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Abstract 
This paper studies a kind of urban security risk assessment model based on 
multi-label learning, which is transformed into the solution of linear equa-
tions through a series of transformations, and then the solution of linear equ-
ations is transformed into an optimization problem. Finally, this paper uses 
some classical optimization algorithms to solve these optimization problems, 
the convergence of the algorithm is proved, and the advantages and disad-
vantages of several optimization methods are compared. 
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1. Introduction 

In some traditional classification learning, the same sample is labeled by one 
category label at most, and this kind of classification learning problem is called 
single label classification learning problem. In real life, a sample usually corres-
ponds to multiple different category labels [1] [2] [3] [4]. For example, a sofa 
may have multiple different labels such as “solid wood”, “furniture”, “sculpture” 
and so on. A paper may have different labels such as “highly citation papers”, 
“core journals” and “mathematics discipline” [1] [2] [3] [4]. 

Multi-label learning [5] [6] [7] is a machine learning [8] problem under su-
pervised learning. It constructs a classifier that can automatically select the most 
relevant label subset from a large number of label sets to label the sample. At 
present, artificial intelligence has become a hot research field in today’s society, 
and multi-label classification is a hot issue in the field of artificial intelligence, a 
variety of multi-label classification algorithms emerge. 

In recent years, with the rapid development of urbanization in China, there 

How to cite this paper: Li, Z.Y. (2021) 
Optimization Model and Algorithm for 
Multi-Label Learning. Journal of Applied 
Mathematics and Physics, 9, 969-975. 
https://doi.org/10.4236/jamp.2021.95066 
 
Received: April 22, 2021 
Accepted: May 17, 2021 
Published: May 20, 2021 

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2021.95066
https://www.scirp.org/
https://doi.org/10.4236/jamp.2021.95066


Z. Y. Li 
 

 

DOI: 10.4236/jamp.2021.95066 970 Journal of Applied Mathematics and Physics 
 

are also some hidden dangers, especially some major safety accidents caused 
some economic losses and casualties, which bring panic to people living in the 
city. Using multi-label learning method to establish an effective urban safety risk 
assessment system is of great significance to prevent some security incidents and 
improve the safety of urban residents. 

Two methods commonly used in urban safety risk assessment [9] are risk ma-
trix method [10] [11] [12] (referred to as LS method) and operational condition 
risk assessment method (referred to as LEC method). The risk matrix method is 
to multiply the possibility of injury (L) and the severity of injury (S), and the re-
sults are called risk values, According to the size of the risk value, risk classifica-
tion is carried out, and then corresponding risk control measures are taken. The 
possibility of injury (L) is based on the scores of deviation frequency, safety in-
spection, operation process, employee competency and control measures. The 
scores of these five aspects are obtained between 1 and 5, and the highest of the 
five scores is the final L value (i.e., the possibility of injury, hereinafter referred 
to as L value). Severity of injury (S) According to the scores of casualties, prop-
erty losses, compliance with laws and regulations, environmental damage and 
damage to corporate reputation, the scores of these five aspects are also between 
1 and 5, and the highest score is taken as the final S value (the severity of injury, 
hereinafter referred to as S value). 

In practice, there are some difficulties in obtaining the possibility of injury (L) 
and the severity of injury (S). In the case of not accurately obtaining the value of 
L and S, how to obtain these two values in other ways becomes the problem to be 
solved in this paper. The method based on multi-label learning is effective to 
solve such problems. 

2. Question 

In real life, an object is usually associated with multiple labels. In this case, it is 
necessary to use multi-label learning [13] [14] [15]. An object in multi-label 
learning is associated with multiple labels at the same time, while an object in 
single-label learning is associated with only one label. In recent years, multi-label 
learning has been widely used in various scenarios, such as bioinformatics, web 
mining, text classification, image field and so on. 

In the urban safety risk assessment, an evaluation object has multiple charac-
teristics at the same time. The evaluation of the safety of this evaluation object is 
reflected by the possibility of injury (L) and the severity of injury (S). In this 
case, it is necessary to use multi-label learning [16] [17] [18]. 

The central idea is to find n features of the problem, we set it as 1 2, , ,i i nix x x… , 
Order 
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Which ix  represents the evaluation object 1,2,...,i m= , The possibility of 
injury (L) is set to 1ib , the severity of injury (S) is set to 2ib , so that 
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where ib  is the evaluation index, including the possibility of injury (L) and the 
severity of injury (S), 1,2,...,i m= . Thus, the original problem is transformed 
into a problem about solving linear equations. 

3. Methods 

In this paper, the model in practical problems is first transformed into a set of 
linear equations, and then it is equivalently transformed into a class of optimiza-
tion problems. Through optimization tools, the numerical solution of linear eq-
uations is obtained by gradual approximation. Finally, the advantages and dis-
advantages of several optimization methods are compared. 

At present, the mainstream solution of linear equations generally has two cat-
egories, one is the direct solution, and the other is the iterative method [19] [20] 
[21] [22]. 

Firstly, This article first finds n features 1 2, , ,i i nix x x…  of the evaluation ob-
ject ix . The possibility (L) of injury is set as 1ib , and the severity (S) of injury is 
set as 2ib , let 
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Take out m trainings, this set is called training set [23], the remaining set is 
called test set [23]. 

The processing method in this paper is to transform it. First of all, this paper 
lets 1 2( , ,..., )mX x x x= , 1 2( , ,..., )mB b b b= , and the original equations are 
AX B= . The optimal solution A of the optimization problem [24] [25] [26] 

[27] 
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is A in the required linear equation AX B= , Where 2

FAX B−  is a matrix 
least squares (Frobenius norm). 

There are many methods [28] for solving the optimal solution A of optimiza-
tion problem 
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such as Gradient Descend method, Newton method, BFGS method, FR method 
and so on. Gradient descent method [29] [30]: use the negative gradient direc-
tion of the current position as the search direction, because the direction is the 
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fastest descent direction of the current position, so it is also called the “fastest 
descent method”. The closer the steepest descent method to the target value, the 
smaller the step size, the slower the forward. There are two varieties, batch gra-
dient descent (BGD) and random gradient descent (SGD). Batch gradient des-
cent method: minimize the loss function of all training samples, so that the final 
solution is the global optimal solution, that is, the solved parameter is to minim-
ize the risk function, but it is inefficient for large-scale sample problems. Sto-
chastic gradient descent method: to minimize the loss function of each sample, 
although not every iteration of the loss function is toward the global optimal di-
rection, but the large overall direction is toward the global optimal solution, the 
final result is often near the global optimal solution, suitable for large-scale 
training samples. Newton method: a method for approximate solving equations 
in real and complex fields, with second-order convergence and fast convergence. 
The disadvantage is that it is an iterative algorithm, and each step needs to solve 
the inverse matrix of the Hessian matrix of the objective function, so the calcula-
tion is complex. Quasi-Newton method: it improves the defect that Newton me-
thod needs to solve the inverse matrix of complex Hessian matrix every time. It 
uses positive definite matrix to approximate the inverse of Hessian matrix, thus 
simplifying the computational complexity. Conjugate gradient method: a me-
thod between steepest descent method and Newton method, it only uses the first 
derivative information, but overcomes the slow convergence of steepest descent 
method, and avoids the shortcomings of Newton method that need to store and 
calculate Hesse matrix and inverse. Conjugate gradient method is not only one 
of the most useful methods to solve large linear equations, but also one of the 
most effective algorithms to solve large nonlinear optimization. Among various 
optimization algorithms, conjugate gradient method is very important. Its ad-
vantage is that it requires small storage, has step convergence, high stability, and 
does not require any external parameters. 

4. Algorithm 
4.1. Algorithm 4.1: Gradient Descend Method 

Step 1 Take 1 nx R∈  as the initial iteration point, precision 0ε ≥ , and let 
1k = . 

Step 2 Calculate ( )k kd f x= −∇ , if kd ≤∈ , the algorithm terminates, kx  is 
an approximate stable point. 

Step 3 Calculation step size 0kα ≥ . 
Step 4 Calculation 1k k k

kx x dα+ = + , let 1k k= + , and implementation step 
2. 

4.2. Algorithm 4.2: BFGS Method 

Step 1 Take 1 nx R∈ , 1 n nB R ×∈  symmetric positive definite, let 1k = . 
Step 2 If ( ) 0kf x∇ = , then kx  is the solution, and the calculation ends. 
Step 3 Calculate the search direction kd , 
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( )k k kB d f x= −∇ . 

Step 4 Calculation of search step size kα  satisfies 

( + ) ( ) ( )k k k k T k
k kf x d f x f x dα ρα− ≤ ∇ , 

( + ) ( )k k T k k T k
kf x d d f x dα σ∇ ≥ ∇ , 0 1ρ σ< < < . 

Step 5 Calculation +1kx , kδ , ky , +1kB , 
1k k k

kx x dα+ = + , k k
k dδ α= , 1( ) ( )k k ky f x f x+= ∇ −∇ , 

1 / /k k k k kT k kT k k k kT kT kB B B B B y y yδ δ δ δ δ+ = − + . 

Step 6 1k k= + , turn to step 2. 

4.3. Algorithm 4.3: FR Method 

Step 1 Take 1 nx R∈ , 1 1( )d f x= −∇ , 0 1/2ρ σ< ≤ < , order 1k = . 
Step 2 If ( ) 0kf x∇ = , kx  is the stable point of f, the calculation terminates. 
Step 3 Calculation of search step size kα  satisfies 

( ) ( ) ( )k k k k T k
k kf x d f x f x dα ρα+ − ≤ ∇ , 

( ) ( )k k T k k T k
kf x d d f x dα σ∇ + ≤ ∇ . 

Step 4 Calculate the search direction kd , 

1k k k
kx x dα+ = + , 

2 2+
1,

1( ) (/ )kFR
k

k
k f x f xβ + ∇ ∇= , 

1 1
1,( )k k FR k

k kd f x dβ+ +
+= −∇ + . 

Step 5 1k k= + , Turn to step 2. 

5. Experiments and Conclusions 

In order to facilitate the research of different 
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calculated results, In this paper, ix , ib  is obtained by taking random numbers, 
respectively, using Gradient Descend method, BFGS method and FR method to 
calculate the results in Table 1: 

 
Table 1. In matrices of different sizes, these three optimization methods converge to the 
number of steps of the optimal solution. 

 Gradient Descend BFGS FR 

The first experiment (m = 300, n = 500) 258 2 24 

The second experiment (m = 1000, n = 1500) 115 2 19 

The third experiment (m = 3000, n = 5000) 80 4 18 

The fourth experiment (m = 5000, n = 8000) 72 4 32 

The fifth experiment (m = 10,000, n = 12,000) 64 52 32 
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According to the operation results, we found that the BFGS method had the 
fastest convergence rate in this group of experiments, followed by the FR me-
thod, and the Gradient Descend method had the worst convergence rate. 
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