+ + + − − = −  ,  
8) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1

1

1 1

1

( ) 1
i i j i j k i

i j i j k

mm m
i i j i j k i

i i j i j k i

rr r
t t t t t t t

i t t t t t i

d x d x d x d x d x d x d x

d x d x d x d x d x d x d x

−

= < < < =

−

= < < < =

− + − −

= − + − −

∑ ∑ ∑ ∏

∑ ∑ ∑ ∏





, 

9) ( ) ( ) ( ) ( )1 2 md x d x d x j x= ,  
10) ( ) ( )1i id x e x= − , ( ) ( ) 0i ie x d x =  for 1 i m≤ ≤ . 
Proof: By Lemma 1 (2), the defining set of each of 1 2 m    , 

1 2 rt t t     is { }1 2 0mS S S   , hence they are equal. The defin-
ing set of 1 2 m+ + +    is { }0 , which is the defining set of even weight 
code n  having generating idempotent ( )1 j x− . Again by Lemma 1 (2), the 
defining set of each of 1 2 m+ + +   , 

1 2 rt t t+ + +    is S∞′ , hence they 
are all equal. The defining set of 1 2 m     is { }0n − , which is the 
defining set of the repetition code having generating idempotent ( )j x . The de-
fining set of i i   is whole of n , hence it is { }0  in the ring 

[ ] 1n
n q x x= −  ; whereas defining set of i i+   is ∅ , so it is 1n = . 

The other results follow by Lemma 1 (3).    
Proposition 2: For any subset { }1 2, , , rt t t A⊆ , where 2 r m≤ ≤ , we have  
1) { }1 2 0m′ ′ ′ =    ,  
2) 

1 21 2 rt t t′ ′ ′ ′ ′ ′+ + + = + + +       , 
3) 

1 21 2 rm t t t′ ′ ′ ′ ′ ′=         ,  
4) 1 2 1m n′ ′ ′+ + + = =    , 
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5) i i n′ ′+ =   , { }0i i′ ′ =   for 1 i m≤ ≤ , 

6) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1

1

1 1

1

 1
i i j i j k i

i j i j k

mm m
i i j i j k i

i i j i j k i

rr r
t t t t t t t

i t t t t t i

e x e x e x e x e x e x e x

e x e x e x e x e x e x e x

−

= < < < =

−

= < < < =

′ ′ ′ ′ ′ ′ ′− + − −

′ ′ ′ ′ ′ ′ ′= − + − −

∑ ∑ ∑ ∏

∑ ∑ ∑ ∏





, 

7) ( ) ( ) ( ) ( ) ( ) ( )
1 21 2 rm t t td x d x d x d x d x d x′ ′ ′ ′ ′ ′=  ,  

8) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 1m md x d x d x m d x d x d x′ ′ ′ ′ ′ ′+ + + − − =  ,  
9) ( ) ( ) ( )1 2 0me x e x e x′ ′ ′ = ,  
10) ( ) ( )1i id x e x′ ′= − , ( ) ( ) 0i ie x d x′ ′ = , 
11) ( )i ij x ′+ =  , ( ) { }0i j x = ,  
12) ( )i ij x′ + =  , ( ) { }0i j x′ = ,  
13) { }0i i′ =  , ( )1i i j x′+ = −  ,  
14) ( )i i j x′ =  , i i n′+ =   ,  
15) ( ) ( ) ( ) ( ), , 0, 0i i i i i ie j x d e j x d e j x e j x′ ′ ′+ = + = = = ,  
16) ( ) ( ) ( )0, 1 , , 1i i i i i i i ie e e e j x d d j x d d j x′ ′ ′ ′= + = − = + = + .  
Proof: Statements (1) to (10) are similar to those of (1) to (10) of Proposition 

1. For (11), we note that the defining set of ( )j x  is { }0n − . Therefore the 
defining set of ( )i j x  is n  and defining set of ( )i j x+  is same as 
that of i′ . Similarly we have (12). The defining set of i i′   is n  and that 
of i i′+   is { }0 . The defining set of i i′   is { }0n −  and that of 

i i′+   is ∅ . Now (15) and (16) follow by Lemma 1(3).    
Proposition 3: Suppose S∞′  is empty, then for any subset { }1 2, , , rt t t A⊆ , 

where 2 r m≤ ≤ , we have the following additional results: 
1) { }

1 21 2 0
rm t t t= =         , 

2) 
1 21 2 rm t t t n+ + + = + + + =        ,  

3) ( )
1 21 2 rm t t t j x′ ′ ′ ′ ′ ′= =         ,  

4) ( )
1 21 2 1

rm t t t n j x′ ′ ′ ′ ′ ′+ + + = + + + = = −        ,  
5) ( ) ( ) ( ) ( ) ( )

1 21 2 0
rm t t te x e x e x e x e x e= =  ,  

6) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1

1

1 1

1

 ( ) 1

1

i i j i j k i
i j i j k

mm m
i i j i j k i

i i j i j k i

rr r
t t t t t t t

i t t t t t i

d x d x d x d x d x d x d x

d x d x d x d x d x d x d x

−

= < < < =

−

= < < < =

− + − −

= − + − −

=

∑ ∑ ∑ ∏

∑ ∑ ∑ ∏



 , 

7) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 21 2 rm t t td x d x d x d x d x d x j x′ ′ ′ ′ ′ ′= =  , 

8) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1

1 1

1

1 1

 ( 1)

1

1

i i j i j k i
i j i j k

mm
m

i i j i j k i
i i j i j k i

rr r
t t t t t t t

i t t t t t i

e x e x e x e x e x e x e x

e x e x e x e x e x e x e x

j x

−

= < < < =

−

= < < < =

′ ′ ′ ′ ′ ′ ′− + − −

′ ′ ′ ′ ′ ′− + − −

= −

∑ ∑ ∑ ∏

∑ ∑ ∑ ∏



 . 

Proof is straightforward. 
Proposition 4: Let i , i′ , for 1 i m≤ ≤ , be two pairs of even-like polyadic 

codes over q  with i , i′  the associated pairs of odd-like polyadic codes. 
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Then ( )1i iµ⊥
−=   and ( )1i iµ⊥

−′ ′=  . 
Further if ( )1 i iµ− =  , then i i

⊥ =  , i i
⊥′ ′=   and so i , i′ , i  and 

i′  are LCD codes. 
Proof: As the defining set of 1  is ( ) { }1 2 30c

mS S S S S∞′ =    , the 
defining set of 1

⊥ , by Lemma 1 (1) is  

{ }( )
( ) { }( )
( ) { }( )
( )
( )

1 2 3

1 1 2 3

1 1 2 1 2 3

1 1

1 1

0

0

0

defining set of  .

n m

n m

m m

S S S

S S S

S S S X S S S

S X

µ

µ µ

µ µ

µ

µ

−

− −

− ∞ −

− ∞

−

= −

= −

= −

′=

=

  

  

     









 

This proves that ( )1 1 1µ⊥
−=  . Similar is the proof of others. When 

( )1 i iµ− =  , we get, from Propositions 1 (5) and 2 (5), that  
{ }0i i i i

⊥ = =      and { }0i i i i
⊥′ ′ ′ ′= =     ; proving that i  and 

i′  are LCD codes. One can check that i  and i′  are also LCD codes.   

3. Cyclic Codes over the Ring   and the Gray Map 

3.1. The Ring   

Let q be a prime power, sq p= . Throughout the paper,   denotes the com-
mutative ring [ ] ( ) ( ), , ,q u v f u g v uv vu− , where ( )f u  and ( )g v  are two 
non-constant polynomials of degree k and   respectively, which split into dis-
tinct linear factors over q . We assume that k and   are not both 1, otherwise 

q . If 1=  or 1k = , then the ring [ ] ( ) ( ), , ,q u v f u g v uv vu= −  is 
isomorphic to [ ] ( )q u f u  or [ ] ( )q v g v . Cyclic, duadic and triadic 
codes over [ ] ( )q u f u  have been discussed by the authors in [9].  

Let ( ) ( )( ) ( )1 2 kf u u u uα α α= − − − , with i qα ∈ , i jα α≠  and  
( ) ( )( ) ( )1 2g v v v vβ β β= − − −



 , with i qβ ∈ , i jβ β≠ .   is a non chain 
ring of size kq   and characteristic p.  

For 2k ≥  and 2≥ , let iε , 1 i k≤ ≤  and jγ , 1 j≤ ≤  , be elements of 
the ring   given by  

( ) ( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

( )
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

1 2 1 1

1 2 1 1

1 2 1 1

1 2 1 1

  and

.

i i k
i i

i i i i i i i k

j j
j j

j j j j j j j

u u u u u
u

v v v v v
v

α α α α α
ε ε

α α α α α α α α α α

β β β β β
γ γ

β β β β β β β β β β

− +

− +

− +

− +

− − − − −
= =

− − − − −

− − − − −
= =

− − − − −




 

 

 

 

  (3) 

If 1k = , we define 1 1ε =  and if 1= , we take 1 1γ = . 
For 1,2, , , 1,2, ,i k j= =   , define ijη  as follows  

( ) ( ) ( ), .ij ij i ju v u vη η ε γ= =                     (4) 

Lemma 2: We have 2
ij ijη η= , 0ij rsη η =  for 1 , ,i r k≤ ≤ , 1 ,j s≤ ≤  , 

( ) ( ), ,i j r s≠  and , 1iji jη =∑  in  , i.e., ijη ’s are primitive orthogonal 
idempotents of the ring  . 

Proof: Since ( )( )0 modi r f uε ε ≡  for i r≠  and ( )( )0 modj s g vγ γ ≡  for 

https://doi.org/10.4236/jcc.2021.95004


M. Goyal, M. Raka 
 

 

DOI: 10.4236/jcc.2021.95004 43 Journal of Computer and Communications 
 

j s≠ , 0ij rs i j r sη η ε γ ε γ= =  in  . To prove 2
ij ijη η= , it is enough to prove that 

( )1 0ij ijη η − =  in  . For that we need to prove ( ) ( ) ( )( )| , , 1r ij iju u v u vα η η− −  
for all r and ( ) ( ) ( )( )| , , 1s ij ijv u v u vβ η η− −  for all s. If r i≠ , then  

( ) ( ) ( ), 0ij r i r jv vη α ε α γ= = . If s j≠ , then ( ) ( ) ( ), 0ij s i j su uη β ε γ β= = , hence 
( ) ( )| ,r iju u vα η− , for r i≠  and ( ) ( )| ,s ijv u vβ η− , for s j≠ . One can easily 
check that ( ) ( )( )| , 1i iju u vα η− −  and ( ) ( )( )| , 1j ijv u vβ η− − , so  

( )1 0ij ijη η − =  in   and hence 2
ij ijη η=  in  . 

Now to prove , 1iji jη =∑  in  , it is sufficient to prove that  
( ) ( ) ( )( )( )1 1 , 1 mod ,k

ijj i u v f u g vη
= =

≡∑ ∑ . This can be easily checked as  
( )1 1 , 1k

ij rj i vη α
= =

=∑ ∑  and ( )1 1 , 1k
ij sj i uη β

= =
=∑ ∑  for all r and s,  

1,2, , , 1,2, ,r k s= =   .   
The decomposition theorem of ring theory tells us that 

, ,
  ij ij q

i j i j
η η= =⊕ ⊕   .  

For a linear code   of length n over the ring  , let for each pair ( ),i j , 
1 ,1i k j≤ ≤ ≤ ≤  , let  

( ) ( )
,

:  , , , ,  such that  .n n
ij ij q rs q rs rs

r s
x x r s i j xη

 
= ∈ ∃ ∈ ≠ ∈ 
 

⊕    

Then ij  are linear codes of length n over q , 
,

 ij ij
i j
η=⊕   and  

,
ij

i j
=∏  .  

The following is a simple generalization of Theorem 1 of [9]. 
Theorem 2: Let 

,
 ij ij

i j
η=⊕   be a linear code of length n over  . Then  

1)   is cyclic over   if and only if , 1 ,1ij i k j≤ ≤ ≤ ≤   are cyclic over 

q . 

2) If ( )ij ijg x= , ( ) [ ]
1

q
ij n

x
g x

x
∈

−


, ( ) ( )| 1n

ijg x x −  then, 

( ) ( ) ( )
( ) ( ) ( )

( )

11 11 1 1 21 21

2 2 1 1

, , , , ,

, , , ,k k k k

g x g x g x

g x g x g x

g x

η η η

η η η

=

=

 

   

 

 



, 

where ( ) ij iji jg x gη=∑ ∑  and ( ) ( )| 1ng x x − . 

3) Further ( )1 1
k

ijj ik n deg gq = =−∑ ∑=


 . 
4) Suppose that ( ) ( ) 1, 1 ,1n

ij ijg x h x x i k j= − ≤ ≤ ≤ ≤  . Let ( ) ( )
,

 ij ij
i j

h x h xη=⊕ , 
then ( ) ( ) 1ng x h x x= − .  

5) 
,

 ij ij
i j
η⊥ ⊥=⊕  .  

6) ( )h x⊥ ⊥= , ( ) ( )
,

 ij ij
i j

h x h xη⊥ ⊥=⊕ , where ( )ijh x⊥  is the reciprocal po-
lynomial of ( ) , 1 ,1ijh x i k j≤ ≤ ≤ ≤  .  

7) ( )1 1
k

ijj i deg gq = =⊥ ∑ ∑=


 . 

3.2. The Gray Map 

Every element ( ),r u v  of the ring [ ] ( ) ( ), , ,q u v f u g v uv vu= −  can be 
uniquely expressed as 
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( )
,

,  ,ij ij
i j

r u v aη= ∑  

where ij qa ∈  for 1 ,1i k j≤ ≤ ≤ ≤  . 
Define a Gray map : k

qΦ →   by 

( ) ( )11 12 1 21 22 2 1 2
,

, , , , , , , , , , , , ,ij ij k k k
i j

r u v a a a a a a a a a a Vη= ∑
  

     , 

where V is any nonsingular matrix over q  of order k k×  . This map can be 
extended from n  to ( )nk

q
  component wise. 

Let the Gray weight of an element r∈  be ( ) ( )( )G Hw r w r= Φ , the 
Hamming weight of ( )rΦ . The Gray weight of a codeword  

( )0 1 1, , , n
nc c c c −= ∈   is defined as  

( ) ( ) ( )( ) ( )( )1 1
0 0

n n
G G i H i Hi iw c w c w c w c− −

= =
= = Φ = Φ∑ ∑ . For any two elements 

1 2, nc c ∈ , the Gray distance Gd  is given by  
( ) ( ) ( ) ( )( )1 2 1 2 1 2,G G Hd c c w c c w c c= − = Φ −Φ . 

Theorem 3: The Gray map Φ  is an q —linear, one to one and onto map. It 
is also distance preserving map from ( n , Gray distance Gd ) to ( k n

q
 , Ham-

ming distance Hd ). Further if the matrix V satisfies T
kVV Iλ=


, *
qλ ∈ , 

where TV  denotes the transpose of the matrix V, then ( ) ( )( )⊥⊥Φ = Φ   for 
any linear code   over  .  

Proof. The first two assertions hold as V is an invertible matrix over q . 
Let now ( )T T T

1 2, , , kV V V V=


 , where  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )11 12 1 21 22 2 1 2, , , , , , , , , , , ,i i i i i i i i i

i k k kV v v v v v v v v v=
  

   
 is a 1 k×   row vector, 

satisfying T
kVV Iλ=


. So that  

( )( ) ( ) ( ) ( ) ( )
2

1 1
  for all 1 , 1   and   0  for , , .

k k
t t t

rs rs wy
t t

v r k s v v r s w yλ
= =

= ≤ ≤ ≤ ≤ = ≠∑ ∑
 

  (5) 

Let   be a linear code over  . Let ( )0 1 1, , , nr r r r ⊥
−= ∈  ,  

( )0 1 1, , , ns s s s −= ∈  , where ( ) ( ) ( )
11 11 12 12  i i i

i kl kr a a aη η η= + + +


  and  
( ) ( ) ( )

11 11 12 12
i i i

i kl ks b b bη η η= + + +


 . So that 0r s⋅ = . It is enough to prove that 
( ) ( ) 0r sΦ ⋅Φ = . Using the properties of ijη ’s from Lemma 2, we get  

( ) ( ) ( ) ( ) ( ) ( )
11 11 11 12 12 12 .i i i i i i

i i k k kr s a b a b a bη η η= + + +
  

  

Then 

( ) ( ) ( ) ( )
1 1 1

0 0 1 1 1 1 0
0      

n n k k n
i i i i

i i rs rs rs rs rs rs
i i r s r s i

r s r s a b a bη η
− − −

= = = = = = =

 = ⋅ = = =  
 

∑ ∑∑∑ ∑∑ ∑
 

 

implies that 

( ) ( )
1

0
0,    for all , ,1 ,1 .

n
i i

rs rs
i

a b r s r k s
−

=

= ≤ ≤ ≤ ≤∑                (6) 

Now 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
11 12

1 1 1 1 1 1
, , ,  ,   , ,  

k k k
i i i i i i k

i k rs rs rs rs rs rs
r s r s r s

r a a a V a v a v a v
= = = = = =

 Φ = =  
 
∑∑ ∑∑ ∑∑

  





   

Similarly 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 1 1 1 1
 ,   , ,  .

k k k
i i i k

i wy wy wy wy wy wy
w y w y w y

s b v b v b v
= = = = = =

 
Φ =  

 
∑ ∑ ∑∑ ∑∑
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Using (5) and (6), we find that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )

1 1

0 0 1 1 1 1 1

1 12

10 1 1 1 0 1 1 1 1
, ,

1

0 1 1
 

n n k k k
i i t t

i i rs wy rs wy
i i t w y r s

n k k n k k k
i i t i i t t

rs rs rs rs wy rs wy
ri r w r s y s t i w y s t

r s w y

n k

i r s

r s r s a b v v

a b v a b v v

λ

− −

= = = = = = =

− −

== = = = = = = = = = =
≠

−

= = =

Φ ⋅Φ = Φ ⋅Φ =

   = +   
   

=

∑ ∑∑∑∑∑∑

∑ ∑ ∑ ∑ ∑∑∑ ∑ ∑ ∑

∑ ∑

  

    

( ) ( ) ( ) ( )
1

1 1 0
0,

k n
i i i i

rs rs rs rs
r s i

a b a bλ
−

= = =

 = = 
 

∑ ∑∑ ∑
 

 

which proves the result.   

4. Polyadic Codes over the Ring   

We now define polyadic codes of length n over the ring   in terms of their 
idempotent generators with the assumption that the conditions on n and q for 
existence of polyadic codes over the field q  are satisfied. Let , 1 ,1ij i k jη ≤ ≤ ≤ ≤   
be idempotents as defined in (3) and (4). Let the set of ordered suffixes 
{ },1 ,1ij i k j≤ ≤ ≤ ≤   be divided into m disjoint subsets  

{ } 1 2,1 ,1 mij i k j A A A≤ ≤ ≤ ≤ =                (7) 

with the assumption that each of the sets iA  is non-empty, if k m≥ . In that 
case let ,1 1i i iA r r k m= ≤ ≤ − + . 

If k m< , we assume that in the partition (7), k  sets are non-empty, each 
containing exactly one element and the remaining m k−   sets are empty. 
Therefore 1i iA r= = , if iA  is non empty and 0i iA r= = , if iA  is empty. 

Therefore  

1 2 .mk r r r= + + +   

Define  

1
1

 ,r ij
ij A

θ η
∈

= ∑  

2
2

 ,r ij
ij A

θ η
∈

= ∑  

  

 ,
m

m
r ij

ij A
θ η

∈

= ∑  

with the convention that empty sum is regarded as zero. 
Using Lemma 2, we find that  

1 2
1,

mr r rθ θ θ+ + + =                      (8) 

and that ,1
ir

i mθ ≤ ≤  are mutually orthogonal idempotents in the ring  , i.e., 
2  for all , 0, for all .
i i i jr r r ri i jθ θ θ θ= = ≠              (9) 

For 1,2, ,i m=  , let , , , i i i ie e d d′ ′  be the idempotent generators of polyadic 
codes over q  as defined in Section 2.2. 

For each tuple ( )1 2, , , mr r r , let  
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( )

( ) ( )

( ) ( )

1 2
1 2

1 2
1 2

1 2
1 2

, , ,
1 1 1 2

, , ,
2 2 1 1 1

, , ,
1 2 3 1

m
m

m
m

m
m

r r r
r r r m

r r r
a r m r r m

r r r
m m a m r r r

F F d d d

F F F d d d

F F F d d d

θ θ θ

µ θ θ θ

µ θ θ θ

−

−

= = + + +

= = = + + +

= = = + + +















 

( )

( ) ( )

( ) ( )

1 2
1 2

1 2
1 2

1 2
1 2

, , ,
1 1 1 2

, , ,
2 2 1 1 1

, , ,
1 2 3 1

m
m

m
m

m
m

r r r
r r r m

r r r
a r m r r m

r r r
m m a m r r r

F F d d d

F F F d d d

F F F d d d

θ θ θ

µ θ θ θ

µ θ θ θ

−

−

′ ′ ′ ′ ′= = + + +

′ ′ ′ ′ ′ ′= = = + + +

′ ′ ′ ′ ′ ′= = = + + +















        (10) 

be odd-like idempotents in the ring [ ] 1nx x − . Similarly let  
( )

( ) ( ) ( )
( )

( ) ( ) ( )

1 2
1 2

1 2
1 2

, , ,
1 1 1 2

2 1 3 2 1

, , ,
1 1 1 2

2 1 3 2 1

, , ,

, , ,

m
m

m
m

r r r
r r r m

a a m a m

r r r
r r r m

a a m a m

E E e e e

E E E E E E

E E e e e

E E E E E E

θ θ θ

µ µ µ

θ θ θ

µ µ µ

−

−

= = + + +

= = =

′ ′ ′ ′ ′= = + + +

′ ′ ′ ′ ′ ′= = =













          (11) 

be even-like idempotents in the ring [ ] 1nx x − . 
For each tuple ( )1 2, , , mr r r , and for each ,1i i m≤ ≤ , let ( ) ( )1 2 1 2, , , , , ,,m mr r r r r r

i iT T ′   
denote the odd-like polyadic codes and ( ) ( )1 2 1 2, , , , , ,,m mr r r r r r

i iP P′   denote the 
even-like polyadic codes over   generated by the corresponding idempotents, 
i.e. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, , , , , , , , , , , ,

, , , , , , , , , , , ,

,  ,

,  .

m m m m

m m m m

r r r r r r r r r r r r
i i i i

r r r r r r r r r r r r
i i i i

T F T F

P E P E

′ ′= =

′ ′= =

   

   

       (12) 

Clearly for any tuple ( )1 2, , , mr r r , ( ) ( ) ( )1 2 1 2 1 2, , , , , , , , ,
1 2, , ,m m mr r r r r r r r r

mT T T  

  are 
equivalent; ( ) ( ) ( )1 2 1 2 1 2, , , , , , , , ,

1 2, , ,m m mr r r r r r r r r
mT T T′ ′ ′  

  are equivalent;  
( ) ( ) ( )1 2 1 2 1 2, , , , , , , , ,

1 2, , ,m m mr r r r r r r r r
mP P P  

  are equivalent and  
( ) ( ) ( )1 2 1 2 1 2, , , , , , , , ,

1 2, , ,m m mr r r r r r r r r
mP P P′ ′ ′  

  are equivalent. 
Next we compute the number of inequivalent odd-like and even-like polyadic 

codes over the ring  . 
Theorem 4: If k m≥ , then there are 

( ) ( ) ( ) ( )1 2 2 1

1 2 1

1 2 1
1 1 2 2

1 1 1 1 2 1

2    
m

m

k r r r k r m k m
m

r r r m

k k r k r r r
r rm r

−

−

− + + − − − − − −
−

= = = −

−  − + + +  
   

    
∑ ∑ ∑

   

 
 

   

inequivalent odd-like polyadic codes and the same number of inequivalent 
even-like polyadic codes over the ring  . 

If k m< , then there are 

( )2 !
m

k
km
 
 
 





 

inequivalent odd-like polyadic codes and the same number of inequivalent 
even-like polyadic codes over the ring  . 

Proof: Let first k m≥ , out of k  idempotents ,1 ,1ij i k jη ≤ ≤ ≤ ≤  , 
1r

θ  
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can be chosen in 
1

k
r

 
 
 



 ways. Out of remaining ( )1k r−  idempotents 
2r

θ  

can be chosen in 1

2

k r
r
− 

 
 



 ways, continuing like this 
1mr

θ
−

 can be chosen in 

( )1 2 2

1

m

m

k r r r
r

−

−

 − + + +
 
 

 

 ways and 
mr

θ  will be fixed. As each ,1
ir

i mθ ≤ ≤   

must have at least one ijη , the number of choices of idempotents  

1 21 2 mr r r md d dθ θ θ+ + +  is  
( ) ( ) ( ) ( )1 2 2 1

1 2 1

1 2 1
1 1 2 2

1 1 1 1 2 1

  
m

m

k r r r k r m k m
m

r r r m

k k r k r r r
r r r

−

−

− + + − − − − − −
−

= = = −

−  − + + +  
   

    
∑ ∑ ∑

   

 
 

  . 

Since ( ) ( ) ( )1 2 2 3 1, , ,a a a mF F F F F Fµ µ µ= = = , and ( )1 2, , , mr r r
iF ′  ’s contribute 

equal number of inequivalent odd-like idempotents, we get the desired number.  
Let now k m< . Firstly the k  non-empty sets iA  in the partition (7) can  

be chosen in 
m
k
 
 
 

 ways. Out of k  idempotents ,1 ,1ij i k jη ≤ ≤ ≤ ≤  , first  

non-zero 
ir

θ  can be chosen in k  ways, next non-zero 
jrθ  can be chosen in 

1k −  ways,  , so the number of choices of 
1 21 1 2 mr r r mF d d dθ θ θ= + + +  is  

( )!
m

k
k
 
 
 





. Since ( ) ( ) ( )1 2 2 3 1, , ,a a a mF F F F F Fµ µ µ= = = , and iF ′ ’s contri-

bute equal number of inequivalent odd-like idempotents, we get the required 
number.   

We drop the superscript ( )1 2, , , mr r r , when there is no confusion with the 
idempotents or the corresponding polyadic codes. 

Theorem 5: For any subset { } { }1 2, , , 1, 2, ,rt t t A m⊆ =  , where 2 r m≤ ≤ , 
the following assertions hold for polyadic codes over  .  

1) ( )1 2 mT T T j x=  , the repitition code over   
2) 

1 21 2 rm t t tT T T T T T+ + + = + + +  , 
3) 

1 21 2 rm t t tP P P P P P=    , 
4) ( )1 2 1mP P P j x+ + + = − , the even weight code over  , 
5) ( ) { } ( ) ( )0 , i iP j x T j x j x= =  ,  
6) [ ] 1n

i iP T x x+ = − , { }0i iP T = . 
Proof: From the definitions and relations (8)-(11), we find that the sums of 

products of terms from 1 2, , , mF F F  taken one at a time, taken two at a time 
and so on is equal to the sums of products of terms from 1 2, , , md d d  taken 
one at a time, taken two at a time and so on, i.e.  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2

, ,

, , , ,

1 2 1 2

,
,

,

m m

i j i j
i j i j
i j i j

i j k i j k
i j k i j k

i j k i j k

m m

F F F d d d
F x F x d x d x

F x F x F x d x d x d x

F F F d d d

< <

< < < <

+ + + = + + +

=

=

=

∑ ∑

∑ ∑

 



 

         (13) 
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Therefore by Lemma 1 and relations (13), we find that  

1 2 1 2 1 2 ,m m mT T T F F F d d d= =     

( ) 1
1 2

1 1
 1

mm m
m i i j i j k i

i i j i j k i
T T T d d d d d d d−

= < < < =

+ + + = − + − −∑ ∑ ∑ ∏  , 

( )
1 2

1

1 1
 1

r i i j i j k i
i j i j k

rr r
t t t t t t t t t t

i t t t t t i
T T T d d d d d d d−

= < < < =

+ + + = − + − −∑ ∑ ∑ ∏  . 

By Proposition 1 (8) and (9), we get (1) and (2). 
To prove (3), from Proposition 1 (6) we see that  

( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

1 2 1 2 1 1

1 2 1 2 1 2

1 2 .

m

m

r m r r m m

r m r m r m

m

E E e e e e e e

e e e e e e e e e

e e e

θ θ θ

θ θ θ
−= + + +

= + + +

=



   



 

Similarly 
1 2 1 2rt t t mE E E e e e=   for any tuple ( )1 2, , , rt t t . Hence  

1 2 1 2rt t t mE E E E E E=  , so we get (3) by Lemma 1. 
Again as 1 2 1 2m mE E E e e e+ + + = + + +   and for any tuple ( )1 2, , , rt t t , 

1 2 1 2rt t t mE E E e e e=  , we see that 

( )

( )

( )

1
1 2

1 1

1
1 2 1 2 1 2

1

1 2 1 2

 1

 1
2 3

1 .

mm m
m i i j i j k i

i i j i j k i

m m
i m m m

i

m m

P P P E E E E E E E

m m m
e e e e e e e e e e

m

e e e m e e e

−

= < < < =

−

=

+ + + = − + − −

     
= − + − −          

     

= + + + − −

∑ ∑ ∑ ∏

∑

 

   

 

 

Now (4) follows from Proposition 1 (7).  
Since ( )( ) 0je j x =  for all 1 j m≤ ≤  by Proposition 2 (15), we get  

( )( ) 0iE j x =  and so ( ) { }0iP j x = . As 1i id e= − , we find that 1i iF E= −  
and so ( )( ) ( ) ( )( ) ( )i iF j x j x E j x j x= − = . Therefore ( ) ( )iT j x j x= . 
This proves (5). 

We prove (6) for 1i = . Others are similar. Note that  
( ) ( ) ( )

1 21 1 1 1 2 2 0
mr r r m mE F e d e d e dθ θ θ= + + + =  and  

( ) ( ) ( )
1 21 1 1 1 2 2 1

mr r r m mE F e d e d e dθ θ θ+ = + + + + + + = , by Proposition 1 (10). 
Therefore { }1 1 1 1 0P T E F= =  and 1 1 1 1 1 1 1P T E F E F+ = + − = .   

Similarly we have. 
Theorem 6: For any subset { }1 2, , , rt t t A⊆ , where 2 r m≤ ≤ , the following 

assertions hold for polyadic codes over  .  
1) 

1 21 2 rm t t tT T T T T T′ ′ ′ ′ ′ ′=    , 
2) [ ]1 2 1 1n

mT T T x x′ ′ ′+ + + = = −  , 
3) { }1 2 0mP P P′ ′ ′ =  , 
4) 

1 21 2 mm t t tP P P P P P′ ′ ′ ′ ′ ′+ + + = + + +  , 
5) ( ) { }0iP j x′ = , ( ) ( )iT j x j x′ = , 
6) [ ] 1n

i iP T x x′ ′+ = − , { }0i iP T′ ′= , 
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7) ( )i iP j x T ′+ = , ( )i iP j x T′+ = , 
8) ( )1i iP P j x′+ = − , { }0i iP P′=  and,  
9) [ ] 1n

i iT T x x′+ = − , ( )i iT T j x′= . 
Proof: The proof of statements (1) to (6) is similar to that of (1) to (6) of 

Theorem 5. To prove (7) we note that  

( ) ( )( ) ( )
( )( )

( )( ) ( )( ) ( )( )
1 2 1 2

1 2

1 1 1

1 2

1 2

m m

m

r r r m r r r

r r r m

E j x E j x E j x

e e e j x

e j x e j x e j x

θ θ θ θ θ θ

θ θ θ

+ − = +

= + + + + + + +

= + + + + + +

 



 

1 21 2 1,
mr r r md d d Fθ θ θ′ ′ ′ ′= + + + =  by Proposition 2 (15). 

Hence ( )1 1P j x T ′+ = . Similarly others. Statements (8) and (9) follow from 
Proposition 2 (16).   

Theorem 7: Let iP , iP′ , for 1,2, ,i m=  , be two pairs of even-like polyadic 
codes over the ring with iT , iT ′  the associated pairs of odd-like polyadic codes. 
Then  

( )1i iP Tµ⊥
−=  and ( )1i iP Tµ⊥

−′ ′= .  

Further if ( )1 i ie eµ− =  for 1,2, ,i m=  , then 

i iP T⊥ = , i iP T⊥′ ′=  and iP , iP′ , iT , iT ′  are LCD codes over  .  
Proof: By Proposition 1 (10), 1i ie d+ = . So ( ) ( ) ( )1 1 1 1 1i ie dµ µ µ− − −+ = = . 

Therefore  

( ) ( )
( )( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( )

1 2 1 2

1 2

1 2

1 2

1 1 1 1 2

1 1 1 2 1

1 1 1 2 1

1 1 2 1 1

1

1 1 1

.

m m

m

m

m

r r r r r r m

r r r m

r r r m

r r r m

E e e e

e e e

d d d

d d d F

µ θ θ θ µ θ θ θ

θ µ θ µ θ µ

θ µ θ µ θ µ

µ θ θ θ µ

− −

− − −

− − −

− −

− = + + + − + + +

= − + − + −

= + + +

= + + + =

 







 

Hence ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 11P E F F Tµ µ µ µ⊥
− − − −= − = = = . Similarly, we get 

the others. 
Further if ( )1 i ie eµ− =  for 1,2, ,i m=  , then by Theorem 5 (6) and Theo-

rem 6 (6),  

{ } { }0 , 0i i i i i i i iP P P T P P P T⊥ ⊥′ ′ ′ ′= = = =     

proving thereby that iP  and iP′  are LCD codes over  . Similarly one can 
check that iT  and iT ′  are also LCD codes over  .   

Theorem 8: If S∞′  is empty, then we have the following additional results: 

1) 
( )( )1k n

m
iP q

−

=


, 
( )( )1k n m

m
iT q

+ −

′ =


. 

2) 
( )( )( )1 1k n m

m
iP q

− −

′ =


, 
( )( )1k mn n

m
iT q

− +

=


. 

Proof: Here since 
1 2

0
rt t te e e = , by Proposition 3, we have 

1 2
0

rt t tE E E =  
for ant tuple ( )1 2, , , rt t t . Therefore for any s, 1 1s m≤ ≤ − ,  

1 2 1 2s sP P P E E E+ + + = + + +   and  
( ) ( ) { }1 2 1 1 2 1 0s s s sP P P P E E E E+ ++ + + = + + + =   . Hence by proposition 5 
(4), 
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( )
( )

( )

1 2 1
1 2

1 2 1

1 2 2 1
1 2 1

1 2 2 1

1 2 2 1 1 2 1 1

1

.

m m
m

m m

m m
m m m

m m

m
m m m m m

P P P P
j x P P P

P P P P

P P P P
P P P P P

P P P P

P P P P P P P P P P

−

−

− −
−

− −

− − −

+ + +
− = + + + =

+ + +

+ + +
= + + + =

+ + +

= + + + = = =





 





 

  

 

As ( ) ( )( )1
1

nkj x q
−

− =  , we get that 
( )( )1

1

k n
mP q
−

=


. Since from Theorems 5 
and 6, we have ( )i iP j x T ′+ =  and ( ) { }0iP j x = ,  

( )
( )( ) ( )( )1 1

.
k n k m n

km m
i iT P j x q q q

− + −

′ = =
 

  

Again from Theorem 6 (8), we see that ( ) ( )( )11 k n
i iP P j x q −′ = − =  , which 

gives 
( )( )( )1 1k n m

m
iP q

− −

′ =


. Finally ( )i iP j x T′⊕ =  gives  

( )
( )( )( ) ( )( )1 1 1

.
k n m k mn n

km m
i iT P j x q q q

− − − +

′= = =
 

  

4.1. Extensions of Polyadic Codes over the Ring   

When S∞′  is empty, we consider extended polyadic codes over the ring   
which give us some additional results. 

Consider the equation  
21 0.nγ+ =                           (14) 

This equation has a solution γ  in q  if and only if n and -1 are both 
squares or both non squares in q  (see [17], Chapter 6). 

For a linear code C of length n over  , C , the extension of C is defined as  

( ) ( )
1

0 1 1 0 1 1
0

, , , ,  : , , , , .
n

n j n
j

C c c c c c c c c c Cγ
−

− ∞ ∞ −
=

 
= = ∈ 
 

∑   

Theorem 9: Let S∞′  be empty. Suppose there exists a γ  in q  satisfying 
Equation (13). If the splitting of n  in (1) is given by the multiplier 1µ− , then 
the extended odd-like polyadic codes satisfy 1i iT T

⊥

+′ − . 
Proof: Here, by Theorem 7, ( )1 1i i iP T Tµ⊥

− +′ ′ ′= = . As ( )i iT P j x′= +  and 
( )1 1i iT P j x+ +′ = + , by Theorem 6 (7), let iT  and 1iT +′  be the extended polya-

dic code over   generated by  
         0  1 2 1

 0
 0
 

 1 1 1 1

i
i

n

GG

nγ

− ∞

 
 ′
 =
 
 − 



 



 

and 

1
1

           0  1 2 1
 0
 0
 

1 1 1 1

i
i

n

G
G

nγ

+
+

− ∞

 
 
 ′ =
 
 

− 
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where iG′  is a generator matrix for the even-like polyadic code iP′  and 1iG +  
is a generator matrix for the even-like polyadic code 1iP+ . The row above the 
matrix shows the column labeling by n ∞ . Since the all one vector belongs to 

1iT +′  and its dual 1iT ⊥
+′  is equal to iP′ , the last row of 1iG +′  is orthogonal to all 

rows of iG′ . The last row is orthogonal to itself also as 2 2 0n nγ+ =  in q . 
Therefore all rows of 1iG +′  are orthogonal to all the rows of iG . Now the result 
follows from the fact that 1i iT T

⊥

+′ = , as can be verified from Theorem 8.   
Similarly, we have  
Theorem 10: Let S∞′  be empty. Suppose there exists a γ  in q  satisfying 

Equation (14). If ( )1 i ie eµ− =  so that the splitting of n  in (2) is not given by 
the multiplier 1µ− , then the extended odd-like polyadic codes satisfy i iT T

⊥
′= . 

Corollary 1: If S∞′  is empty, 2m =  then the following assertions hold for 
duadic codes over  .  

1) If ( ) ( )1 1 2 1 2 1,e e e eµ µ− −= = , then , i i iP T P T⊥ ⊥′ ′= = ; iP  are self orthogon-
al and iT  are self dual. 

2) If ( ) ( )1 1 1 1 2 2,e e e eµ µ− −= =  then iT  are isodual.

 
Proof: Here, by definition 1 2′ =   and 1 2′ =  , therefore 1 2E E′ = , 

1 2F F′= , 1 2T T′= , 2 1T T′ = , 1 2P P′=  and 2 1P P′ = . 
If ( )1 1 2e eµ− = , ( )1 2 1e eµ− = , i.e., when the splitting is given by 1µ− , we 

have by Theorem 7, 1i iP T⊥
+= , subscript modulo m. Therefore  

1 2 1 2 1 2,P T T P T T⊥ ⊥′ ′= = = = . Using statement (7) of Theorem 6 , we have  

i i iP T P⊥′⊆ = . Therefore iP  is self-orthogonal. By Theorem 9, 1i iT T
⊥

+′ = , 
therefore i iT T

⊥
= . 

If ( )1 i ie eµ− = , By Theorem 10, i iT T
⊥

′= , therefore 1 2T T
⊥
=  and 2 1T T

⊥
= . 

4.2. Griesmer Type Bound for Polyadic Codes over   

Kuruz et al. [11] gave some examples of m-adic residue codes over [ ] 2
q u u u−  

whose parameters attain Griesmer type bound. In the next theorem, we prove 
that the Griesmer type bound for polyadic codes over the ring   is same as the 
Griesmer bound for the corresponding polyadic codes over the field q .  

Theorem 11: The parameters of polyadic codes over   are same as para-
meters of the corresponding polyadic codes over q . Hence Griesmer type 
bound for polyadic codes over the ring   is same as the Griesmer bound for 
the corresponding polyadic codes over the field q . 

Proof: Let   be a polyadic code of length n over  ij qη=⊕  . Then   is 
equal to iT  or iT ′  or iP  or iP′  for 1 i m≤ ≤ . By definition,  

1 21 1 2 mr r r mT θ θ θ= ⊕ ⊕ +⊕   , where 1 2, , , m    are all odd-like polyadic 
codes over q  and are equivalent. Therefore by Theorem 1, 

( ) ( ){ } ( )1 1
max dimension of polyadic code 

i

m

r i i ii
k T k kθ

=
= = =    

( ) ( ){ } ( )1 1
min minimum distance of polyadic code .

i

m

r i i ii
d T d dθ

=
= = =    

Further ( )1 1ii a
T Tµ −= . Here Jacobson radical, ( ) { }0ij qJ η = , so  
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( )ij q ij qJ qη η =   for every i and j. Hence the Griesmer type bound for 
odd-like polyadic codes iT  over the ring   becomes  

( ) ( )1

0
,

ik
i

i
i

d
n

q

−

=

 
≥  

 
∑
 

 

which is same as Griesmer bound for polyadic code i  over q . 
Similar result holds for iT ′ , iP  and iP′ . 
Example 1: Let 3q = , 13n = , 4m = , ( ) 3f u u u= −  and ( ) 2 1g v v= − . 

Take ( ) ( ) ( ) ( )1 11 12 1 21 22 2 31 3 32 4E e e e eη η η η η η= + + + + + . Here  

( ) ( ) ( ) ( )1 11 12 1 21 22 2 31 3 32 4P η η η η η η= + ⊕ + ⊕ ⊕     has parameters  

[ ]13,3,9 . It attains the Griesmer type bound over the ring  
[ ] 3 2

3 , , 1,u v u u v uv vu− − − . Therefore , 1, 2,3, 4iP i =  are optimal. The code 
( ) ( ) ( ) ( )1 11 12 1 21 22 2 31 3 32 4T η η η η η η= + ⊕ + ⊕ ⊕     has parameters [ ]13,10,3 . 

It nearly attains Griesmer type bound over the ring  
[ ] 3 2

3 , , 1,u v u u v uv vu− − − . 
Example 2: Let 5q = , 11n = , 2m = , ( ) 3f u u u= −  and ( ) 2 1g v v= − . 

Here ( ) ( )1 11 12 21 22 1 31 32 2P η η η η η η= + + + ⊕ +   has parameters [ ]11,5,6 , so 
it attains the Griesmer type bound over the ring [ ] 3 2

5 , , 1,u v u u v uv vu− − − . 
Therefore 1P  and 2P  are optimal.  

Remark: Using the above theory, one can construct some other cyclic codes 
over the ring   (which are not polyadic according to our definition) generated  
by idempotents of the type 

1 2
1 2

   
m

m
r i r i r i

i I i I i I
e e eθ θ θ

∈ ∈ ∈

    
+ + +     

     
∑ ∑ ∑  

where 1 2, , , mI I I  are subsets of { }1,2, , m , and which may attain the 
Griesmer type bound.  

For example, take 11q = , 5n = , 4m = , ( ) ( )( )2 1 2f u u u= − − ,  
( ) 2g v v v= −  and ( )( ) ( )( )11 12 21 1 2 3 22 31 32 1 2E e e e e eη η η η η η= + + + + + + + + . 

Let C be a cyclic code over ring   generated by the idempotent E, then C has 
parameters [ ]5,3,3  and it attains the Griesmer type bound. 

As an another example, take 7q = , 19n = , 6m = , ( ) 4f u u u= −  and 
( ) 2g v v v= −  and  

( )( ) ( )( ) ( )( )1 11 12 21 1 2 22 31 32 2 3 41 42 3 5E e e e e e eη η η η η η η η= + + + + + + + + + + . The 
cyclic code C generated by the idempotent 1E  over ring   has parameters 

[ ]19,12,6  and it nearly attains the Griesmer type bound. 

4.3. Gray Images of Polyadic Codes over   

Theorem 12: Let the matrix V taken in the definition of the Gray map Φ  
satisfy T

mVV Iλ= , *
qλ ∈ . For all possible choices of ( )1, , mr r , the Gray 

images of even-like polyadic codes ( ) ( )1 1, , ,, ,,m mr r r r
i iP P′   and Gray images of ex-

tensions of odd-like polyadic codes ( ) ( )1 1, , , ,,m mr r r r
i iT T ′  , for 1,2, ,i m=  , have 

the following properties  
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1) If ( )1 i ie eµ− = , i.e., if ( )1 i iS Sµ− = , then ( )iPΦ , ( )iP′Φ , ( )iTΦ  and 
( )iT ′Φ  are linear complementary dual(LCD) codes of length k n  over q . 
2) If S∞′  is empty and ( )1 i iS Sµ− = , then ( ) ( )( )i iT T

⊥
′Φ = Φ . 

3) If S∞′  is empty and ( )1 1i iS Sµ− += , i.e., if the splitting in (1) is given by 

1µ−  then ( ) ( )( )1i iT T
⊥

+′Φ = Φ . 
The theorem follows from Theorems 3, 7, 9 and 10. 
Corollary 2: If S∞′  is empty, 2m = , then the following assertions hold for 

duadic codes over  .  
1) If ( ) ( )1 1 2 1 2 1,e e e eµ µ− −= = , then ( )iPΦ  are self orthogonal of length 

k n  and ( )iTΦ  are self-dual codes of length ( )1k n +  over q . 
2) If ( ) ( )1 1 1 1 2 2,e e e eµ µ− −= = , then ( )iTΦ  are isodual codes of length 
( )1k n +  over q . 

The following examples illustrate our theory. The minimum distances of all 
these codes have been computed by the Magma Computational Algebra System. 

Example 3: Let 13q = , 3n = , 2m = , ( ) 2f u u u= − , ( ) 3g v v v= − , 
2γ =  and  

2 2 1 2 2 1
1 2 2 1 2 2
2 1 2 2 1 2
2 2 1 2 2 1
1 2 2 1 2 2
2 1 2 2 1 2

V A

− − 
 
 
 − −

= =  
− − − 

 − − −
  − − − 

 

be a matrix over 13  satisfying T 5VV I= . Here S∞′ = ∅ , 2
1 3 9e x x= + +  and 

2
2 3 9e x x= + + . Also ( )1 1 2e eµ− =  and ( )1 2 1e eµ− = . On taking  

1 11 12 13 21 22rθ η η η η η= + + + +  and 
2 23rθ η= , we have  

( ) ( )2 2 2
1 3 1 9E x uv uv x uv uv= − + − + + + +  and  

( ) ( )2 2 2
1 1 3 5F x uv uv x uv uv= − + + + + − + . The Gray images of polyadic codes 
( )5,1

1P  and 
( )5,1

1T  are self-orthogonal [18, 6, 6] and self-dual [24, 12, 4] codes 
over 13  respectively. 

Example 4: Let 4q = , 17n = , 4m = , ( ) 2 1f u u= − , ( ) 2g v v v= −  and  
2

2

2

2

1 1
1 1

1 1
1 1

a a
a aV B

a a
a a

 −
 
− = =  −
  − 

 

be a matrix over 4  satisfying TVV I= , where a is a primitive element of 4 . 
The Gray images of polyadic codes ( )1,2,1

1P , ( )1,2,1
1T , ( )1,2,1

1P′  and ( )1,2,1
1T ′  with 

1 211 12 21,r rθ η θ η η= = +  and 
3 22rθ η=  are respectively [68, 16, 28], [68, 52, 6], 

[68, 48, 8] and [68, 20, 17] LCD codes over 4 .  
Some other examples of self-dual, self-orthogonal and LCD codes arising as 

Gray images of Polyadic codes over   are given in Table 1. The matrices A 
and B in Table 1 are as defined in Examples 3 and 4 respectively and the matrix 
C is taken as 
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2 2 1 1
1 1 2 2

.
2 2 1 1
1 1 2 2

C

− 
 − =
 −
 

− 

 

 

Table 1. Gray images of some polyadic codes. 

q n m ( )f u  ( )g v  V γ  ( )1, , mr r  ( )1PΦ  ( )1TΦ  

4 13 2 2u u−  2v v−  B 1 (3, 1) [52, 24, 12] [56, 28, 12] 

        LCD isodual 

5 11 2 2 1u −  2 1v −  H4
† 2 (3, 1) [44, 20, 12] [48, 24, 11] 

        self-orthogonal self-dual 

7 9 2 2 1u −  3v v−  A does not (5, 1) [54, 24, 6]  

      exist  self-orthogonal  

7 3 2 2u u−  3v v−  A 3 (5, 1) [18, 6, 6] [24, 12, 4] 

        self-orthogonal self-dual 

11 5 2 2u u−  3v v−  A does not (5, 1) [30, 12, 8]  

      exist  self-orthogonal  

 
q n m ( )f u  ( )g v  V ( )1, , mr r  ( )1PΦ  ( )1TΦ  ( )1P′Φ  ( )1T ′Φ  

3 13 4 2 1u −  2 1v −  H4 (1, 1, 1, 1) [52, 12, 24] [52, 40, 5] [52, 36, 8] [52, 16, 13] 

        ( )1~ P ⊥
Φ   ( )1~ P ⊥′Φ  

5 13 3 2 1u −  2 1v −  H4 (2, 1, 1) [52, 16, 16] [52, 36, 7] [52, 32, 8] [52, 20, 13] 

       LCD LCD LCD LCD 

7* 16 2 2 1u −  2v v−  H4 (3, 1) [64, 44, 4] [64, 20, 12] [64, 16, 12] [64, 48, 2] 

       LCD LCD LCD LCD 

11 5 4 2u u−  2 1v −  C (1, 1, 1, 1) [20, 4, 14] [20, 16, 4] [20, 12, 6] [20, 8, 5] 

        ( )1~ P ⊥
Φ   ( )1~ P ⊥′Φ  

13 17 4 2 1u −  2v v−  I‡ (1, 1, 1, 1) [68, 16, 12] [68, 52, 4] [68, 48, 4] [68, 20, 11] 

       LCD LCD LCD LCD 

16 17 4 2u u−  2v v−  I (1, 1, 1, 1) [68, 16, 14] [68, 48, 5] [68, 52, 5] [68, 20, 11] 

       LCD LCD LCD LCD 

32 11 5 2u u−  2v v−  I (1, 1, 1, 1, 0) [44, 8, 10] [44, 32, 4] [44, 36, 3] [44, 12, 9] 

       LCD LCD LCD LCD 

 

 

*In this case, { }2,4,6,8,10,12,14S∞
′ = . 

†H4 is Hadamard matrix of order 4. 
‡I is the Identity matrix. 
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5. Conclusion 

In this paper, polyadic codes and their extensions over a finite commutative 
non-chain ring [ ] ( ) ( ), , ,q u v f u g v uv vu−  are studied where ( )f u  and 
( )g v  are two polynomials of degree k and   respectively (k and   are not 

both 1) which split into distinct linear factors over q . A Gray map is defined 
from n k n

q→   which preserves duality. As a consequence, self-dual, isodual, 
self-orthogonal and complementary dual (LCD) codes over q  are constructed. 
Some examples are also given to illustrate our theory. It is shown that the 
Griesmer type bound for polyadic codes over the ring   is same as the Gries-
mer bound for the corresponding polyadic codes over the field q . Examples of 
some codes which are optimal with respect to Griesmer type bound are given. 
The results of this paper can easily be extended over the ring  

[ ] ( ) ( ) ( )1 2 1 1 2 2, , , , , ,q r r r i j j iu u u f u f u f u u u u u−   where polynomials  
( )i if u , 1 i r≤ ≤ , split into distinct linear factors over q . 
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