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Abstract 
We consider the motion of a massive point-like projectile thrown with initial 
velocity with respect to horizontal in a two-dimensional vertical plane under 
the influence of gravity in a viscose media. Two different velocity-dependent 
resistive media models are considered—linear and quadratic. With an objec-
tive to utilizing a Computer Algebra System (CAS), specifically Mathematica 
[1] numerically we solve the corresponding equations of motions. For a set of 
compatible parameters characterizing viscose forces graphically we display 
comparing the trajectories explicitly showing the impact of the models. Uti-
lizing the model-dependent trajectory equations numerically we evaluate 
their associated arc-lengths. What distinguishes our approach vs. the existing 
body of work is the notion of the “reverse engineering”. Meaning, utilizing 
our numeric data we establish their corresponding analytic counter parts. Ul-
timately, utilizing both outputs numerically and analytically we determine the 
matching initial projectile angles maximizing their respective arc-lengths. 
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1. Introduction 

Motion of a point-like massive projectile thrown in vacuum with initial velocity 
in a vertical plane under the sole action of gravity is a theme of interest in intro-
ductory physics and engineering college courses [2] [3]. Although simple it sets 
the foundation to building more realistic applicable cases. The upgrade of the 
situation is a case where the projectile is thrown in a resistive, viscose media. 
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Depending to the size of the projectile and characteristics of the media resistive 
forces are parameterized either as a velocity or velocity-squared entities. For mi-
croscale projectiles such as a bacteria linear velocity-dependent forces are used 
[4]. For larger scales e.g., a baseball, a parachute velocity-squared are considered 
[2]. Issues of interest in both cases include physical quantities such as time of 
flight and geometric quantities such as trajectories, range, maximum height etc. 
are addressed in the cited references. The next layer of complication includes the 
impact of the size, spin, buoyant as well as Magnus force—their collective impact 
reported [5]. References are resourceful yet none with one exception [6] ad-
dresses the objective of the current investigation—i.e., the initial projectile angle 
that maximizes the trajectory’s arc-length. Twenty-one years ago, the author 
published a report identifying the value of this special initial angle that max-
imizes the trajectory length in a non-resistive media, that is 56.46˚ [6]. This is a 
global unique angle; it is evaluated for a point-like projectile thrown in a va-
cuum. Considering the advances made within the last two decades in Computer 
Algebra System (CAS) that facilitates addressing non-trivial issues it is natural to 
revisit the same issues addressed in [6] embodying the resistive media. There-
fore, the main objective and interest of our current work is to develop a forum to 
evaluating issues discussed in [6] with upgrades. In addition to the author’s own 
work there are ample resources [7] [8] addressing the impact of resistive forces, 
mostly analytic and in bits. Meaning, no one single article presents the linear and 
quadratic velocity-dependent viscous resistive forces side-by-side. In order 
avoiding repeating the existing body of work here we pursue tackling the prob-
lem entirely in numeric mode. Nonetheless, utilizing the numeric output we 
generate its useful analytic counterpart. To fulfill both objectives explicitly we 
apply Mathematica’s superb numeric and analytic built-in features.   

As pointed out analysis of motion of a projectile in vacuum is trivial. Analysis 
in a velocity-dependent viscose media is somewhat non-challenging as well. The 
author has pushed the boundaries of the latter revealing the unknown envelope 
related facts [9]. Cited references addressing the numeric solutions include sec-
tions solving the same analytic equation of motion numerically by crafting a 
fourth order Runge-Kutta numeric algorithm. Crafting such codes during inves-
tigation de-focuses the objectives. Noting commonly used Computer Algebra 
Systems (CAS) embody built in algorithms assisting to solving differential equa-
tions; with no need to re-inventing the wheels. Consequently, helping to stay 
focused on the objectives.  

Henceforth, we lay the foundation of our work on numeric approach assisting 
to stay focus conducive information that comparatively are not reported in the 
literature. Our work includes Mathematica codes for generating the numeric so-
lutions for equations of motions for three cases: non-resistive, linear-velocity 
and velocity-squared viscose medias. The solutions are graphically compared as-
sisting quantifying the impact of the modeled resistive forces. Utilizing the solu-
tions, we calculate the arc-lengths of the trajectories. Ultimately empowering to 
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identifying the angles maximizing them. Auxiliary information such as flight 
times etc. are calculated as well.  

One last word before presenting our work—it is gratifying to show that our 
current numeric-based computation leading to the angle of interest for non- 
viscose media matches exactly the one reported twenty-one years ago that was 
derived analytically [6].  

Our current work is composed of three sections. In addition to Sect. 1, Intro-
duction, Motion and Goals, Sect. 2 embodies analytic equations of motions and 
their associated Mathematica codes conducive to their solutions. The trajectories 
and arc-lengths graphically are depicted yielding to the interested quantities.  

2. Equations of Motions, Mathematica Codes  

Following the objectives mentioned in Sect 1 Figure 1 depicts the relevant forces 
acting on a projectile projected in a vertical plane. In addition to gravity the 
viscous media exerts a velocity dependent resistive force. Since we are interested 
in two different models, linear and velocity-squared resistive forces, in Figure 1 
these two forces are shown as resistiveF



 with a vector opposite to the orientation 
of the instantaneous velocity. According to the models the former is formulates 
as, resistive nvF m= −





, and the latter as, 2
resistive ˆF mnv v= −


. In these equations m is 
the mass of the projectile, n is the scale factor adjusting the strength of the resis-
tive force, v is the speed of the projectile, and v̂  is the unit velocity vector. The 
minus signs in front of the forces are the indicative of the orientation of the 
forces opposite to direction of the motion signifies by v . Applying Newton’s 
law,  netF mr=

 

 , where r  is the position vector of the projectile and super 
double dots indicates its second order derivative with respect to time, is the ac-
celeration. netF



 is the net force embodying the active forces acting on the pro-
jectile. With this simple formulation we include the impact of either one of the  
 

 
Figure 1. Direction of motion of the projectile in the vertical plane is shown by velocity, 
v . Gravity pulls, mg  and the resistive force, resistiveF



 depicted as well.  
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resistive forces. We also notice the null value of the scale factor n associates with 
the motion in a non-resistive, vacuum case.  

Because the projectile is projected in a vertical plane, the above-mentioned 
dynamic equation in the text is to be projected along two axes of a Cartesian 
coordinate system shown in Figure 1. For the case where the resistive viscous 
force is a liner-velocity dependent we write, 

( ) ( )
( ) ( )

0

0

t nx t

t ny ty g

x + =

+ + =





 

 

                         (1) 

And for the scenario where the resistive force is velocity-squared it yields, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

0

0

x

y

t nx t x t y t

t ny t x t y t

+ + =

+ +




 =

   

   

                    (2) 

In (2) g is the gravity acceleration. Notice also as mentioned setting n = 0 in 
either one of (1), (2) yields the motion in a vacuum.  

Because we would like to compare the trajectories of the projectiles under the 
same initial conditions, we consider the initial conditions, 

( ) ( ) ( ) ( ){ }0 00 0 and 0 cos , sinr t v vr t θ θ= = = =




             (3) 

The first term of (3) shows the projectile is projected from the origin, the 
second term is it is horizontal and vertical components of the initial velocity. 
The v0 is the initial speed, angle θ is the initial projectile angle with respect the 
x-axis. In a nutshell this is the angle we are interested evaluating it leading 
maximizing its associated arc-length. In the forthcoming sections we have shown 
how it has been determined.  

To make the analysis as general as possible without losing the generalities we 
set the initial speed and the gravity acceleration unity, 0 1v g= = . This helps 
focusing on the impact of the speed scale factor n on our analysis. We apply the 
same initial conditions for all three cases of interest. A compact Mathematica 
code is crafted addressing all three cases. However, for the sake of transparency 
and for the readers not quite fluent with Mathematica language three short 
codes are prepared.   

Case 1. Impact of the linear-velocity dependent resistive force. 
code 1 
plotTrajectoryV1n={}; 
values1={v0->1,g->1,n->1.0} 
initialx1={x1[0]==0,x1'[0]==v0 Cos[θ]}/.values1; 
initialy1={y1[0]==0,y1'[0]==v0 Sin[θ]}/.values1; 
eqx1=x1"[t]+n x1'[t]/.values1; 
eqy1=y1"[t]+n y1'[t]+g/.values1; 
solx1=DSolve[{eqx1==0,initialx1},x1[t],t]//Simplify; 
soly1=DSolve[{eqy1==0,initialy1},y1[t],t]//FullSimplify; 
plotTrajectoryV1=Table[ParametricPlot[{x1[t]/.solx1,y1[t]/.soly1}/.θ->φ, 

{t,0,2},PlotRange->{{0,1},{0,0.5}},GridLines->Automatic,AxesLabel->{"x","y
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"},PlotStyle->{If[Evaluate[n/.values1]==0.0,{Dashing[{0.01}],(*Black*)Hue[
0.7φ]},{(*Black*)Hue[0.7 φ]}]}],{φ,π/6,π/2,π/10}]; 

combinedList1=AppendTo[plotTrajectoryV1n,plotTrajectoryV1]; 
sV1=Show[Transpose[{combinedList1〚1〛,combinedList1〚2〛}]] 
As shown in Figure 2 the impact of the media resistive force being linear-ve- 

locity dependent is considerable. Irrespective to the chosen initial projectile an-
gle for a “short” horizontal traversed distance the trajectory in the vacuum and 
the one in the media do overlap, then they split apart. Meaning, the resistive 
force at the beginning is less effective than further down the flight. The common 
overlapping features of these flights may be summarized as: the resistive force 
shortens the range, lowers the height making the trajectory lump side-ed condu-
cive to non-symmetric trajectories.  

Case 2. Impact of the velocity-squared dependent resistive force. 
code 2 
plotTrajectoryV2n={}; 
values2={v0->1,g->1,n->1.0}; 
initialx2={x2[0]==0,x2'[0]==v0 Cos[θ]}/.values2; 
initialy2={y2[0]==0,y2'[0]==v0 Sin[θ]}/.values2; 
eqx2=x2"[t]+n x2'[t]Sqrt[x2'[t]^2+y2'[t]^2]/.values2; 
eqy2=y2"[t]+n y2'[t]Sqrt[x2'[t]^2+y2'[t]^2]+g/.values2; 
tablesolxyθ=Table[NDSolve[{eqx2==0,eqy2==0,initialx2,initialy2},{x2[t],

y2[t]},{t,0,2}],{θ,π/6,π/2,π/10}]; 
plotTrajectoryV2=Table[ParametricPlot[{x2[t],y2[t]}/.tablesolxyθ[[i]],{t, 

0,2.},PlotRange->{{0,1},{0,0.5}},GridLines->Automatic,AxesLabel->{"x","y"}, 
PlotStyle->{If[Evaluate[n/.values2]==0.0,{Dashing[{0.01}],(*Black*)Hue[0.7 
i]},{(*Black*)Hue[0.7 i]}]}],{i,1,Length[tablesolxyθ]}]; 

combinedListV2=AppendTo[plotTrajectoryV2n,plotTrajectoryV2]; 
sV2=Show[Transpose[{combinedListV2〚1〛 ,combinedListV2〚2〛 }]] 

(Figure 3). 
 

 
Figure 2. Dashed curves are the trajectories in vacuum, solids curves are the correspond-
ing trajectories in viscus media indexed with scale factor n = 1.0 with the matching colors 
vs the dashed. Projected angles are: θ = π/6, π/6 + π/10, π/6 + 2π/10, π/6 + 3π/10 radians 
from shortest to the longest range.  
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Figure 3. Description is the same as Figure 2. The difference is the viscosity of the media 
is quadratic speed. Dashed curves are the trajectories in vacuum, solids curves are the 
corresponding trajectories with matching colors in viscus media with scale factor n = 1.0. 
Projected angles are: θ = π/6, π/6 + π/10, π/6 + 2π/10, π/6 + 3π/10 radians for the shortest 
to the longest range.  

 
For the sake of comprehension in Figure 4 we put the graphic information 

side-by-side. This figure explicitly shows the impact of the velocity-dependent 
models on the trajectories.  

Figure 4 shows the impact of the velocity-dependent resistive forces. The red 
curve on he left panel corresponds to the resistive force formulated as nmv, the 
purple on the right panel is the trajectory associated with nmv2. The impact of 
the velocity-square case is hampering the resistivity force allowing the projectile 
to reaching higher height and a longer range. For the sake of comparison, the 
scaling factor for both cases is set to unity, e.g., n = 1.0. This figure shows as we 
commented in the earlier paragraph the trajectories irrelevant of the case of in-
terest for a certain horizontal traversed distance are indistinguishable vs. the 
corresponding situation for the vacuum. Then at certain point they split. This is 
the general feature, and we may not make more quantified sentence because the 
splitting coordinate depends on the value of the scaling factor n.    

We note had we applied the standard parametrization of the viscosity media 
coefficients for each model would have impacted the format of the resistive 
forces, as such the value of the velocity scale factor would have been different. 
That in turn would have altered the shape of the trajectories, most likely result-
ing reordering the shown trajectories. However, the mere objective of our ex-
ploratory investigation is to compare the impact of the resistive media for cases 
preserving the commentaries other than the speed dependencies.  

We extend the analysis exploring additional information concerning the 
arc-length of the trajectories and the angles maximizing their lengths. Two issues 
need to be rectified. First, the arc-length ought to be formulated based on para-
metric, t-dependent coordinate of the projectile traversing the trajectory. Cus-
tomary this is written as, ( ) ( )2 2 dx t y t t= +∫  

 . Where the dots are the deriva-
tives of the coordinates with respect to t. Integration is performed over time  
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Figure 4. The left panel is the velocity-dependent scenarios, the right panel is the quadratic speed viscous cases. For both cases all 
the other parameters are kept the same.   

 
variable, t. Secondly, the lower and upper limits of integration are zero and 

flightt , respectively. Here, flightt  is the time-of-flight of the projectile. The reader 
going over this article would appreciate to learn how Mathematica can evaluate 
the needed derivatives of the integrand  . Noting, the coordinate of the projec-
tile, {x(t), y(t)} are the numeric solutions of the differential equations of motions 
given in Code 1 and Code 2. These are the coordinates used plotting the asso-
ciated trajectories; these are set of implicit tabulated numeric. However, what 
needed is their slopes, i.e., their derivatives with respect to t; Mathematica is ca-
pable evaluating these slopes!—and finally, by evaluating the integrand it eva-
luates the integration conducive to the arc-length. To evaluate the flight, we set the 
ordinate of the trajectory zero forming a numeric equation and search for its 
roots. With this guided procedure we craft a Mathematica code. This allows the 
interested reader to run the code confirming our results.   

Code 3 
x1y1primetθ=Table[D[Evaluate[{x1[t],y1[t]}/.NDSolve[{eqx1==0,eqy1==

0,initialx1,initialy1},{x1[t],y1[t]},{t,0,2}]],{t,1}],{θ,0.01π,0.9 π/2,0.005π}]; 
tableFlightTimeV1=Table[{θ,FindRoot[y1[t]/.NDSolve[{eqx1==0,eqy1== 

0,initialx1,initialy1},{x1[t],y1[t]},{t,0,2.5}],{t,1}]},{θ,0.01π,0.9 π/2,0.005π}]; 
tableArcLengthV1=Table[NIntegrate[Sqrt[x1y1primetθ〚i,1,1〛^2+x1y1 

primetθ〚i,1,2〛^2],{t,0,t/.tableFlightTimeV1[[i,2]]}],{i,1,Length[tableFlight 
TimeV1]}]; 

Max[tableArcLengthV1]; 
tableθ=Table[θ,{θ,0.01π,0.9 π/2,0.005π}]; 
TableForm[Transpose[{tableθ,tableArcLengthV1}]]; 
insetV1=TableForm[{{1.02101, 0.646601}, {1.03672, 0.646787}, {1.05243, 

0.646849}, {1.06814, 0.646789}}]; 
s1=tableθArcLengthV1=ListPlot[Transpose[{tableθ,tableArcLengthV1}],

AxesLabel->{"θ(rad)","ArcLength"},GridLines->Automatic,PlotStyle->Red, 
Epilog->Rectangle[{0.6,0.3},{1.1,1.0},insetV1],PlotRange->{{0,1.5},{0,1}}, 
AxesStyle->Directive[Arrowheads[0.05]]] 
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tableθArcLengthV1=Transpose[{tableθ,tableArcLengthV1}]; 
MaxtableθArcLengthV1=Select[tableθArcLengthV1,MemberQ[#,Max[tab

leArcLengthV1]]&]; 
The output of the given code is converted in a graph as depicted in Figure 5.  
For the sake of accurately reading the coordinate of the depicted points in 

Figure 5, we created an insert table. The first and second columns are the initial 
projectile angle and the corresponding ArcLength, respectively. As such the an-
gle maximizing the ArcLength is 60.30˚.  

As Figure 5 shows the arc-lengths of the trajectories is a gradual increasing 
function of the initial projectile angles. It eventually passes a maximum value 
and then it is decreasing. The insert table assists identifying the maximum coor-
dinate with high accuracy. The maximum coordinate is {1.05243, 0.646849}.   

Following the same procedure, we craft a Mathematica code like code 3 to 
handling the second scenario, i.e., for the velocity-squared resistive media. The 
interested reader may utilize code 3 crafting the needed code. We skip displaying 
the code however the Figure 6 shows the output. 

For comprehensive understanding a briefed version of the graphs is shown in 
Figure 7.  

This figure shows the quadratic-speed dependent media is less resistive vs. the 
linear-velocity resistance case. As such the less resistive media allows longer tra-
jectories conducive to longer arc-lengths. This is consistent with previous results 
shown in corresponding figures.   

Note also analysis is based on point-like projectiles. If one considers fi-
nite-sized projectiles as intuitively expected the trajectories will have reverted 
orders, i.e., the linear-velocity trajectories will reach to higher heights conducive 
to longer arc-lengths.  
 

 
Figure 5. Dots are the values of the arc-lengths, ℓ, for the trajectories in the viscous li-
near-velocity dependent resistive media. Horizontal axis is the initial projectile angles in 
radian.  
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Figure 6. Description of this figure is the same as Figure 5. The only difference is the 
curve is a generated for quadratic-speed dependent media. 
 

 
Figure 7. The red and the purple dots are the arc-lengths of the trajectories vs. the initial 
projected angles. The red is for the linear-velocity and the purple is associated with the 
quadratic-speed dependent resistive media, respectively.  
 

Summary of the collected data is presented in Figure 8. The dots are the 
coordinates of the maximum angles vs. the characteristics of the viscous media. 
The first dot at the left with a zero abscissa corresponds to the vacuum. The oth-
er two with velocity-character 1 and 2 correspond to linear and quadratic speed- 
dependent viscous cases.  

Thus far as shown we have accomplished the set goals. In short, for a chosen 
resistive media applying a CAS numerically we identified the projectile angle 
that maximizes the arc-length of associated trajectory. The applied methodology 
is numeric and as such differential equations describing the motions are solved 
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numerically. However, as pointed out in the abstract we wish to apply “reverse 
engineering” to generate analytic expressions describing trajectory related fea-
tures. In another words, having the numeric features of the issues at hand aim-
ing to generate their analytic equivalence. Here we show our approach for one 
case, namely the linear-speed dependent resistive case. The quadratic-speed case 
easily maybe followed similarly. Data shown in Figure 5 is the arc-length of the 
trajectory vs. the initial projectile angles. By trial and error, we search for a func-
tion best fit the data. Our search identifies a cubic polynomial. The coefficients 
of the fitted function are given and the plot of the fitted function and its overlap 
with the data are shown in Figure 9.  

fitArcLengthV1=a+b θ+c θ2+d θ3 
{a->0.0267161,b->1.64468,c->-1.43487,d->0.406906} 

 

 
Figure 8. Plot of angles maximizing the arc-lengths of the projectiles in viscous media 
characterized with the velocity-dependent character 0, 1 and 2. These charters are indica-
tives of vacuum, linear and quadratic-speed dependent resistive media, respectively. 
 

 
Figure 9. The arc-length of the projectile vs. the initial angles is shown in red dots, this is 
the same as Figure 5. The black dashed curve is the cubic fitted analytic function.  
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As shown the fitted function is just perfect. This is what we claim is “reverse 
engineering”. That is, we bypassed the regular routine solving the equation of 
motion analytically, and yet at the end just by utilizing the output of its numeric 
solution we were able to create analytic function as if we have solved the prob-
lem analytically. And at the end to show its usefulness utilizing the fitted func-
tion we seek for the angle maximizing its associated arc-length. We set the de-
rivative of the arc-length to zero and search for its root. This results 56.73˚ and is 
just off by a 3.5˚ vs. its numeric counter version.   

3. Discussions and Conclusions  

We set out a list of objectives investigating information about the trajectories of 
projectiles projected in a vertical plane under the action of gravity pull and two 
different modes of velocity-dependent viscous medias. Globally speaking aside 
from analyzing the physics of the problems on hand technology wise the main 
objective is to utilize the ever-growing popularity of Computer Algebra System 
(CAS), specifically Mathematica generating the needed information. As it is dis-
cussed and shown, for the first scenario with a linear-velocity viscous case the 
equation of motion analytically trivially is solvable. However, for the second case 
where the viscosity makes the media velocity-squared resistive the equation of 
motion despite of its look becomes quite challenging. The sited references show 
how the authors by inventing the wheels have solved the equations numerically 
applying the popular numeric methods. Codes are useful however de-focuses the 
objective. Most of the CASs have built in sophisticated numeric methods. Fami-
liarity with these CASs helps avoiding inventing the wheels facilitating a forum 
to merely focus on the science of the problem. With this objective we have ap-
plied the implicit Runge-Kutta numeric method of Mathematica conducive to 
the solutions of the needed equations of motions. We have provided set of Ma-
thematica codes so that interested readers familiar with this CAS may run the 
codes reproducing our results. The codes are robust and the control parameters 
such as velocity scale factor may be adjusted to generate alternate cases of inter-
est. To make the analysis helpful we converted equation of motions to graphics. 
These figures help to form a visual understanding about the problem on hand. 
For the second scenario where the viscosity is velocity-squared dependent the 
arc-length expression needed to be integrated numerically as well. This chal-
lenging procedure is accomplished with a one-line code—attesting to the amaz-
ing computation power of Mathematica. Meaning the integrand is a list of nu-
meric pairs yet the integration is accomplished without a glitch. Utilizing this 
information finally we numerically evaluated the initial projectile angle max-
imizing the arc-length of the associated projectile. For a comprehensive under-
standing we have supplied all the information graphically, making our analysis 
comprehensive. Twenty-one years ago [6] the author addressed a similar prob-
lem for the case of no resistive media, i.e., a vacuum. The problem was solved 
analytically conducive to the angle of interest. It is gratifying to justify that our 
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current numeric solution matches our reported angle when the viscous impact is 
turned off. We also show how the “reverse engineering” was used to generate an 
analytic expression for the arc-length of the projectile as if the equation of the 
motion were solved analytically. 

As a final comment the author would like to attract the reader’s attention that 
the entire investigation that is comprised of analytic, numeric and graphics all 
are done in one single file avoiding to creating separate files for different aspects 
of the objectives. Interested readers may find [10] [11] resourceful. 
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