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Abstract 
We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic 
system modeling the steady state of populations that compete in a heteroge-
neous environment. This extends known quasi-optimal regularity results and 
covers the optimal case for this problem. The proof relies upon the blow-up 
technique and the almost monotonicity formula by Caffarelli, Jerison and 
Kenig. 
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1. Introduction 

In this paper, we consider the following competition-diffusion-advection system  

[ ] ( ) ( )
[ ] ( ) ( )

( )

1

2
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in  0, ,
in  0, ,

0 on 0, ,

t

t

u u u m m bu u kuv
v v v m m cv v kuv

u m v mu v

µ α
µ β

µ α µ β
ν ν ν ν

 −∇ ⋅ ∇ − ∇ = − − Ω× ∞
 −∇ ⋅ ∇ − ∇ = − − Ω× ∞


∂ ∂ ∂ ∂ − = − = ∂Ω× ∞ ∂ ∂ ∂ ∂

      (1) 

where ( ),u u x t=  and ( ),v v x t=  denote the densities of two competing spe-
cies at position x∈Ω  and time 0t ≥ . ( )m m x=  represents a local population 
growth rate that depends on location. In some sense, ( )m x  can reflect the quali-
ty and quantity of resources available at the location x, where the favorable region 

( ){ }: 0x m x∈Ω >  acts as a source and the unfavorable part ( ){ }: 0x m x∈Ω <  
is a sink region [1]. 1 uµ ∇  and 2 vµ ∇  account for random diffusion, and u mα ∇  
and v mβ ∇  represent movement upward along the environmental gradient. The 
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two non-negative constants α  and β  measure the tendency of the two spe-
cies to move up along the gradient of ( )m x , and 1µ  and 2µ  represent the ran-
dom diffusion rates of two species, respectively. The positive constants b and c 
are the intraspecific and k the interspecific competition rates. Ω  is a bounded 
domain in ( )1N N ≥  with smooth boundary ∂Ω . The Zero-flux boundary 
condition in (1) means that no individuals cross the boundary of the habitat. 

From the mathematical viewpoint, qualitative properties of non-negative so-
lutions of system (1) have been extensively studied. We will briefly review some 
of them, for a more complete and detailed discussion, see [2]. For the case when 

1k = , 0, 0α β> ≡ , Cantrell et al. [3] [4] showed that if Ω  is convex and 

1 2µ µ= , then for positive small α  the semi-trivial steady state ( )( ), , ,0xθ α µ  
of (1) is globally asymptotically stable. In contrast, Cantrell et al. [3] and Chen et 
al. [5] proved that for large values α  system (1) can have a stable positive 
steady state and two competing species coexist for large α . For the case when 

1k = , 0, 0α β> > , Chen et al. [1] showed that if the ratio 2β µ  is suitable 
related, then the two species coexist for sufficiently large α . 

For the case when k is sufficiently large, we proved in [6] that system is ex-
pected to approach a limiting configuration where all the populations survive 
but have disjoint habitats. Precisely, we proved that k-dependent solutions 
( ){ },k ku v  of (1) are uniformly bounded in Hölder spaces and they converge to 

the positive and negative parts of a solution of a scalar limit problem. The objec-
tive of this paper is to improve the result in [6], proving the uniform bound in 
Lipschitz norm. Without loss of generality, we set 1 2 1µ µ= =  in system (1), 
and consider the time-independent case:  

[ ] ( )
[ ] ( )

in  ,
in  ,

0 on .

k k k k k k

k k k k k k

k k
k k

u u m m bu u ku v
v v m m cv v ku v

u vm mu v

α
β

α β
ν ν ν ν

−∇ ⋅ ∇ − ∇ = − − Ω
−∇ ⋅ ∇ − ∇ = − − Ω

∂ ∂∂ ∂ − = − = ∂Ω ∂ ∂ ∂ ∂

          (2) 

Throughout this paper, we assume that the function ( ) ( )2m x C∈ Ω  and 
( )m x  is positive somewhere in Ω . Our main result is as follows. 
Theorem 1. Let ( ){ },k ku v  be non-negative solutions of (2). Then for every 

compact set ′Ω ⊂⊂ Ω  there exist 0M >  independent of k such that  

( ) ( ) ( ) ( ) ( ) ( )
, : , , .k k k k k kLip L L

u v u v u v M∞ ∞′ ′ ′Ω Ω Ω
= + ∇ ≤  

Note that the study of strong-competition limits in corresponding elliptic or 
parabolic systems is of interest not only for questions of spatial segregation and 
coexistence, in population dynamics, as here and in [7]-[14], but also is key to 
the understanding of phase separation of Gross-Pitaevskii systems of modeling 
Bose-Einstein condensates, see [15]-[24] and reference therein. 

The uniform Hölder regularity in related problems have been studied by 
many authors, see [10] [11] [15] [25], for the elliptic case, [15] [18] for the para-
bolic case, and [26] [27] [28] for the fractional diffusion case. Concerning the 
uniform Lipschitz boundedness, some results have already been observed in li-
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terature. For the case of two components without advection and reaction terms, 
Conti, Terracini and Verzini in [10] proved that if ( ){ } ( )1,k ku v H∈ Ω  are non- 
negative solutions of  

in  ,

in  ,

, on 

k k k

k k k

k k

u ku v

v ku v

u v

γ

φ ψ

∆ = Ω

∆ = Ω


= = ∂Ω

 

with 0γ >  and traces ( ), Lipφ ψ ∈ ∂Ω , then ( ){ },k ku v  is uniformly bounded 
in the Lipschitz norm. By using Kato’s inequality, Wang and Zhang [14] genera-
lized the result to arbitrary number of components (possibly with suitable reac-
tion terms). In [29] Berestycki, Lin, Wei and Zhao deal with the Gross-Pitaevskii 
system in dimension 1N = , they proved that if ( ){ } [ ]( )1

0, 0,1k ku v H∈  are un-
iformly L∞  bounded solutions of  

[ ]
[ ]

3 2
1, 1

3 2
2, 2

in  0,1 ,

in  0,1
k k k k k k

k k k k k k

u u u ku v

v u v kv u

λ ω

λ ω

 ′′− + = −


′′− + = −
 

with uniformly bounded coefficients ,i kλ , 1,2i = , then ku  and kv  are un-
iformly bounded in the Lipschitz norm. In the recent paper [30], Soave and Zilio 
extended the result of [10] [14] [29] to the case of arbitrary number of compo-
nents and general reaction terms. The approach here follows the mainstream of 
[30], based upon the blow-up technique and the almost monotonicity formula 
by Caffarelli-Jerison-Kenig. 

The rest of the paper is organized as follows: Section 2 is devoted to giving 
some prior estimates. Section 3 deals with the blow-up analysis. In Section 4, we 
prove the uniform bound in the Lipschitz norm. 

2. Some Preliminary Results 

In this section, we will derive some basic estimates. As in [1] [4], if we let 
e m

k ku uα−=� , e m
k kv vβ−=�  then system (2) is equivalent to  

( )
( )

e e in ,

e e in ,

0 on .

m m
k k k k k k

m m
k k k k k k

k k

u u m m b u u k u v

v v m m c v v k u v

u v

α β

β α

α

β

ν ν

−∆ = ∇ ⋅∇ + − − Ω

−∆ = ∇ ⋅∇ + − − Ω

∂ ∂

= = ∂Ω ∂ ∂

� � � � � �

� � � � � �

� �
      (3) 

We start with the following observation of system (3). 
Lemma 2. Let e m

k ku uα−=� , e m
k kv vβ−=�  and suppose that ( ),k ku v  is a 

non-negative solution of (2). Then for all x∈Ω ,  

( ) { } ( ) { }0 max e , 0 max e .m m
k ku x m b v x m cα β− −

Ω Ω
≤ ≤ ≤ ≤� �  

Furthermore, 

( ) ( )
max min max min

0 max e , max e .
m m m m

k k
m mu x v x
b c

α β
Ω ΩΩ Ω

   − −   
   

Ω Ω

   ≤ ≤ ≤   
   
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Proof. We prove the estimate for ku�  and ku ; that for kv�  and kv  follows 
similarly. Let 0x ∈Ω  denote a point where ( )0 maxk ku x uΩ=� � . Assume by 
contradiction that  

( ) { }0 max e .m
ku x m bα−

Ω
>�  

Since 0ku
ν

∂
=

∂
�

, then by the Hopf lemma 0x ∉∂Ω . Hence, we have 0x ∈Ω , 

( )0 0ku x∇ =
�

�  and ( )0 0ku x∆ ≤� . It then follows that  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

{ } ( )( ) ( ) ( )

0

0

0

0 0 0

0 0 0 0 0

0 0

0 e

e

max e e 0.

m x
k k k

m x
k k k

m xm
k k

k u x v x u x

u x m x m x b u x u x

m b u x b u x

β

α

αα

α

−

Ω

≤ − ∆

= ∇ ⋅∇ + −

≤ − <

� � �

� � �

� �

 

which is a contradiction. Hence, for all x∈Ω ,  

( ) { }max e .m
ku x m bα−

Ω
≤�  

and for all x∈Ω ,  

( ) ( ) ( ) ( ) max min
e max e .

m mm x
k ku x u x m b

αα ΩΩ

 − 
 

Ω
= ≤�  

This completes the proof of Lemma 2.   
In the blow up procedure, we need the following lemma, which extends the 

result in [11], Lemma 4.4.  
Lemma 3. Let { }2

2 : 2N
RB x x R= ∈ <�  be the open ball in N . Assume 

that ( )1
2Ru H B∈  satisfying  

2

2

2

in  ,
0 in ,

on ,

R

R

R

u m u Hu B
u B
u A B

θ−∆ ≤ ∇ ⋅∇ −
 ≥
 ≤ ∂

 

where ( )1
2Rm C B∈  and θ , H are two positive constant. Then for every 

( )0,1δ ∈ ,  

( ) e ,
R

R H
L Bu CA δ
∞

−≤  

where C is a positive constant depending only on δ , R and ( )1
2RC Bm .  

Proof. The proof is inspired by Conti et al. [11]. Let ( )1
2RC Bmσ =  and con-

sider the following problem: 

( ) ( )

( )
( )

1 ,

0 0,
0 0.

Nr r H
r

ϕ ϕ θσϕ ϕ

ϕ λ
ϕ

− ′′ ′ ′+ = − +
 = >

′ =

                 (4) 

We claim that: 
1) ( ) 0rϕ′ >  for ( )0,r∈ ∞ ; 
2) ( ) er Hrϕ λ≤  for [ )0,r∈ ∞ ; 

3) ( )
( )

( )
0

0

1
0e e

2

Nr r
r r Hr

r
r

θσλϕ
−−

− ≥  
 

 for [ )0 ,r r∈ ∞ , where 0 0r > . 
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To prove (1), we observe that ϕ  is defined on [ )0,∞  and that 0ϕ > , 
0ϕ′ >  on ( )0,∞ . Indeed, if not, ϕ  is positive on [ )0, R  and ( ) 0Rϕ = , 

then ( ) 0Rϕ′ ≤ ; On the other hand, since  

( )1 1 1 1 11e e e e e ,r N r N r N r N r NNr r r r r H
r

θσ θσ θσ θσ θσϕ θσ ϕ ϕ ϕ ϕ− − − − −−′′ ′ ′ ′′= + + =  

then 1e r Nrθσ ϕ− ′  is strictly increasing on [ ]0, R . Hence, ( ) ( )0 0Rϕ ϕ′ ′> = , a 
contradiction. Since ϕ′  is positive, we have Hϕ ϕ′′ ≤ . Then using the initial 
conditions and comparison arguments, ( ) er Hrϕ λ≤  for [ )0,r∈ ∞ , and thus 
(2) follows. Finally, we define ( ) ( )1e r Nr r rθσϕ ϕ−= . Then ( ) 0 1

0 0e r Nr rθσϕ λ −≥  
and  

( ) ( ) ( ) ( )0 01 1 1
0 0 0 0 0 0 0

0

1e e e 0.r rN N r NNr r r r r r r
r

θσ θσ θσϕ θσ ϕ ϕ ϕ− − −−′ ′= + + ≥  

Furthermore,  

( )

( )( )

( )

( )( )

21 1 1

1 1 1
2

21 1 1

1 1
2

12 e 2 e e

1 2 1e 2 e e

12 e e e

1 2 1e e

,

r N r N r N

r N r N r N

r N r N r N

r N r N

N r r r
r

N N Nr r r
rr

N r r r
r

N N Nr r H
rr

H

θσ θσ θσ

θσ θσ θσ

θσ θσ θσ

θσ θσ

ϕ θσ ϕ θσ ϕ θσ ϕ

ϕ ϕ ϕ

θσ ϕ θσ ϕ θσ ϕ

ϕ ϕ ϕ

ϕ

− − −

− − −

− − −

− −

−′′ ′= + +

− − − ′ ′′+ + +

− ′= + +

− − − ′+ + +

≥

 

since 0ϕ > , 0ϕ′ > . Using again comparison arguments, we obtain  

( ) ( ) ( )( )0
0 0

1
0e

e e ,
2

r N
r r H r r Hr

r
θσλ

ϕ
−

− − −≥ +  

which gives (3). 
Now let ψ  be the solution of  

( ) ( )

( )
( )

1 ,

2 ,
0 0.

Nr r H
r

R A

ψ ψ θσψ ψ

ψ
ψ

− ′′ ′ ′+ = − +
 =

′ =

 

Clearly ψ  satisfies the assumptions in (4) for a suitable λ , so 0ψ ′ > . Re-
call that ( )1

2RC Bmσ = , thus we have  

( ) ( )1 .
xNr r m H

r r
ψ ψ θψ ψ−′′ ′ ′+ ≤ − ∇ ⋅ +  

If we let ( ) ( )v x xψ= , then by construction we have that v is a radially 
symmetric function with v m v Hvθ−∆ ≥ ∇ ⋅∇ −  in 2RB , v A=  on 2RB∂ , and 
hence, by maximum principle, ( ) ( )0 u x v x≤ ≤  in 2RB . Moreover, since ψ  is 
an increasing function, if we prove that ( ) ( ), , e HR C R A δψ δ σ −≤ , then we will 
obtain the required bound for ( )RL Bu ∞  and the proof of the lemma will be 
concluded. Using (3) and choosing 0r Rτ= , ( )0,1τ ∈ , we obtain  
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( )
( )

( )
2

21e2 e ,
2

R
R HN

NA R
θσ τ

τλψ τ
−

−−= ≥  

that gives 

( )
( )2

2 1

2 e .
e

N
R H

R N
A τ

θσ τ
λ

τ
− +

− −
≤  

Substituting in the inequality in (2), we finally have  

( ) ( )
( )1

2 1

2 e ,
e

N
R H

R N
R A τ

θσ τ
ψ

τ
− +

− −
≤  

then setting 1δ τ= − , provides the desired inequality.   

3. Asymptotic of the Blow up Sequence 

We deduce from Section 2 that the solutions of system (2) is uniform bounded 
in ( )L∞ Ω . For any compact set K K ′⊂ ⊂⊂ Ω , we are aim to show that the 
Lipschitz semi-norm of solutions to system (2) is bounded in K, uniformly in k. 
To begin with, let η  be a cut-off function such that 0 1η≤ ≤ , 1η ≡  in K and 
supp : Kη ′= ⊂⊂ Ω , we want to show that there exist a constant 0C >  inde-
pendent of k such that,  

( ) ( ){ }max sup ,sup ,k k
x x

u v Cη η
∈Ω ∈Ω

∇ ∇ ≤                 (5) 

from which the desired result follows. Inspired from the work of Soave and Zilio 
in [30], we assume by contradiction that, up to a subsequence, it holds  

( ) ( ){ }: max sup ,sup .k k k
x x

L u vη η
∈Ω ∈Ω

= ∇ ∇ → +∞  

Without loss of generality, we may assume that the supremum is achieved by 

ku  at a point kx K ′∈ , that is 

( ) .k k kL u x= ∇ → +∞  

Now we introduce two blow-up sequences 

( ) ( ) ( ) ( ) ( ) ( )
, , ,k k k k k k k k

k k k
k k k k

x u x r x x v x r x
w x z x x

L r L r
η η+ +

= = ∈Ω  

( ) ( )( ) ( ) ( )( )
, , .k k k k k k

k k k
k k k k

u x r x v x r x
w x z x x

L r L r
η η+ +

= = ∈Ω  

where : k
k

k

x
r

Ω−
Ω = . We choose the scaling factor 0kr >  in such a way that  

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

0 0 1

0.

k k k k
k k

k k

k k k k
k

k

u x v x
w z

L r
u x v x

r
L

η η

η η

+
+ = =

+
⇒ = →

 

Note that, since K ′ ⊂⊂ Ω , we have N
kΩ →   as k →∞ . Furthermore, if 

( ),k ku v  is a solution to (2), then ( ),k kw z  satisfies  
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( )
( )

2 2

2 2

in  ,
in  ,

k k k k k k k k k k k k

k k k k k k k k k k k k

w w m r w m bM w kM w z
z z m r z m cM z kM w z

α
β

−∇ ⋅ ∇ − ∇ = − − Ω
−∇ ⋅ ∇ − ∇ = − − Ω

    (6) 

where 

( ) ( ) ( )3  and  : .k k k k k k km x m x r x M L r xη= + =  

The following lemma focuses on some preliminary properties of the blow up 
sequences. 

Lemma 4. In the previous blow-up setting, the following assertions hold: 
1) 0km∇ →

�
, 0km∆ → , uniformly in kΩ  as k → +∞ , in particular,  

( ) 0 0  for some constant 0;km x m m→ >  

2) we have  
2 2 2 20,  0,k k k k k k k k k kr w m bM w r z m cM z− → − →  

uniformly in all kΩ  as k →∞ ; 
3) the sequence { }kw  and { }kz  have uniformly bounded Lip-seminorm:  

( ) ( ) ( ) ( )
max , 1;sup supk k k k

x y x y

w x w y z x z y
x y x y≠ ≠

 − −  ≤ 
− −  

 

furthermore ( )0 1kw∇ =  and ( )0 1kw∇ →  as k → +∞ ; 
4) there exist ,w z , globally Lipschitz continuous in N  with Lipschitz con-

stant equal to 1, such that up to a subsequence:  

( ),   in  ,N
k k locw w z z C→ →   

( ),   in  ;N
k k locw w z z C→ →   

5) there holds ,k kw w z z→ →  in ( )1 N
locH   as k →∞ , and for any 

0r >  there exist 0C > , independent of k, such that  

( )0
.

r
k k kB

kM w z C≤∫                         (7) 

If kkM →∞ , then 0k kw z →  as k →∞ . Moreover the limit w, z satisfies  

{ }
{ }

0 in 0 ,
0 in 0 ,

0 in ,
, 0 in  .

N

N

w w
z z

wz
w z

−∆ = >
−∆ = >


=
 ≥

�
�

                      (8) 

Proof. 1) Since ( )2m C∈ Ω , then for every kx∈Ω ,  

( ) ( ) ( )1 0 as ,k k k k k Cm x r m x r x r m k
Ω

∇ = ∇ + ≤ → → +∞  

( ) ( ) ( )2
2 2 0 as .k k k k k Cm x r m x r x r m k

Ω
∆ = ∆ + ≤ → → +∞  

Note also that ( )m x  is positive somewhere in Ω , thus there exists a posi-
tive constant 0m , such that 0km m→ . 

2) By Lemma 2 and the definitions of kw  and η , we have  
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( )( )( ) ( ) ( )2
2 2

0.

k k k k k k k k k k k
k k k k k

k k

k

k

r x u m x r x r x u x r x
r w m bM w b

L L
r

C
L

η η+ +
− = −

≤ →

 

Similarly, we have 2 2 0k k k k kr z m cM z− → . 
The uniform bound on the Lipschitz seminorm of kw , kz  and the fact that 

( )0 1kw∇ = , are direct consequence of the definitions. Moreover  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 ,k k k k k k
k k

k k

u x x x u x
w o w

L L
η η∇ ∇

∇ = + = +∇  

as k →∞ , then (3) holds. 
4) We will only prove the estimate of kw  and kw , that of kz  and kz  are 

similar. For any fixed 0r > , we may let k sufficient large such that ( )0rB K⊂⊂ . 
The sequence { }kw  has a uniformly Lipschitz seminorm in ( )0rB , and is un-
iformly bounded in 0. Hence by the Ascoli-Arzelà theorem, it is uniformly con-
vergent (up to a subsequence) to some ( )( )0rw C B∈  having Lipschitz-seminorm 
bounded by 1. To complete the proof, we shall show that 0k kw w− →  as 
k → +∞  in ( )N

locC  . To this aim, it is sufficient to observe that for any com-
pact NK ⊂  ,  

( ) ( ) ( ) ( ) ( )sup sup

,sup

k k k
k k k k k

x K x K k k

x K k

u x r x
w x w x x x r x

L r
lC x
L

η η
∈ ∈

∈

+
− = − +

≤
 

where l denotes the Lipschitz constant of η , C is the uniformly boundedness of 
{ }ku . Since kL →∞  and K is compact, the desired result follows. 

5) To prove (7), it is sufficient to test the equation for kw  against a smooth 
cut-off function 0 1ϕ≤ ≤  such that 1ϕ =  in ( )0rB  and 0ϕ =  in 

( )2\ 0N
rB , we obtain:  

( ) ( ) ( ) ( )2 2

2 2
0 0 0

.
r r r

k k k k k k k k k k kB B B
kM w z r m w bM w w w mϕ ϕ α ϕ≤ − + ∆ + ∇ ⋅∇∫ ∫ ∫  

By the uniform boundedness of { }kw  in compact sets and the fact that 
0km∇ → , there exists a constant 0C >  independent of k, such that  

( )0
.

r
k k kB

kM w z C≤∫  

Testing the equation for kw  against 2
kw ϕ , we also deduce that  

( ) ( ) ( )
( ) ( )

2

2

2 2 22 2 2
0 0

2 2 2 2
0

1 4
4

2 ,
r r

r

k k kB B

k k k k k k k kB

w w m

w m r m w bM w w C

ϕ α ϕ

α ϕ ϕ ϕ

∇ ≤ ∇ + ∇

+ ∇ ∇ + − ≤

∫ ∫

∫
 

where C is a positive constant independent of k. This implies that, up to a sub-
sequence,  

( ) ( )1 2  weakly in ,    in .k r k rw w H B w w L B→  

To prove the strong convergence, we test the equation for kw  against ( )kw w− , 
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and recalling that kw w→  uniformly in rB , we deduce that as k →∞ ,  

( )

( ) (

)( ) ( )

( )

( )

2 2

2 2

0.

r

r r

r r

r r

k kB

k k k k k kB B

k k k k k k k k k k

k kL B B

k k k k k k k k k kL B B

w w w

w w w m w w m

r m w bM w w w kM w z w w

w w w

w w m w w m r m w bM w

ν

ν

α α

α α

∞

∞

∂

∂

∇ ⋅∇ −

= ∂ − + − ∇ ∇ − ∆

+ − − − −

≤ − ∂

+ − − ∇ ∇ − ∆ + −

→

∫

∫ ∫

∫

∫

 

From this we can pass from the weak convergence to the strong one. 
To prove (8), we note that  

( ) ( ) ( )
( ) ( )2 2 2 2 .

k k k k k k k k

k k k k k k k k k k

w z w z m w z m

r m w bM w r m z cM z

α β α β−∆ − = − ∇ + ∇ ∇ + − + ∆

+ − − −
 

By strong 1H  convergence and (1), above equation can be passing to the 
limit. So up to a subsequence, we have in the distribute sense that  

( ) 0.w z−∆ − =  

Since 0wz = , we have w z w− =  in { }0w > , and thus  

{ }0  in 0 .w w−∆ = >  

Similarly, the result holds for z. This completes the proof of Lemma 4.   
Lemma 5. The limit function ( ),w z  is not constant. In particular, w is nei-

ther trivial nor constant. 
Proof. We divide the proof according to properties of kkM . 
Case 1. ( kkM ) is bounded. The equation for kw  can be rewrite as:  

2 2 .k k k k k k k k k k k k kw w m w m r m w bM w kM w zα α−∆ + ∇ ⋅∇ = − ∆ + − −  

Since { }kw  is uniformly bounded in any compact set of N , by standard re-
gularity theory for elliptic equations, we deduce that for every compact NK ⊂   
there exist 0C >  independent of k such that ( )1,k C Kw Cα ≤ . This implies that, 
up to a subsequence  

( )1,  in  ,  for any 0 1.N
k locw w C α α→ < <�  

So that in particular ( ) ( )0 lim 0 1k kw w→∞∇ = ∇ = , and ( ),w z  cannot be a 
vector of constant functions. 

Case 2. kkM → +∞ . By Lemma 4 (5) we infer that 0wz ≡  in N , and the 
choice of kr  implies that ( ) ( )0 0 1k kw z+ = , so there are only two possibilities: 
either ( )0 0w = , or ( )0 1w = . 

Assume at first that ( )0 0w = , then ( )0 1z = , and by continuity of ,w z  it 
results that 0w ≡  in an open neighbourhood of 0. Moreover, there exists 
0 1r< � , such that  

( ) ( )70   in 0 ,
8k rz B≥  

for sufficient large k. Thanks to Lemma 4 (4), we have  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 0 1 1 ,
2k k k k k kz x z z x z x z x z o x o− ≤ − + − ≤ + ≤ +  

as k →∞ , for every ( )2 0rx B∈ . Thus, whenever k is sufficiently large, 
1
8kz ≥  

in ( )2 0rB . As a consequence, if we Let e km
k kw wα−=� , then kw�  satisfies  

( )2

2

e

1e
8

1 .
16

k

k

m
k k k k k k k k k k k

m
k k k k k k k k

k k k k

w w m r m bM w w kM w z

w m r m bM w kM w

w m kM w

α

α

α

α

α

−∆ = ∇ ⋅∇ + − −

 ≤ ∇ ⋅∇ + − − 
 

≤ ∇ ⋅∇ −

� � � � �

� � �

� �

 

By Lemma 3,  

4e   in .kC kM
k rw C B′′−′≤�  

Hence for every ( )4 0rx B∈ ,  

.k k kw w m Cα−∆ − ∇ ⋅∇ ≤� �  

Note that 0km∇ → . By standard regularity theory for elliptic equations, we 
have ( )4

1
rk C Bw Cα+ ≤� . Note also that e km

k kw wα= �  and ( )( )2 0
0

rk C Bm →  (by 
Lemma 4), we then deduce that  

( )1 4  in 0 .k rCw C Bα+ ≤  

This implies that up to a subsequence kw w→  in ( )1
1 4C B . In particular 

( )0 1w∇ = , in contradiction with the fact that 0w ≡  in a neighbourhood of 0. 
Thus, the case ( )0 0w =  is impossible, therefore ( )0 1w = . As a consequence  

the same argument described above provides ( ) 1
8kw x ≥  in ( )2 0rB . If we let 

e km
k kz zβ−=� , then kz�  satisfies  

2

2

2

1 in ,
16

0 in ,
in  .

k k k k k r

k r

k r

z z m kM z B

z B
z A B

α−∆ ≤ ∇ ⋅∇ −
 ≥

≤

� � �

�
�

 

By Lemma 3 again,  

4e   in .kC kM
k rz C B′′−′≤�  

By the uniform boundedness of the sequence { }kw  in 1 4B , we infer that,  

.k k kw w m Cα−∆ − ∇ ⋅∇ ≤� �  

And hence up to a subsequence kw w→  in ( )1
1 4C B . In particular, by 

Lemma 4 (3) we have  

( ) ( )0 lim 0 1,kk
w w∇ = ∇ =  

which completes the proof.   
Lemma 6. There exist 0C >  such that kkM C≥ .  
Proof. Let us assume by contradiction that there exists a subsequence 

0
nn kk M → . Reasoning as in the previous lemma, the limiting function ( ),w z  
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satisfies  

0 in ,
0 in ,

N

N

w
z

−∆ =

−∆ =

�
�

 

and , 0w z ≥ , thus thanks to the Liouville theorem, ,w z  are constant. This 
contradicts the fact that ( )0 1w∇ = .   

We conclude this section by summing up what we proved so far in the fol-
lowing statement.  

Proposition 7. Under the previous notations, we have 
1) Up to a subsequence  

( ),   in ,N
n n locw w z z C→ →   

( ),   in ;N
n n locw w z z C→ →   

,w z  is non-trivial and non-constant, and in particular ( )0 1w∇ = ; 
2) There exist 0C >  such that kkM C≥ ; 
3) If ( kkM ) is bounded, then  

in  ,
in  ,

0 in ,

N

N

N

w M wz
z M wz

wz

∞

∞

−∆ = −

−∆ = −
 ≥

�
�
�

 

where kkM M∞→  as k →∞ ; 
4) If kkM → +∞ , then both w and z are subharmonic in N , and  

{ }
{ }

0 in 0 ,
0 in 0 ,

0 in ,
, 0 in  .

N

N

w w
z z

wz
w z

−∆ = >
−∆ = >


=
 ≥

�
�

 

4. Uniform Lipschitz Bounds with Respect to k 

This section is devoted to the study of the Lipschitz uniform continuty of the 
system (2). In Section 3, we have proved that the limit ( ),w z  is non-trivial and 
non-constant, and in particular ( )0 1w∇ =  (Proposition 7). In what follows, 
we will show that one of the components of ( ),w z  is identically zero and the 
other is a constant, which bring us to a contradiction. 

For any given ( )1, N
locu v H∈   functions, we let 

( )
2 2

4 2 2

1: d d .
r rn nB B

u v
r x x

r x x− −

∇ ∇
Φ = ∫ ∫  

we shall make use of the celebrated almost monotonicity formula of Callarel-
li-Jerison-Kening, which we recall here in its original formulation. 

Theorem 8. (Callarelli-Jerison-Kening almost monotonicity). Suppose u, v are 
non-negative, continuous functions on the unit ball 1B . Suppose that 1u−∆ ≤  
and 1v−∆ ≤  in the sense of distributions and that ( ) ( ) 0u x v x =  for all 

1x B∈ . Then there exist a constant C depending only on dimension such that 
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for every 0 1r< ≤ : 

( )
2 2

2 21 .
r rn nB B

u v
r C

x x− −

 ∇ ∇
 Φ ≤ + +
 
 

∫ ∫  

Moreover, if u and v satisfy the same assumptions also in the ball 2B , then 
there exist a dimensional constant 0C >  such that  

( ) ( )
2 2

2
2 21 ,  0 1.

B B
r C u v rΦ ≤ + + < ≤∫ ∫  

Now we consider the following systems  

( )
( )

2 2

2 2

in  ,
in  .

k k k k k k k k k k k k

k k k k k k k k k k k k

w w m r w m bM w kM w z
z z m r z m cM z kM w z

α
β

−∇ ⋅ ∇ − ∇ = − − Ω
−∇ ⋅ ∇ − ∇ = − − Ω

 

Therefore,  

( ) ( ) ( )
( ) ( )2 2 2 2 .

k k k k k k k k

k k k k k k k k k k

w z w z m w z m

r m w bM w r m z cM z

α β α β−∆ − = − ∇ + ∇ ∇ + − + ∆

+ − − −
 

Notice that 2 2 0k k k k kr m w bM w− → , 2 2 0k k k k kr m z cM z− → , 0km m→ . Hence 
in the sense of distributions that ( ) 0k kw z−∆ − → , and in particular  

( )
( )

1,

1.

k k

k k

w z

w z

+

−

−∆ − ≤

−∆ − ≤

                       (9) 

for k sufficiently large. 
Lemma 9. There exist a constant 0C >  independent of k such that for any 
( )0,r∈ +∞  and 0 kx ∈Ω ,  

( ) ( ) ( ) ( )
0 0

2 21 1 .
r r

k k k kN NB x B x
w z w z C

r r
+ −∇ − ⋅ ∇ − ≤∫ ∫          (10) 

Proof. By (9), it follows that the positive and negative part of ( )k kw z−  fall 
under the assumptions of Theorem 8, and in particular  

( ) ( ) ( ) ( )

( )

( )
( )

( )

( )( )

0 0

0 0

0

2 2

2

2 2

4 2 2
0 0

2
2 2

1

1

1 ,

r r

r r

r

k k k kN B x B x

k k k k

N NB x B x

k kB x

w z w z
r

w z w z

r x x x x

C w z C

+ −

+ −

− −

∇ − ∇ −

∇ − ∇ −
≤ ⋅

− −

≤ + + ≤

∫ ∫

∫ ∫

∫

 

where 0C >  is independent of k.   
Corollary 1. Any blow-up limit ( ),w z  is made of ordered functions, that is 

if  

, ,k kw w z z→ →  

then either w z≤  or z w≤ , in ( )N
locC  .  

Proof. Indeed, scaling properly of the estimate (10), we obtain for every 
( )0,1 kr r∈  and k large enough  
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( ) ( ) ( ) ( ) ( )
0 0

4
2 2

4

1 1 0
r r

k
k k k kN NB x B x

k

x
w z w z

r r L
η+ −∇ − ⋅ ∇ − ≤ →∫ ∫  

as k → +∞ . The conclusion follows by strong ( )1 N
locH   convergence of the 

blow-up sequence and by the continuity of the blow-up limit.   
In order to complete the proof of Theorem 1, we need the following classical 

result, for which we refer to Lemma 2 in [31]. 
Lemma 10. Let 1 p< < ∞ , and let ( )p N

locu L∈   be a solution of  
1   in ,p Nu u u−−∆ ≤ −   

if we assume u to be non-negative, then 0u ≡ .  
With the lemmas above, we can now complete the proof of uniform Lipschitz 

bounds. 
Proof of Theorem 1. According to kkM , we divided the proof in two steps. 
Step 1. The case ( kkM ) bounded. In this case by Proposition 7 the limiting 

function ( ),w z  is a non-negative, non-trivial, non-constant and sublinear so-
lution of  

, .w M wz z M wz∞ ∞−∆ = − − ∆ = −  

By Corollary 1, we evince that either w z≤  in N , or w z≥  in N . 
Without loss of generality, we suppose that 0w ≠  and w z≥ . Thus  

2 .z M wz M z∞ ∞−∆ = − ≤ −  

Thanks to Lemma 10, we have 0z ≡ . But then  

0.w M wz∞−∆ = − ≡  

Then by the classical Liouville theorem, we have w is a constant, which is in 
contradiction with the fact that w is non-trivial and non-constant. 

Step 2. the case kkM → +∞ . In such a situation, 0wz ≡ . Notice that  

( ) ( ) ( )
( ) ( )2 2 2 2 0.

k k k k k k k k

k k k k k k k k k k

w z w z m w z m

r m w bM w r m z cM z

α β α β−∆ − = − ∇ + ∇ ∇ + − + ∆

+ − − − →
 

that is ( ) 0w z−∆ − = . Then Corollary 1 implies that either w z≤ , or w z≥ . 
Without loss of generality, we suppose that w z≥ , then the classical Liouville 
theorem shows that  

0.w z C− ≡ ≥  

since 0w z⋅ = , Therefore ( ) 0z C z+ = . 
We deduce that 0z = , and w C≡ , this implies that w is a constant, similar-

ly, a contradiction. This completes the proof of Theorem 1.   

5. Conclusion and Further Works 

The study of the asymptotic behavior of singular perturbed equations and sys-
tems of elliptic or parabolic type is very broad and active subject of research. In 
this paper, we study a competition-diffusion-advection system for two compet-
ing species in a spatially heterogenous environment. We prove the uniform Lip-
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schitz bound for solutions of the system, which extends known quasi-optimal 
results and covers the optimal case for this problem. We remark that the exis-
tence of uniform Lipschitz bounds is relevant not only for a pure mathematical 
flavour. As already observed in [29], it is necessary to obtain, rigorous qualitative 
description of phase separation phenomena (the uniform Hölder bounds would 
not be sufficient for this purpose.) 

Finally, we mention that there are many interesting problems for further study. 
Note that we established uniform Lipschitz bound for solutions to elliptic system 
(2), naturally to ask whether our results can be extended to the parabolic system 
(1)? Up to our knowledge, the optimal Lipschitz bound for parabolic setting is 
unknown even for the case when 0α β= =  (without advection terms) in sys-
tem (1). Moreover, in system (2) the advection rates α  and β  are fixed non-
zero constants, what happens if α  and β  are k-dependent and are suitably 
large? In such situation, the regularity of the solutions remains a challenge, and 
it will be the object of a forthcoming paper. 
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