
Journal of Information Security, 2021, 12, 189-211
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2021.123010 May 14, 2021 189 Journal of Information Security

Process of Security Assurance Technique for
Application Functional Logic in E-Commerce
Systems

Faisal Nabi1*, Jianming Yong1, Xiaohui Tao2, Muhammad Saqib Malhi3,
Muhammad Farhan3, Umar Mahmood3

1School of Management and Enterprise, University of Southern Queensland, Queensland, Australia
2School of Sciences, University of Southern Queensland, Queensland, Australia
3School of IT and Engineering, Melbourne Institute of Technology, Melb Campus, Melbourne, Victoria, Australia

Abstract
Security practices such as Audits that often focus on penetration testing are
performed to find flaws in some types of vulnerability & use tools, which have
been tailored to resolve certain risks based on code errors, code conceptual
assumptions bugs, etc. Most existing security practices in e-Commerce are dealt
with as an auditing activity. They may have policies of security, which are
enforced by auditors who enable a particular set of items to be reviewed, but
also fail to find vulnerabilities, which have been established in compliance with
application logic. In this paper, we will investigate the problem of business logic
vulnerability in the component-based rapid development of e-commerce ap-
plications while reusing design specification of component. We propose secure
application functional processing Logic Security technique for component-based
e-commerce application, based on security requirement of e-business process
and security assurance logical component behaviour specification approach to
formulize and design a solution for business logic vulnerability phenomena.

Keywords
Business Logic Design Flaws, Components Integration Flaws, E-Commerce
System, Assurance & Security, Model Based Design, Business Logic Attacks,
Attack Pattern

1. Introduction

Application Business Logic: The business logic describes the particular “ser-
vice” (such as Account Service by Account Component’s business logic) offered

How to cite this paper: Nabi, F., Yong,
J.M., Tao, X.H., Malhi, M.S., Farhan, M.
and Mahmood, U. (2021) Process of Security
Assurance Technique for Application Func-
tional Logic in E-Commerce Systems. Journal
of Information Security, 12, 189-211.
https://doi.org/10.4236/jis.2021.123010

Received: October 29, 2020
Accepted: April 10, 2021
Published: May 14, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2021.123010
https://www.scirp.org/
https://doi.org/10.4236/jis.2021.123010
http://creativecommons.org/licenses/by/4.0/

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 190 Journal of Information Security

by business domain’s business component, (this logical component can be part of
sub-component or sub-system or system, both of which represent components
in their own right) the steps required to complete or perform a particular action
as defined by the business component-based application to automate business
process; it uses logical component-ware and each component business logic makes
a set of functionality by integrating these components business processing logic
to make logical component-ware, which then makes overall application’s busi-
ness logic in the e-commerce system at middle tier [1].

Business logic layer within the application is developed with two kinds of
components, Business Processing components and Business Entity Components.
The “Business Process Components” handle the services or transactions that are
requested by users through the user interface. They determine the operations of
the business entity components that must be invoked and the order in which
they must be executed. The “Business Entity Components” are persistent. They
represent the business entity types of the application domain whose state must
be stored by the application [2].

The middle tier contains wide range of components from different layers such
as web components managed by web servers and business object components
managed by application servers. The web component dynamically process user
requests and constructs response to client application. The business object com-
ponents implement business logic of a business domain. Both components are
managed by an infrastructure environment such as J2EE or CORBA platform
servers that provides important system infrastructure services for these compo-
nents such as runtime environment for component compatibility, container
management, security. Client components focus only on presentation logic, and
business components provide business logic within a business domain as shown
in Figure 1.

Figure 1. Middle tier of e-commerce servers that implements the business application
logic [1] [3].

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 191 Journal of Information Security

The middle tier of e-commerce servers implements the business application
logic. The business application logic represents the functions or services that a
particular e-commerce site provides. As a result, a given site may often employ
custom-developed logic. As the demand for e-commerce services grows, the so-
phistication of the business application logic grows accordingly [1] [3]. Tradi-
tionally, e-commerce sites implement the middle tier of software on web servers
using the common gateway interface (CGI). CGI scripts are programs that run
on the web server machine as separate processes from the web server software.
The web server invokes these general-purpose programs in response to user re-
quests. The CGI scripts’ main function is to process user input and performs
some services (such as retrieving data from a database, or dynamically creating a
web page) for the user because CGI scripts process untrusted user input, the se-
curity risks associated with the CGI (and other forms of middle tier software) are
extremely high. Many attacks against web-based systems exploit CGI scripts [1]
[4]. A very simple example of business application logic would be a customer
adding an item to an online shopping basket & then being required to provide a
name, address & payment details before being able to complete the purchase.
application logic (also called business logic because it perform action as per de-
fined business process which integrated through CBS application by developer,
so it’s called business logic, it’s also noted that it does not refer to the general
functionality of a web server, but to the specific operations of the application’s
function, such as product discounts, postage pricing rules, etc. Cyber-attacks are
the core of any security assessment of Web based e-Commerce systems [1]. One
of the more promising research fields in this context is related to the representa-
tion of the Vulnerabilities, Attack patterns Classification. Several models are
proposed to represent these; these models usually provide a generic representa-
tion of attacks. According to the Purdue University Researchers, Conversely, the
experience shows that attack profiles are strongly dependent upon several boun-
dary conditions these conditions could be based on three well defined Areas: 1)
Environmental (faults discovered by I. Krsul, 1998); 2) Coding (fault); 3) Confi-
guration errors [5] [6]). Whereas in 2004 University of Luton researcher Faisal
Nabi first time identified that design flaw could also be a cause of attack profile
boundary condition of design specification in e-commerce systems (Faisal Nabi,
2004). In this paper, we will investigate design flaw attack profile boundary con-
dition (that caused business logic attack) interms of reuse design specification in
the CBS e-commerce systems.

2. Web Software Application Complexity &
Component-Based-Development Risks

Modern web applications run large-scale software applications for e-commerce,
Information distribution, entertainment, collaborative research work, surveys, &
numerous other activities. They run distributed hardware platforms & hetero-
geneous Computer systems. The software that powers web applications is distri-

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 192 Journal of Information Security

buted, is implemented in multiple languages & styles, incorporates much reuses
& third-party components, is built with cutting edge technologies as stated (sec-
tion above component based software) & must interface with users, other web
sites & databases. Although. The word “heterogeneous” is often used for web
software, it applies in so many ways that the synonymous term “diverse” is more
general & familiar, & probably more appropriate [7]. The software components
are often distributed geographically both during the development & deployment
(diverse distribution), & communicates in numerous distinct & sometimes novel
ways (diverse communication) [8]. Web-based software systems are created by
combining a variety of components from various sources, such as custom-built
special-purpose applications, customised commercial-off-the-shelf software com-
ponents, and third-party software [7]. Much of the new complexity found with
web-based applications also results from how the different Software components
are integrated. Not only is the source unavailable might be hosted on computers
at remote, even competing organization. To ensure high quality for the web sys-
tems composed of very loosely coupled components, which seriously required
evaluate these Components connections [9].

Web software components are coupling more loosely than any previous soft-
ware application [7]. AS it is stated above that e-commerce sites offer more than
front-end servers, they usually run complex Middleware programmes such as CGI
scripts, Java servlets, application servers & component-based-software such as
EJB Java beans, Java 2 Enterprise Edition (J2EE), CORBA, COM & DCOM com-
ponents-based solution. One reason for the emergence of this component-based
software on e-commerce sites is the complexity of the software necessary to im-
plement business application logic. This Complexity, in turn, introduces the
more Software Flaws that can be exploited for malicious, gain [3].

The web’s function & structure have changed drastically, particularly in the past
couple of years, yet most software engineering researchers, educators, & practi-
tioners have not yet grasped how fully this changes affects engineering principles
& process [7], example of a changes in last couple of years idea use of web 2.0
feature Ajax (The Ajax engine is the client-side code that handles calls between
the client & server. Typically this would be a library of JavaScript function in-
cluded on the page [10], more prone it is to have flaws in that any attacker with
basic skills can use proxy software(or call script functions directly)to bypass the
intended logic/business logic due to complexities involved & since more applica-
tion logic is being delegated to web browsers, this idea of Ajax is leading to open
flaw which allows intruders to easily read the source code & look for weakness
area in the system middle tier application logic. Sharing business logic client-side
reveals source information of the complete system, which is too dangerous com-
bining representation logic, rendering logic & business logic & resides business
logic client & Application sever-side. For example, Ajax-enable application with
multiple levels of user account it was found that the site employed one JavaScript
include file for the entire client-side logic.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 193 Journal of Information Security

This meant that an anonymous user with trail account could see the logic be-
hind the administrator-level service call. The locations of all administrator ser-
vice script were disclosed, providing invitation a definitive map of application to
a potential attacker to attack business logic in the middle tier. Therefore, in this
scenario EASI framework also get failed to protect the system integrity & securi-
ty. Another example, developing a simple script that allows one to use thousands
of e-coupons or using a similar script to open thousands of brokerage accounts
that can each receive small deposits from a bank—usually around five cents—to
verify transactions. In the end, one could end up making tens of thousands as
shown in Figure 2.

Web sites are now fully functional software systems that provide business-
to-customer e-commerce, business-to-business ecommerce & many services to
many users. The growing use of third-party software components & middleware
represents one of the biggest changes in the e-commerce web software-Application
systems so as security; integrity has threaten because of the flaws in the design,
up to 50% of software defects leading to security problems are software archi-
tecture & design flaws [11]. In other words during the high-level-design stage of
software architecture design & technology architecture design decisions corres-
pondence of web software structure that how various components will be inte-
grated & interact, and which technologies will requirement define software func-
tion interpreted, failure in this cause 50% of software defects which then leading
to security problem & threaten the internal software application integrity itself
compromise because of software architecture & design flaws at the high-level-
design.

In commerce systems, especially e-commerce applications, relatively little se-
curity analysis are done at the business logic level. Most analysis at this level is
focused on detecting what we would call mistakes in the implementation of a set

Figure 2. Application logic flaw resides both end client & server side.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 194 Journal of Information Security

of business rules, rather than detecting mistakes in their design. Examples of im-
plementation error are the improper configuration of a CGI server, or the choice
of CGI as an implementation language in the first place [1]. Examples of the busi-
ness logic error are frauds in the business process, such as unsuitable transac-
tions and abuse for personal enrichment through deliberate misuse or misappli-
cation.

3. Research Design Strategy

Since our main scope of this research study is to focus on business compo-
nent-based application logic problems and identify vulnerability that is because
of mismatch between business process specification and logical component-ware
specification at design level while using rapid development business compo-
nent-based-software approach for business application logic in e-commerce sys-
tem.

In the light of business logic vulnerability definition [12] [13], we have taken a
case study from the industrial sector (Bank Case Study of business application
logic), research process would go through stages as explained in the paper, these
are based on vulnerability risk analysis in terms of security perspective, for that,
it is very important to integrate the knowledge contained in the attack method
with boundary knowledge related to vulnerability of the target Component-based-
Software application e-commerce system. Our focus is to consider multi-layer speci-
fication based on components business event scenario using Bank Case Study. In
this technique, process is divided into two phases: 1) High level view of system
tier 2) Component layers. The High level view of system tier focus on the high
level view of the design product, and component level layers will consider the
design, test, and diagnostics specification for a separate entity component that
take part in the system building.

4. Security Properties Violations [Problem Area] in Business
Tier

The violation of Integrity & security within the web software application & com-
ponents based software that develop rapid business application logic that can be
custom-developed/COTS, because of flaws at design level in web software appli-
cation, the use of components based software risks the cause of these logical
vulnerabilities can subvert, misuse & circumvent the steps defined by function of
the application that is not intended to do described by the function & business
process specification [12].

Unfortunately, even simple flaws in the complex middleware layer can pro-
vide the leverage necessary to bypass even strong authentication schemes. Whe-
reas most front-end & back-end systems are commercial-off-the shelf (COTS)
software packages, a good portion of the middleware software is necessarily cus-
tom-development in order to implement every business’s particular application
logic. The most significant weak link in server-side systems is the middleware

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 195 Journal of Information Security

layer. Therefore, a strong risk management plan will focus on providing rigorous
software assurance for the middleware software [3].

Web Software Application Vulnerability

We define web software application vulnerability definition as web software ap-
plication vulnerability includes mismatches between application software archi-
tectural/design logic & the assumptions about the environment made during the
development/Implementation (code writing), operation of the programme and the
environment in which the programme executes [13].

5. Logical Vulnerabilities in Application Layer

Since our main scope of this research study is to focus on investigation web soft-
ware application logic problems & identify vulnerability that is because of mis-
match between business process specification and component ware specification
at design/Architecture level while using rapid development business compo-
nent-based-software approach for business application logic in e-commerce sys-
tems. Our attack patterns are more specific to what components can pinpoint
vulnerability in a system design. We will only target business application Logic
vulnerabilities.

Problem Cause Definition & Explanation

Application Logic Attacks Operation:
Unlike, common application technical attacks, such as SQL injection or Buffer

overflow, each application logic attack is usually unique, since it’s not been men-
tioned or part of any taxonomy of web application attacks, and since it has to
exploit a function or feature that is specific to the application. Since, application
logic attacks are not based on characteristics like buffer overflow which can be
characterize them as other technical vulnerabilities in the web application (SQL,
SSI or buffer overflow).This makes it more difficult for automated vulnerabilities
testing Tools to identify or detect such vulnerability class of attacks because they
are caused by the flaws in application Logic & not necessarily faults/bugs in the
actual code.

6. Bank Case Study Component-Based-Rapid Development

Brief Summary of the (Design Flaw of CBS Reuse):
This real time case defines a classical incident & serious mistake, which caused

design flaw in application logic, while reusing the component and misconfigura-
tion of the server—side component, cause security flaw in the business logic.
The same component that was incorporated into the registration functionality
also was used elsewhere within the application, including within the core func-
tionality. The reason of this problem is gap between purpose of business process
integration, and purpose of specification that seriously violated business logic
design specification and their boundary conditions with respect to component-

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 196 Journal of Information Security

based-software developed (CBSD), where CBSD application developer used rapid
development approach in order to reuse the component but developer totally
ignored the current application logic based on existing components logic, and
their processing business logic. It shows that the assumption of the developer
that just kept in view realization contract of component specification, which was
depending on the component model specification that only provides support for
deployment infrastructure. This refers to specifying the realization contracts in
terms of component-based software model specification, but not usage contract
specification. The usage contract translates service offered by a component in-
terface specification. An interface–focused-design (completely focus on interface
as the main design abstraction that encourages designers to take into account
system behaviour more abstractly) component-based development approach de-
fines encapsulated behaviour accessible through well-defined Interfaces. An in-
terface is basically a description of combination a set of operations, and every
operation represents service that acts based on component instances upon the
client’s invocation *request* for a particular service which is established through
contracts (it can be a logical component or a building block that is used as a bind-
ing package of functionality to build logical component, either case is possible).

Therefore, this above explained case disclose clear violation, separation of busi-
ness logic from implementation logic, case falls into purpose of specification
re-using against its boundary conditions with respect to current component-
based-software developed (CBSD) designed business logic. This converted the
problem into logical vulnerability in the application layer. These are business
component-based-rapidly developed (RDA) web software architecture and de-
sign flaws, which fall into the business component-based-software (BCBS) busi-
ness process specification that refers to business process integration, which can-
not be detected, by any code scanning tools for web application or any statically
or dynamically analysis approach such as traditional Black Box Analysis tools for
web application.

Detailed Description of the Case Study:
The Application Functionality & Business Process:
The application enabled existing customers who did not already use the online

application to register to do so. New users were required to supply some basic
personal information, to provide a degree of assurance of their identity. This in-
formation included name, address, and date of birth, but did not include any-
thing secret such as an existing password or PIN number. When this informa-
tion had been correctly entered, the application forwarded the registration re-
quest to back-end systems for processing. An information pack was mailed to
the user’s registered home address. This pack included instructions for activating
their online access via a telephone call to the company’s call center and a one-time
password to use when first logging in to the application.

The Design Logic of Application:
The application’s designers believed that this mechanism provided a very ro-

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 197 Journal of Information Security

bust defence against unauthorized access to the application. The mechanism im-
plemented three layers of protection:

1) A modest amount of personal data was required up front, to deter a mali-
cious attacker or mischievous user from attempting to initiate the registration
process on other users’ behalf.

2) The process involved transmitting a key secret out-of-band to the custom-
er’s registered home address. Any attacker would need to have access to the vic-
tim’s personal mail.

3) The customer was required to telephone the call center and authenticate
himself there in the usual way, based on personal information and selected digits
from a PIN number.

This design was indeed robust. The logic flaw lay in the actual implementation
design of the mechanism. The developer was implementing the registration me-
chanism needed a way to store the personal data submitted by the user and cor-
relate this with a unique customer identity within the company’s database. Keen
to reuse existing Component code, they came across the following class, which
appeared to serve their purposes:

Event Trigger Component Cause of Business Logic Flaw;
class CCustomer
{
String firstName;
String lastName;
CDoB dob;
CAddress homeAddress;
long custNumber;
After the user’s information was captured, this object was instantiated, popu-

lated with the supplied information, and stored in the user’s session. The appli-
cation then verified the user’s details, and if they were valid, retrieved that user’s
unique customer number, which was used in all of the company’s systems. This
number was added to the object, together with some other useful information
about the user. The object was then transmitted to the relevant back-end system
for the registration request to be processed. The developers assumed that making
use of this code component was harmless and would not lead to any security
problem. However, the assumption was flawed, with serious consequences.

Attack Pattern Birth:
The same *component (code)* that was incorporated into the registration

functionality was also used “use case logic (+Process and Entity Type Logic)”
within the application, including within the core functionality, which gave au-
thenticated users access to “Account details component”, “Statement’s compo-
nent”, “Funds transfers component”, and “Debit compoenet, Credit component
and other information component”. When a registered user successfully authen-
ticated itself to the application, this same object was instantiated and saved in
her session to store key information about her identity.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 198 Journal of Information Security

The majority of the functionality within the application referenced the infor-
mation within this *CCustomer (Component)* object in order to carry out its
actions because *CCustomer (Component)* object is candidate component
(Process and Entity Type logic) within the majority of application functionality
referenced the information within this component to carry out action—for ex-
ample, the account details presented to the user on his/her main page were gen-
erated on the basis of the unique customer number contained within this com-
ponent object. The way in the component code was already being employed with-
in the application meant that the developers’ assumption was flawed, and the
manner in which they reused it did indeed open up a significant vulnerability.
Although the vulnerability was serious, it was in fact relatively subtle to detect
and exploit. Access to the main application functionality was protected by access
controls at several layers, and a user needed to have a fully authenticated session
to pass these controls as defined in Figure 3.

Bank Security Defence:
Figure 4 defined the application protected by access controls .Although the

vulnerability stated above was serious; it was in fact relatively subtle for intruders
to detect and exploit. Access to the main application functionality was protected
by access controls at several layers,(channel level security) and a user needed to
have a fully authenticated session to pass these controls and second security de-
fence line was (security level 2: fraud management) as projected in the figure
below.

Exploiting the Logic Flaw Scenario:
To exploit the logic flaw, therefore, an attacker needed to perform the follow-

ing steps:
■ Log in to the application using his own valid account credentials.

Figure 3. Attack birth its life cycle in bank service flow.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 199 Journal of Information Security

Figure 4. Bank application functionality protected by access controls & (COTS) security
products.

■ Using the resulting authenticated session, access the registration functionality

and submit a different customer’s personal information. This causes the ap-
plication to overwrite the original “CCustomer” (Component) object in the
attacker’s session with a new object relating to the targeted customer.

■ Return to the main application functionality and access the other customer’s
Account. A vulnerability of this kind is not straightforward to detect when
probing the application from a Black-box perspective. However, it is also
hard to identify when reviewing or writing the actual source code. Without a
clear understanding of the application as a whole and the use made of differ-
ent components in different areas, the flawed assumption made by develop-
ers may not be evident. Of course, clearly commented source code and design
documentation would reduce the likelihood of such a defect being intro-
duced or remaining undetected.

Attacking Method in This Scenario:
■ In a complex application involving either horizontal or vertical privilege se-

gregation, try to locate any instances where an individual user can accumu-
late an amount of state within their session which relates in some way to their
identity.

■ Try to step through one area of functionality, and then switch altogether to
an unrelated area, to determine whether any accumulated state information
has an effect on the application’s behaviour.

6.1. Investigated Reason of Vulnerability in the Light “State of Art
CBSD” in Business Logic

Component-based-rapid development approach is a method to make business

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 200 Journal of Information Security

logic in the application layer of e-commerce system. Each component has busi-
ness rules, which develop business logic in the component. Since business appli-
cation logic is developed with business components, it develops logical compo-
nentware. Each component business logic makes a set by integrating these com-
ponents to develop “logical component ware”, and then business application
logic is rapidly developed. Reuse of component in the e-commerce applications,
means business component (that has a complete function, business logic based
on business rules) designer starts design that which business component can be
reused but it is also very important that designer must have complete knowledge
about previous designed business logic in the system, so that no logical vulnera-
bility could provide opportunity to intruder to violate the business application
Logic in e-commerce system.

This case study describes, complete design based on component-oriented in-
tegration process and how developer made mistake during the integration, while
ignoring business logic of the application’s current functionality. This problem
caused wrong analysis of existing component-based business application logic.

Business process integration, which depends on logical component’s interface
specification in business component, it refers to business function/processing
logic specification. (Components are reusable units for composition. This state-
ment captures the very fundamental concept of component-based development,
that an application is made up and composed of a number of individual parts,
and that these parts are specifically designed for integration in a number of dif-
ferent applications. It also captures the “idea that one component may be part of
another component” [14], or part of a sub-system or system, both of which
represent components in their own right). Integration of all this process, then
develop overall business processing logic for a business component-based soft-
ware to develop an application in the middle tier, which is connected with in-
formation system in the back-end systems of organization.

Since business process integration is made on the base of business functional
concern; it cannot be dealt with technological point of view, because problem is
not based on technical or technological specific principle of Integration, which is
based on related to some particular physical component model such as (J2EE,
CORBA, COM), but as it is stated, issue identifies that business processing de-
signed solution based on business components and their business processing in-
tegration. This is the point, where the focus is set to the logical structure of the
“business solution”, this is the stage where logical problems occurs due to lack of
paying attention to the design-based business component interfaces used and
offered testing environment within the logical structure of the business solution,
are known as Business Logic Vulnerabilities [12] [13] [15].

Moreover, during the investigation we also discovered that Bank developer
was keen to reuse component totally ignored component specification, different
components in multi-layers, their existing offered & used interfaces contract
constrains, that assure the level of assurance while using component logic within
the e-commerce system. Developer used the just physical component model spe-

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 201 Journal of Information Security

cification, which is very serious violation of the principles that use case logic,
processing logic of entity type logic of business component is not reused within
the same application. As we demonstrated to justify this explanation by using
one of the current, physical component-model specification technology J2EE
and its reference architecture as defined in Figure 5(a).

Diagnostics specification for a separate entity component that takes part in the
system building, Process of this course of exercise as stated above in the Section
3. This exercise confirms high level design view of e-business process to diagnos-
tics specification of each layer and its participant components role, and their of-
fered and usage Contracts for detailed Design for Test (DFT) process of verifica-
tion and validation stage.

A logical component represents the simply binding packages of related func-
tionality of a compoenetware system. A logical component is defined by interface

(a)

(b)

Figure 5. (a) System Multi-tier components in the layers; (b) System Multi-tier components in the layers.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 202 Journal of Information Security

specification based on interface information model derived from business type
model, and integration is made on the base of usage specified interfaces con-
tracts offered & used. Whereas a technical component is a unit that contains im-
plementation logic of the software component unit based on physical compo-
nent specification model. CORBA, NET, J2EE, and EJB are examples of current
“physical” component technologies. Technical component integration is made
on the base of realization contract specification related to the particular compo-
nent specification model, these are building blocks of software component units
as stated above based on the component model specification model artifacts as
defined in Figure 5(b).

6.2. Existing Methods and Approaches to Application Functional
Logic Security

In modern times, the ruling perimeter security approach does not fit the e-business
environment’s security challenges. Due to the fact that e-business mode of doing
business implies “openness” to the external world, while the perimeter security
implies existence of boundaries, that separate between the organization and the
external world.

Traditional security paradigm, which is as stated parameter security approach,
does not relevant to e-business process. Therefore, business process appears to
present most important change from traditional way to e-process [16].

E-business/e-commerce is the subject of a huge volume of ongoing research.
Some of this relates to e-business information security, and just a small part
(with regard to information security relates to business process identity security
requirements of electronic processes.

Traditionally, enterprises have prioritized and focused their IT security strate-
gies and budgets on protection of network perimeter and physical or logical
access control to the application system environment. Following the common
approaches, organizations security goals are defined to protect company’s in-
formation systems by eliminating the external threats, and by providing logical
access control and restrictions to the application, but business process can be at-
tacked even when a very good network and infrastructure security programme is
in place. For example, good network perimeter defence using firewalls, honey
pot, intrusion detection systems and other network security components must
still ensure the applications can be accessed by legitimate users and therefore at
the same time can facilitate an opportunity for legitimate users to attack the or-
ganization business information systems by abusing the vulnerable e-commerce
business process at application interface level. This is reason why, e-commerce
business process build on base of two blocks; business logic and information
flow.

Therefore, there is a clear need for such technique or framework that could
work for as an alternative approach for design e-business information systems
security.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 203 Journal of Information Security

7. Proposed a Technique Secure Application Functional
Processing Logic

We propose secure application functional process logic for e-commerce compo-
nent-based application based on security requirements of e-process and security
assurance logical component behaviour specification approach to formulize and
design a solution for business logic vulnerability phenomena. First section of
methodology follows security risk analysis in the CBSD rapid business logic and
defensive strategy. In addition to this, we also propose in the second section, “A
security Assurance Model process” to deal with logical component-ware reusing
risks in application logic that cause logical vulnerability in e-commerce system
to encounter in such situation while reusing component from its existing appli-
cation logic. This would contribute to solve identified problem. Application logic
represents translation of domain business logic that, in component-based de-
veloped application logic interoperates business process for particular domain
problem.

Key Elements of security risk analysis in terms of Component-based e-commerce
systems are: 1) Effect of attacks on system design; 2) Layer pattern; 3) Architec-
tural risk analysis for component-based business logic security.

7.1. Effect of Attacks on System Design

One of the first steps in system design should be the analysis of the possible at-
tacks on specific system and their consequences when successful, such as above
stated case of e-commerce component-based web software application, and dis-
covered logical vulnerability in the application layer of business-tier. The tech-
nique of identifying vulnerability achieved via mismatching a sequence of com-
ponents in a system’s application design logic and problem caused by ignoring
business process integration of component at the time of application’s business
process logic(which can be mapped through scenario-based approach modelling
business scenario, which represent a basic end-to-end system function, also de-
composed into sub-scenario, which identify functionality of important sub-system’s
component) that permits the sequence of “Event Trigger” in the attack pattern to
occur analysis of the description mentioned in the light of case study and vulne-
rability attack pattern reveals the event that transpire, what component is used
to exploit the vulnerability in Barclay Bank case. This analysis can be used to de-
fine the countermeasures that need and will also be useful later to evaluate the
system security.

7.1.1. Layers Pattern
Security encompasses all the architectural levels of a system. The layers archi-
tectural pattern is therefore the starting point of the design of secure systems.
This pattern provides a structure where we can define patterns at all levels that
together implement a secure system as defined in Figure 6. Its main idea is the
decomposition of a system into hierarchical layers of abstraction, where the
higher levels use the services of the lower levels. Here it provides a way to put

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 204 Journal of Information Security

Figure 6. Layers architectural pattern.

things in perspective and to describe the mechanisms needed at each layer. Fig-
ure shows the specific set of layers we consider. This figure shows some of the
participants at each layer and their correspondence across layers.

7.1.2. Architectural Risk Analysis for Component-Based Business Logic
Security

Design flaws account for 50% of the security problems in the component-based-
software system [17]. Architectural risk analysis is, at best, a good general-purpose
yardstick by which we can judge our security design’s effectiveness [14]. Because
roughly 50 percent of security problems are the result of design flaws, perform-
ing a risk analysis at the design level is an important part of a solid good secure
component-based-software system engineering.

To encompass the design stage, any risk analysis process should be tailored.
The object of this tailoring exercise is to determine specific vulnerabilities and
risks that exist for the software [17]. Architectural level risk analysis Approach
n-tier Web application design model by the Cigital USA does not clarify the each
layer in the tier and its components, as its very important for a functional de-
composition of the application into major components, processes, data stores,
and data communication flows, mapped against the environments across which
the software will be deployed, allows for a review of threats and potential vulne-
rabilities, as its defined in the new proposed n-tier e-commerce web system arc-
hitectural risk analysis & security management model as defined in Figure 7.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 205 Journal of Information Security

Figure 7. n-tier e-commerce web system architectural security management model.

It can contemplate using modelling languages, such as UML, to attempt to

model risks; even the most rudimentary analysis approaches can yield meaning-
ful results. Consider above model, which shows an n-tier deployment design
model for web-based application issues. As we applied risk analysis principles to
this level of design, we achieved immediately some useful conclusions about the
security design of the application.

During the risk analysis process must consider the following:
1) The threats those are likely to want to attack the system.
2) The risks present in each tier’s environment.
3) The kinds of vulnerabilities that might exist in each component, as well as

the data flow.
4) The business impact of such technical risks, were they to be realized.
5) The probability of such a risk being realized.

7.2. Designed Defensive Strategy as a Solution to Deal Business
Logic Concerns

This part of methodology will provide a strong risk management control plan
focusing on providing rigours component ware assurance for rapid development
of CBSD business application logic for e-commerce applications as projected in
Figure 8.

Key elements of problem solution follow: 1) Strong risk management plan; 2)
solution artefacts; 3) Security Characteristics of component-ware components
and 4) Evaluation & validation of artefacts.

7.2.1. Strong Risk Management Plan
Ensure that every aspect of the application’s design must be clearly & sufficiently
detailed to understand every assumption and designed function logic within the
application by designer.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 206 Journal of Information Security

Figure 8. Security assurance CBSD model process.

Mandate that all CBSD should be clearly commented to include the following
information throughout.

1) The purpose and intended use of each component (If Component code availa-
ble information of code, if not, its functional business logic within the compo-
nent through usage contract description).

2) The assumptions & logic made by each component about anything that is
outside of its direct control.

3) Reference to all client-component which makes use of the component clear
documentation to this effect could have prevented the logic flaw within the on-
line registration functionality

(Note: Client here dose not refer to the user-end of the client-server relation-
ship but to other component (code) for which the component being considered
is an Immediate dependency).

7.2.2. Solution Artifacts
As that there is no unique signature by which logic flaws in component-based-
rapid developed web software application can be identified, because there is no
silver bullet so far developed which could protect.

Good Practice: Good practice that can be applied to significantly reduce the
risk of logical flaws appearing within component-based-development and its
logic.

Security Characteristics of Component Ware Components: Since a soft-
ware component can be regarded as an IT product or system, it is natural to use
the Common Criteria in assessing its security properties. The Common Criteria
provide a framework for evaluating IT systems, and enumerate the specific secu-

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 207 Journal of Information Security

rity requirements for such systems. The security requirements are divided into
two categories:

1) Security functional requirements;
2) Security assurance requirements.
The Security Functional Requirements:
Describe the desired security behaviour or functions expected of an IT system

to counter threats in the system’s operating environment. These requirements
are classified according to the security issues they address, and with varied levels
of security strength. They include requirements in the following classes: security
audit, communication, cryptographic support, user data protection, identifica-
tion and authentication, security management, privacy, protection of system se-
curity functions (security meta-data), resource utilization, system access, and
trusted path/channels.

The Security Assurance Requirements:
The security functional requirements mainly concern the development and

operational process of the IT system, with the view that a more defined and ri-
gorous process delivers higher confidence in the system’s security behaviour and
operation. These requirements are classified according to the process issues they
address, and with varied levels of security strength. The process issues include:
life cycle support, configuration management, development, tests, vulnerability
assessment, guidance documents, delivery and operation, and assurance main-
tenance.

Therefore, in the Bank case security assurance requirement was also an issue.
In the light of above stated security assurance CBSD process model. There are
two further more important.

Moreover, There are two further more important artifacts which we dived to
consider 1) Security focus review of application design (falls under Separation of
business logic) 2) Security focus code reviewing review (Falls under the Imple-
mentation logic).

1) During Security-Focused Review of Application Design: Refers to tackle
logical design flaws, during the security-focused review of design, must reflect
upon every assumption made within the design of logical component ware stage
and its business process integration, and try to imagine circumstances in which
each assumption and logic might be violated. Focus particularly on any assumed
condition that could conceivably be within the control of application user based
on business process, rule and policy.

2) Security-Focused Code and Implementation Review: Refers to technical
vulnerability issues that could be due to environment level, Infrastructure con-
cerns or software artefact based multiple technology integration at the time of
implementation. Carefully, think laterally about three key concerns at this stage;

a) The ways in which unexpected user behaviour and Input will be handled by
the application.

b) The potential side effects of any dependencies and interoperation between
different code components and physical component-model specification with

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 208 Journal of Information Security

respect to integration between different application component functions and
underlying middleware services.

7.2.3. Verification & Validation
It’s true that in real-world applications making all the assumptions clear is ob-
vious impossible but Model-based analysis and test generation leverage tools
(such as Smartesting Tool, T-VEC Tool) that have been demonstrated to address
several inadequacies of traditional testing [13]. They are systematic about provid-
ing requirement-based or design-based test coverage of complex software-inten-
sive [18]. Not only are there tools that can systematically generate tests for each
aspect of a requirement or design model, but they can identify defects (e.g., con-
tradiction or inconsistencies). Detecting defects early during the requirement or
design process can reduce cost by eliminating.

Proposed strategy and solution artefacts help to understand design and apply
Model-based-Testing approach for component-based e-commerce applications
assurance. So that the extracted test design from collected industrial case study
of e-commerce system could follow a complete plan, such as, applying approach
of modelling business scenario to generate test from extracted design test model
as defined in Figure 9. This will cover integration strategies of components as
compare to its requirement specifications, their offered and used interface fo-
cused design specifications, obtaining test scenarios from business events based
on contracts involved between business components and their flow, and analyz-
ing business data to achieve test cases. Therefore, our focus is to consider mul-
ti-layer specification based on components business event scenario using Bank
Case Study. In this technique, process is divided into two phases 1) High level
view of system tier 2) Component layers. The High level view of system tier fo-
cus on the high level view of the design product, and component level layers will

Figure 9. System middle tier & CBSD integration scheme for model based specifications.

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 209 Journal of Information Security

consider the design, test, and diagnostics specification for a separate entity com-
ponent that take part in the system building.

The most important point is to set focus on multi-tier specification .These will
be system tier and the component tier. The system level tier represents a top
view of the product, while the component level tier will account for the design,
test, and diagnostics specification of the individual component that make up the
system .This idea can be extended that a system can be nested as a component in
the next higher order system, for the purpose of defining a design for test strate-
gy, each tier will require a model based method for capturing design, test re-
quirements, and diagnostic information.

Once, this test design is completed, next stage is to set the test bed Model-based
DFT approach for components business process integration testing, which in
return allow the validation and verification of the whole process, intems of sys-
tem and component tier specifications that comprise the total Model based De-
sign for test approach.

Model-based design for test approach for components business process inte-
gration testing, this will confirm the validation and verification of the whole
process, in terms of system and component layer and tier specifications that en-
compass the overall Model based Design for test approach [19]. This approach
based on the concept which confirms the philosophy of accuracy depends on
precise construction; this reveals that discovering the design flaw in the product
can be achieved early at design stage by using model based testing technique, for
example integration flaws can be identified through “DFT method”. Therefore,
this philosophy invites researchers to apply Model-based approach that helps to
refine and detection design flaw, those exist between the components interfaces,
while interacting with other components in the system in order to deliver a ser-
vice, trigger by the event, which call the particular service, composed with the
business components based business process integration to develop “business
process logic” in the e-commerce systems.

8. Lesson Learned

Therefore, in this case of bank developer completely ignored the purpose and
type of behaviour specification of reused component in terms of requirement
specification in each layer (an n-tier CBS application), component functional
specification boundary conditions and knowledge of its defined interfaces within
the systems, and ignored design specification for each layer component. This
caused failure to meet the requirement specifications as compare to its function-
al specification based on design specification, for the purpose it was designed,
based on its current logical component-based composition in the system. This
gave birth to the design flaw in the component-ware. This all process of problem
generated business logic vulnerability. This is a very serious violation of the prin-
ciple “specification purpose” in component-oriented logical component-ware at
the time of business interface-driven integration, while ignoring usage contract

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 210 Journal of Information Security

type specifications. It’s also case of “Test by Contract”, which means not only
design specification of component ignored but also contract establishment among
the interfaces and their designed logic throughout the process, which created
security assurance problem among the interface-focused designed components
behaviour through e-process, while developing component-oriented business
logic. The boundary condition of this attack falls in between functional specifi-
cation and design specification. The attack triggering method is “Event-based-
generated” e-process flow to violate business logic.

9. Contribution

Our contribution, proposed secure functional processing application logic for
e-commerce component-based application, has covered the gap as stated above
between traditional approaches and e-business process security requirements
that will increase level of assurance during the practice of designing compo-
nent-based rapid developed e-commerce applications from existing software
components and deploying component based business logic into e-commerce
system. Which reminds that focus on e-process security beside the functionality
is also very important, because this functionality can be productive only when it
works as per and within its functional control defined by the business logic in
the e-commerce applications.

10. Conclusion

Much of the security today is addressed as an audit activity that mostly relies on
penetration testing such testing activities often attempt to identify vulnerabilities
that belong to certain categories of threats & use tools that are tailored around
these threats. They may have security policies that auditors follow which require
them to check a specific list of things, but they often fall short of identifying vul-
nerabilities that a result of the way the application logic has been custom devel-
oped. The fact is that many attacks that are reported today fall under what we
define as application logic attacks. Therefore, our contribution of proposed me-
thodology and approach will increase level of assurance during the practice of
designing component-based rapidly developed web application software and
deploying component based business logic into e-commerce system. This re-
minds us that focus on security besides the functionality is also very important
because this functionality can be productive only when it works as per and within
its functional control defined by the business logic in the e-commerce applica-
tion.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Nabi, F. (2005) Secure Business Application Logic for e-Commerce Systems. Elsevi-

https://doi.org/10.4236/jis.2021.123010

F. Nabi et al.

DOI: 10.4236/jis.2021.123010 211 Journal of Information Security

er Journal of Computer & Security, 24, 208-217.
https://doi.org/10.1016/j.cose.2004.08.008

[2] J.Barrios, J. and Montilva C., J.A. (2003) A Methodological Framework for Business
Modeling. 5th International Conference on Enterprise Information System (ICEIS
2003), Venezuela, 1 January 2003, 79-82.

[3] Anup, A.G. (2001) Security and Privacy in e-Business. John Wiley and Sons, Hobo-
ken.

[4] Shishir, G. (1996) CGI Programming on the World Wide Web. O’Reilly and Asso-
ciates, Newton, Massachusetts, USA.

[5] Krsul, I. (1998) Software Vulnerability Analysis. Purdue University. Purdue Univer-
sity Press, West Lafayette, USA.

[6] Aslam, T. (1995) A Taxonomy of Security Faults in the Unix Operating System.
Purdue University, West Lafayette.

[7] Offut, J. (2002) Quality Attributes of Web Software Application. IEEE Software, 19,
25-32. https://doi.org/10.1109/52.991329

[8] Cao, F., Bryant, B.R. Raje, R.R., Auguston, M., Olson, A.M. and Burt, C.C. (2002)
Component Specification and Wrapper/Glue Code Generation with Two-Level
Grammar Using Domain Specific Knowledge. Proceedings of the 4th International
Conference on Formal Engineering Methods, Seattle, Washington, USA, 4-8 No-
vember 2002, 103-107.

[9] Dustin, J.E. (2001) Quality Web System: Performance, Security and Usability. Adi-
tion-Wesley, Boston.

[10] Ritchie, P. (2007) The Security Risks of Ajax/Web 2.0 Application. Network Securi-
ty, 2007, 4-8. https://doi.org/10.1016/S1353-4858(07)70025-9

[11] McGraw, G. (2006) Software Security: Building Security In. 2006 17th International
Symposium on Software Reliability Engineering, Raleigh, NC, USA, 7-10 November
2006, 5-6. https://doi.org/10.1109/ISSRE.2006.43

[12] Nabi, F. (2008) Secure Framework Method for Business Application Logic Integrity
in e-commerce Systems. Annual Computer Security Application Conference (ACSAC)
2008, California, 8-12 December 2008. https://www.acsac.org/2008/

[13] Faisal Nabi, M.N. (2017) A Process of Security Assurance Properties Unification for
Application Logic. International Journal of Electronics and Information Engineer-
ing, 6, 40-48.

[14] Kelly, T. (2019) An Assurance Framework for Independent Co-Assurance of Safety
and Security. New York University Press, New York.

[15] Nabi, F. (2008) OWASP Testing Guide.
https://owasp.org/www-project-web-security-testing-guide/

[16] Nachtigal, S. (2007) E-Business Process Security Model. International Confernece
e-Commerce, Minneapolis, USA, 23-26 December 2007, 34-40.

[17] McGraw, G. (2014) Risk Analysis in Software Design. IEEE Security and Privacy, 4,
1540-7993.

[18] Mark, R., (2008) Model Based Testing Tools-Necessary for Complex system. Soft-
ware Productivity Consortium, 6, 34-42.

[19] Chechik, M., et al. (2019) Software Assurance in an Uncertain. In: Chechik, M., Sa-
lay, R., Viger, T., Kokaly, S. and Rahimi, M., Eds., Fundamental Approaches to Soft-
ware Engineering, FASE 2019, Lecture Notes in Computer Science, Vol. 11424, 3-21.
https://doi.org/10.1007/978-3-030-16722-6_1

https://doi.org/10.4236/jis.2021.123010
https://doi.org/10.1016/j.cose.2004.08.008
https://doi.org/10.1109/52.991329
https://doi.org/10.1016/S1353-4858(07)70025-9
https://doi.org/10.1109/ISSRE.2006.43
https://www.acsac.org/2008/
https://owasp.org/www-project-web-security-testing-guide/
https://doi.org/10.1007/978-3-030-16722-6_1

	Process of Security Assurance Technique for Application Functional Logic in E-Commerce Systems
	Abstract
	Keywords
	1. Introduction
	2. Web Software Application Complexity & Component-Based-Development Risks
	3. Research Design Strategy
	4. Security Properties Violations [Problem Area] in Business Tier
	Web Software Application Vulnerability

	5. Logical Vulnerabilities in Application Layer
	Problem Cause Definition & Explanation

	6. Bank Case Study Component-Based-Rapid Development
	6.1. Investigated Reason of Vulnerability in the Light “State of Art CBSD” in Business Logic
	6.2. Existing Methods and Approaches to Application Functional Logic Security

	7. Proposed a Technique Secure Application Functional Processing Logic
	7.1. Effect of Attacks on System Design
	7.1.1. Layers Pattern
	7.1.2. Architectural Risk Analysis for Component-Based Business Logic Security

	7.2. Designed Defensive Strategy as a Solution to Deal Business Logic Concerns
	7.2.1. Strong Risk Management Plan
	7.2.2. Solution Artifacts
	7.2.3. Verification & Validation

	8. Lesson Learned
	9. Contribution
	10. Conclusion
	Conflicts of Interest
	References

