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Abstract 
Objective: This study aimed to identify hub genes that are associated with 
hepatocellular carcinoma (HCC) prognosis by bioinformatics analysis. Me-
thods: Data were collected from the Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA) liver HCC datasets. The robust rank ag-
gregation algorithm was used in integrating the data on differentially expressed 
genes (DEGs). Online databases DAVID 6.8 and REACTOME were used for 
gene ontology and pathway enrichment analysis. R software version 3.5.1, Cy-
toscape, and Kaplan-Meier plotter were used to identify hub genes. Results: 
Six GEO datasets and the TCGA liver HCC dataset were included in this 
analysis. A total of 151 upregulated and 245 downregulated DEGs were iden-
tified. The upregulated DEGs most significantly enriched in the functional 
categories of cell division, chromosomes, centromeric regions, and protein 
binding, whereas the downregulated DEGs most significantly enriched in the 
epoxygenase P450 pathway, extracellular region, and heme binding, with re-
spect to biological process, cellular component, and molecular function anal-
ysis, respectively. Upregulated DEGS most significantly enriched the cell cycle 
pathway, whereas downregulated DEGs most significantly enriched the me-
tabolism pathway. Finally, 88 upregulated and 40 downregulated genes were 
identified as hub genes. The top 10 upregulated hub DEGs were CDK1, CCNB1, 
CCNB2, CDC20, CCNA2, AURKA, MAD2L1, TOP2A, BUB1B and BUB1. 
The top 10 downregulated hub DEGs were ESR1, IGF1, FTCD, CYP3A4, SPP2, 
C8A, CYP2E1, TAT, F9 and CYP2C9. Conclusions: This study identified sev-
eral upregulated and downregulated hub genes that are associated with the 
prognosis of HCC patients. Verification of these results using in vitro and in 
vivo studies is warranted. 
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1. Introduction 

Hepatocellular carcinoma (HCC) is one of the six most common cancers and the 
third leading cause of cancer-related death [1]. The most effective treatment for 
HCC is curative resection, which includes liver transplantation and hepatectomy 
[2]. However, only 20% of the HCC patients are candidates for curative hepa-
tectomy and HCC often recurs shortly after surgery [2]. Palliative treatment is 
the main treatment modality for most HCC patients [2]. However, transarterial 
chemoembolization is only a regional therapy for intrahepatic tumors [2], and it 
cannot be used for extrahepatic metastatic tumors, including lung metastasis, bone 
metastasis, or circulating tumor cells. Hence, local therapy combined with sys-
temic therapy may be an ideal scheme. Although most HCC are caused by viral 
infections, anti-viral therapy is somehow effective [3], but it does not directly 
prevent the occurrence and development of liver tumors. Therefore, target ther-
apy for tumorigenesis may be a promising systematic treatment. However, cur-
rent target therapies have limited effects on the prognosis of HCC patients. Al-
though sorafenib could improve the survival time of advanced HCC patients, it 
has not substantially changed the outcome of patients with HCC, and the me-
dian survival time of patients treated with sorafenib is only three months longer 
than with palliative treatment [4]. Additionally, the application of sorafenib post- 
hepatectomy does not achieve the expected benefits [5]. The median disease-free 
survival time was 8.5 (2.9 - 19.5) and 8.4 (2.9 - 19.8) months in the sorafenib and 
placebo groups, respectively [5]. 

Although many researchers focused on studying the mechanism of HCC tumo-
rigenesis [6] [7] [8], the mechanism of hepatocellular tumorigenesis is still not 
been fully elucidated, and an effective therapeutic target is still needed to improve 
the prognosis of HCC. In recent decades, due to the rapid development of high- 
throughput sequencing and the wide application of gene chips, extensive studies 
elucidating the mechanism of HCC tumorigenesis have been conducted, and bio-
informatics analysis has helped in identifying key genes in hepatocellular carcino-
genesis [7] [9] [10]. Shen et al. reported that TOP2A, NDC80, FOXM1, HMMR, 
KNTC1, PTTG1, FEN1, RFC4, SMC4, and PRC1 are the top 10 core genes asso-
ciated with HCC tumorigenesis [10]. Chen et al. reported that TOP2A, CDC20, 
MAD2L1, BUB1B, RFC4, CCNB1, CDKN3, CCNB2, TPX2, and FEN1 are the 10 
hub genes in hepatitis B virus-related HCC [9]. However, some datasets in these 
studies consisted of less than 10 cases, and the Venn diagram was used to integrate 
their gene expression data. These two factors may miss several important genes 
during extraction of DEGs [9] [10]. Therefore, to identify the hub gene of HCC 
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and to achieve more reliable results, this study also conducted bioinformatics 
analysis based on several datasets and each dataset consisting of >30 cases. In addi-
tion, robust rank aggregation (RRA) algorithm was used to integrate the expres-
sion data of various datasets to identify differentially expressed genes (DEGs). 

2. Materials and Methods 
2.1. Microarray Datasets 

Gene expression data were retrieved from Gene Expression Omnibus (GEO)  
(https://www.ncbi.nlm.nih.gov/geo) and The Cancer Genome Atlas (TCGA) liver 
HCC datasets  
(https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/t
cga). Only datasets with cases > 30 were included in the analysis. Only datasets con-
sisting of HCC tissues and adjacent non-tumor tissues were included in the analysis. 

2.2. Identification of the DEGs 

Identification of DEGs was performed with R software ver. 3.5.1 using the “lim-
mapackage”. The log2|fold change (FC)| of gene expression in tumor tissues 
compared to adjacent non-tumor tissues was calculated. Gene expression dif-
ference with |logFC| > 1.0 and adjusted p value < 0.05 were regarded as DEGs for 
each included dataset. However, DEGs among these datasets were calculated us-
ing R software based on “RobustRankAggreg” package [11]. Integrate genes with 
significance score lower than 0.05 was regarded as DEGs [11]. These DEGs were 
verified using Oncomine (https://www.oncomine.org/resource/main.html) and 
GEPIA (http://gepia.cancer-pku.cn/). 

2.3. Gene Ontology and Pathway Enrichment Analysis of DEGs 

Online database DAVID 6.8 (https://david.ncifcrf.gov/) was used for Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis of DEGs. GO analysis consists of biological process (BP), cellular compo-
nent (CC), and molecular function (MF) analysis. The online database Reactome 
was also used for pathway enrichment analysis of DEGs (http://www.reactome.org). 

2.4. Identification of Potential Hub DEGs by Protein-Protein  
Interaction (PPI) Network Analysis 

A PPI network was constructed using online STRING database  
(http://string-db.org). Cytoscape software version 3.7.1 was used to identify po-
tential hub genes. DEGs with interaction degrees ≥ 10 were regarded as potential 
hub genes. MCODE plug-ins were used to explore closely related functional mod-
ules in the PPI networks. The degree cutoff of module network scoring was set to 
2. The node score cutoff, K-core, and maximum depth of module finding were 
set to 0.2, 2, and 100, respectively. 

2.5. Identification of Hub DEGs by Survival Analysis 

The clinical data were collected from the TCGA liver HCC dataset. Clinical data 
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from a total of 364 patients were included in the survival analysis. The survival 
results were calculated using Kaplan Meier plotter  
(http://kmplot.com/analysis/). The Kaplan Meier method was used in survival 
analysis. These results were verified using the online database GEPIA  
(http://gepia.cancer-pku.cn/). 

3. Results 
3.1. Data Characteristics 

Six GEO datasets (GSE14520, GSE25097, GSE36376, GSE57957, GSE76427, and 
GSE121248) and the TCGA liver HCC dataset were analyzed in this study. A to-
tal of 1328 tumor tissues and 834 adjacent non-tumor tissues were included in 
the analysis. The characteristics of the included datasets were detailed in Table 
1. All datasets included tumor tissues and adjacent non-tumor tissues. 

3.2. Identification of DEGs 

Using the R software, DEGs in each dataset were identified. The gene expression 
data in each dataset are shown using a volcano map (Figure 1). The RRA algo-
rithm identified significant DEGs among these datasets. A total of 151 upregu-
lated and 245 downregulated genes were identified (Table 2). The top 20 upre-
gulated and downregulated DEGs are shown in Figure 2. 
 

 
Figure 1. Volcano plot of differentially expressed genes in each included dataset ((a) GSE14520 dataset; (b) GSE25097 dataset; (c) 
GSE36376 dataset; (d) GSE57957 dataset; (e) GSE84005 dataset; (f) GSE121248 dataset; (g) TCGA_LIHC dataset). The differen-
tially expressed genes were identified by “limma” package of the R software for each dataset. FC, fold change. Red dots, upregu-
lated expressed genes based on log2|fold change| > 1.0 and adjusted P-value < 0.05. Green dots, downregulated expressed genes 
based on log2|fold change| > 1.0 and adjusted P-value < 0.05. Black dots, expressed genes with no significant difference.  
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Figure 2. Top 20 upregulated and downregulated genes identified in the 
datasets using the RRA algorithm. Red background, upregulated genes. 
Green background, downregulated genes. The numbers are the fold change 
of the differentially expressed genes. NA, not available. 

 
Table 1. Baseline characteristics of included datasets. 

Datasets Platforms Tumor tissue (cases) Adjacent non-tumor tissue (cases) 

GSE14520 GPL3921 Affymetrix HT Human Genome U133A Array 225 220 

GSE25097 GPL10687 Rosetta/Merck Human RSTA Affymetrix 1.0 microarray 268 243 

GSE36376 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 240 193 

GSE57957 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 39 39 

GSE76427 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 115 52 

GSE121248 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 70 37 

TCGA-LIHC Illumina HiSeq 371 50 

GSE, Gene Expression Omnibus. TCGA-LIHC, The Cancer Genome Atlas-Liver Hepatocellular Carcinoma. 
 
Table 2. Differentially expressed genes identified by robust rank aggregation algorithm via R software. 

 Differentially expressed genes 

Upregulated 
(151) 

ASPM PTTG1 PRC1 TOP2A CDKN3 NCAPG CDC20 CAP2 CCNB2 UBE2C AURKA RACGAP1 NUSAP1 PLVAP MELK 
CDCA5 KIF20A ESM1 SQLE GPC3 ILF2 UBE2T FAM189B PBK ACSL4 CENPF NEK2 MCM2 HMMR AKR1C3 KIFC1 GMNN 
CKAP2L ANXA2 CCNB1 MDK DTL FAM83D SSR2 CD34 RRM2 PTTG3P KIF4A TOMM40L COL15A1 SPINK1 TTK RFC4 
PEA15 AKR1B10 RFX5 THY1 BUB1B FOXM1 PODXL ECT2 TP53I3 EZH2 NDC80 CCNA2 ZWINT COL4A1 CDK1 TXNRD1 
MCM3 PSMD4 CCL20 ANLN TKT AURKB TK1 TRIP13 S100A10 MCM6 KIF2C NUF2 H2AFZ AKR1B15 CCDC34 FLVCR1 
ITGA6 MND1 DLGAP5 SKA1 CDCA3 TCF19 NME1 CCT3 NDUFA4L2 CENPE MSH2 NQO1 S100P RAD51AP1 KIF18B 
CDC25C EXO1 CDC6 HJURP REG3A SPP1 GABRD E2F8 LCN2 BIRC5 SNRPB LAPTM4B SPC25 GINS1 MAD2L1 SLC26A6 
ATAD2 LAMC1 SKA3 TUBA1C CKAP2 SF3B4 ACLY TPX2 HELLS MCM4 CDC7 UHRF1 LRRC1 C6orf173 COX7B2 STMN1 
CKS2 HIGD1B CDKN2C CCNE2 CENPA THBS4 SGOL2 C5orf34 MGC4677 HSP90AB1 TFRC KPNA2 KIAA0101 PEG10 
BUB1 ALG1L STIL MKI67 FABP5L2 CKS1B TARBP1 BRSK1 EME1 SCAMP3 
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Continued 

Downregulated 
(245) 

CLEC1B ECM1 CLEC4G VIPR1 FCN2 FCN3 STAB2 CRHBP IGFALS HAMP LCAT CYP1A2 MARCO CXCL12 ANGPTL6 
NAT2 DNASE1L3 PTH1R CETP CHST4 RND3 COLEC10 CYP39A1 CXCL14 FOS KCNN2 SRPX ACADS ESR1 TTC36 CNDP1 
CFP CPEB3 DBH PAMR1 GSTZ1 GPR128 OIT3 CLEC4M LY6E CYP26A1 DPT ID1 FOSB MT1F DCN APOF TMEM27 EGR1 
KMO ZFP36 C8orf4 LYVE1 KBTBD11 ACSM3 AADAT ZGPAT SRD5A2 SOCS2 ASS1 GADD45B C7 SLCO1B3 IGFBP3 SHBG 
RCAN1 MT1X CYR61 INMT MT1M HGFAC ENO3 ANXA10 C1RL ETFDH MT1G STEAP3 RSPO3 GCDH FBP1 SKAP1 PZP 
JMJD5 RDH5 MT1H COLEC11 MYOM2 NNMT GHR MT2A RCL1 CYP4A11 PROZ KLKB1 ADAMTS13 SLC22A1 C1QTNF1 
HAO2 GABARAPL1 FXYD1 MT1E CYP3A4 C9 ADAMTSL2 MS4A6A GLS2 ALDH2 PLAC8 AGL MSRA ACAA1 CCBE1 
NDRG2 RDH16 FAM13A PHLDA1 BMPER STARD5 CYP2B6 ADRA1A FAM134B HHIP AKR7A3 ST3GAL6 TACSTD2 BCHE 
SPP2 PCDH24 CYP2C9 C8A SIGIRR CYP2C8 ACACB ABCA8 BBOX1 DNAJC12 ATOH8 HBA2 GLYAT IL1RAP ACSL1 
PBLD AFM LIFR TDO2 CDC37L1 ALDH8A1 IDO2 MBL2 OGDHL GBA3 CXCL2 PANK1 GPM6A SLC27A5 FTCD EPHX2 
CTH C6 PHGDH PEMT CD5L CYP4V2 MAT1A PCK1 ITLN1 CLRN3 CYP2E1 CYP2A6 C8B GNMT EPB41L4B SORL1 BHMT 
GCH1 ADH4 CCL14 FAHD2A NPY1R LRRN3 HSD17B13 ACAA2 SLC7A2 NR1I2 LPA F9 CCRN4L ARHGAP10 SLC10A1 
C1R ASPG FOXO1 FLJ21986 THRSP GADD45G IGF1 ADH1B GLYATL1 TRIB1 IGJ TBXA2R TAT SDS CYP4F2 HBB GPD1 
HSD11B1 MFAP4 HSD17B2 PEX11G AXUD1 ATF5 CSRNP1 WDR72 SAA4 ALDH6A1 CIDEB ASPA CBR4 C14orf68 VNN1 
IRF8 MT1A PLA2G16 MRO TMEM45A LIPC PDGFRA JCLN CCL23 SLC19A3 PPAP2B BCO2 OLFML3 CYP2A7 PGLYRP2 
HPX COL6A6 CYP4F12 RANBP3L NPC1L1 HMGCL ALPL AGXT2 GPR182 

3.3. GO and Pathway Enrichment Analysis of DEGs 

After GO enrichment analysis for upregulated DEGs, a total of 74, 37, and 26 
items with P values <0.05 were identified in BP, CC, and MF enrichment analy-
sis, respectively, while for downregulated DEGs, a total of 87, 21, and 34 items 
with P values <0.05 were identified in BP, CC, and MF enrichment analysis, re-
spectively (Figure 3). The upregulated DEGs significantly enriched in the cate-
gories of cell division, mitotic nuclear division, and sister chromatid cohesion, 
whereas the downregulated DEGs significantly enriched in the categories of epox-
ygenase P450 pathway, oxidation-reduction processes, and drug metabolic pro- 
cesses, with respect to BP analysis. The upregulated DEGs were mostly involved 
in the chromosome, centromeric region, midbody, and kinetochore, whereas the 
downregulated DEGs were mostly involved in the extracellular region, organelle 
membranes, and extracellular exosomes with respect to CC analysis. The upre-
gulated DEGs mostly enriched in the categories of protein binding, ATP bind-
ing, and protein kinase binding, whereas the downregulated DEGs most enriched 
in the categories of heme binding, oxidoreductase activity, acting on paired do-
nors with incorporation or reduction of molecular oxygen, and oxygen binding 
with respect to MF analysis. 

After KEGG and REACTOME pathway enrichment analyses of DEGs, a total 
of 51 and 44 enrichment pathways with P values <0.05 were identified for upre-
gulated and downregulated DEGs, respectively. The upregulated DEGs mostly 
enriched in the categories of cell cycle, oocyte meiosis, and progesterone-medi- 
ated oocyte maturation, while the downregulated DEGs mostly enriched in the 
categories of metabolic pathways, retinol metabolism, and tryptophan metabol-
ism with respect to KEGG pathway analysis (Figure 4). The upregulated DEGs 
mostly enriched in the categories of resolution of sister chromatid cohesion, se-
paration of sister chromatids, and mitotic prometaphase, while the downregu-
lated DEGs mostly enriched in the categories of metallothioneins bind-metals, 
CYP2E1 reactions, and xenobiotics with respect to REACTOME pathway analy-
sis (Figure 4). 
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Figure 3. The top 10 functional categories of differentially expressed genes (DEGs) with re-
spect of biological process (BP), cellular component (CC), and molecular function (MF) analy-
sis, respectively. (a) Upregulated DEGs; (b) Downregulated DEGs. GO: 0016705~oxidoreductase 
activity, acting on paired donors, with incorporation or reduction of molecular oxygen. GO: 
0016712~oxidoreductase activity, acting on paired donors, with incorporation or reduction of 
molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom 
of oxygen. 
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Figure 4. KEGG and REACTOME pathway enrichment analysis of differentially expressed genes (DEGs) with P values 
less than 0.05. (a) Upregulated DEGs; (b) Downregulated DEGs.  

https://doi.org/10.4236/jct.2021.124019


X. Zhang et al. 
 

 

DOI: 10.4236/jct.2021.124019 194 Journal of Cancer Therapy 
 

3.4. Identification of Potential Hub Genes by PPI Network  
Analysis 

A total of 357 DEGs were filtered into the PPI network analysis (Figure 5). By 
taking the interaction degree of ≥10, a total of 165 DEGs that included 104 
upregulated DEGs and 61 downregulated DEGs were identified as potential hub 
genes (Table 3). 

 

 
Figure 5. Protein-protein interaction (PPI) network of differentially expressed genes (DEGs). (a) Total PPI 
network of DEGs; (b) Module 1; (c) Module 2; (d) Module 3. 
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Table 3. The hub genes identified by protein-protein interaction network and survival analysis. 

Upregulated DEGs Degree Survival related hub genes Upregulated DEGs Degree Survival related hub genes 

CDK1 97 CDK1 UBE2T 67 UBE2T 

CCNB1 94 CCNB1 KIFC1 TK1 66 KIFC1 TK1 

CCNB2 91 CCNB2 SPC25 EZH2 65 SPC25 EZH2 

CDC20 CCNA2 AURKA 90 CDC20 CCNA2 AURKA CDCA3 HELLS 63 CDCA3 HELLS 

MAD2L1 TOP2A 89 MAD2L1 TOP2A GMNN ATAD2 62  

BUB1B 87 BUB1B MND1 61  

BUB1 AURKB KIF2C 85 BUB1 AURKB KIF2C SKA1 KIF18B CCNE2 60 SKA1 KIF18B CCNE2 

NDC80 KIF20A TTK RRM2 84 NDC80 KIF20A TTK RRM2 FAM83D E2F8 59 FAM83D E2F8 

CDC6 TPX2 DLGAP5 UBE2C 
NCAPG BIRC5 NUSAP1 PBK 

MKI67 
83 

CDC6 TPX2 DLGAP5 
NCAPG BIRC5 NUSAP1 

PBK MKI67 

CKAP2 CKAP2L 57 CKAP2 CKAP2L 

CDC7 53 CDC7 

STIL 50 STIL 

ASPM MELK 82 ASPM MELK GINS1 46 GINS1 

CDKN3 81  SGOL2 44 SGOL2 
ZWINT NUF2 CENPF 

RACGAP1 HMMR PRC1 
RAD51AP1 

80 
ZWINT NUF2 CENPF 

RACGAP1 HMMR PRC1 
RAD51AP1 

TCF19 36 TCF19 

MSH2 H2AFZ 35 MSH2 H2AFZ 

CENPE PTTG1 EXO1 KIF4A 
CDCA5 

79 
CENPE PTTG1 EXO1 KIF4A 

CDCA5 

STMN1 CD34 25 STMN1 CD34 

TUBA1C 24 TUBA1C 

CENPA KIAA0101 78 CENPA KIAA0101 SPP1 23 SPP1 

FOXM1 DTL 77 FOXM1 DTL ACLY 21  

TRIP13 76 TRIP13 NQO1 20 NQO1 

NEK2 75 NEK2 PSMD4 19  

MCM2 MCM4 RFC4 74 MCM2 RFC4 EME1 16 EME1 

ECT2 73 ECT2 TXNRD1 15  

HJURP MCM3 CDC25C 72 HJURP MCM3 CDC25C LCN2 14  

MCM6 CKS2 ANLN 70 MCM6 CKS2 ANLN CCT3 ITGA6 12 CCT3 

KPNA2 UHRF1 69 KPNA2 UHRF1 AKR1C3 TKT THY1 NME1 ILF2 11 AKR1C3 ILF2 

SKA3 CKS1B 68 SKA3 CKS1B GPC3 TFRC CDKN2C 10 CDKN2C 

Downregulated DEGs Degree Survival related hub genes Downregulated DEGs Degree Survival related hub genes 

ESR1 38 ESR1 CXCL12 ACAA1 PCK1 15 PCK1 

IGF1 FTCD 26 IGF1 FTCD C8B ALDH2 LPA CFP NR1I2 C9 
HAO2 ACSL1 

14 
C8B ALDH2 LPA CFP 
NR1I2 HAO2 ACSL1 CYP3A4 25 CYP3A4 

FOS 24  ACADS LCAT CYP2A6 CYP2C8 
CYR61 CYP4A11 FOXO1 

13 
ACADS LCAT CYP2C8 

CYP4A11 FOXO1 CYP2B6 SPP2 21 SPP2 

C8A CYP2E1 TAT F9 20 C8A CYP2E1 TAT F9 IGFBP3 ACAA2 DCN LIPC 
SLC10A1 C1R HGFAC 

12 
LIPC DCN SLC10A1 

HGFAC MBL2 CYP2C9 C6 18 CYP2C9 C6 

CYP1A2 ASS1 17  
KMO ADH4 HMGCL CYP4F2 

PLA2G16 
11 ADH4 HMGCL CYP4F2 

EGR1 CTH CYP26A1 KLKB1 
ALDH8A1 

16 CTH KLKB1 ALDH8A1 
IDO2 ACACB ALPL EPHX2 

ACSM3 GCDH HAMP GNMT 
PROZ ETFDH 

10 
ALPL EPHX2 ACSM3 
GCDH GNMT PROZ 

ETFDH 

DEGs, differentially expressed genes. 
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A total of 15 functional modules were found in the MCODE plug-in in Cy-
toscape, and three significant modules are shown in Figure 5. Among these, 
module 1 included 78 nodules and 2724 edges. The genes in module 1 mainly 
enriched in the categories of cell division, nucleus, and protein binding with re-
spect to BP, CC, and MF analysis, respectively (Figure S1). These genes mostly 
enriched in the categories of the cell cycle, oocyte meiosis, and progesterone-me- 
diated oocyte maturation with respect to KEGG pathway analysis (Figure S2) and 
enriched in the categories of resolution of sister chromatid cohesion, separation of 
sister chromatids, and mitotic prometaphase with respect to REACTOME path-
way analysis. All DEGs in module 1 were upregulated. Module 2 included 16 
nodules and 69 edges. The genes in module 2 mainly enriched in the categories 
of complement activation, classical pathway, membrane attack complex, serine- 
type endopeptidase activity, and complement and coagulation cascades pathway 
after BP, CC, MF and pathway enrichment analysis, respectively (Figure S1 and 
Figure S2). Module 3 included 10 nodules and 37 edges. The genes in module 3 
mainly enriched in the categories of the epoxygenase P450 pathway, organelle 
membrane, oxygen binding, and xenobiotics pathway with BP, CC, MF and path-
way enrichment analysis, respectively (Figure S1 and Figure S2). All DEGs in 
modules 2 and 3 were downregulated. 

3.5. Identification of Hub Genes Using Survival Analysis 

Because not all potential hub genes are related to HCC prognosis, and thus we 
identified hub genes that influence HCC survival. After a total of 88 upregulated 
genes and 40 downregulated genes were identified as hub genes. The top 10 
upregulated hub genes were CDK1, CCNB1, CCNB2, CDC20, CCNA2, AURKA, 
MAD2L1, TOP2A, BUB1B, and BUB1. The top 10 downregulated hub genes 
were ESR1, IGF1, FTCD, CYP3A4, SPP2, C8A, CYP2E1, TAT, F9, and CYP2C9. 
The results of survival analysis of the top 10 upregulated and top 10 downregu-
lated hub genes are shown in Figure 6. 

4. Discussion 

The identification of hub genes by bioinformatics analysis is widely used in tu-
morigenesis research, including HCC [9] [10]. However, most studies employ 
the Venn diagram to identify hub genes [9] [10], and thus some important DEGs 
may be missed. In addition, not all research studies use the same gene chip plat-
form and not all gene chip platforms have all the gene probes. In addition, over 
time, more genes are being discovered, so that some genes that have not pre-
viously been detected by microarrays may be differentially expressed genes and 
have important functions. Robust rank aggregation algorithms can avoid these 
discrepancies and integrate data from different platforms [11]. Another differ-
ence from previous studies is that the minimum sample size of the dataset in-
cluded in this study is 39, whereas that of previous studies is <10 [9] [10]. The 
small sample size of datasets may lead to biased or statistically insignificant re-
sults. This study identified more hub genes than previous studies because this  
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Figure 6. Overall survival analysis of the top 10 upregulated and downregulated hub genes. 
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study utilized datasets with a larger sample size and integrated DEG data using 
an RRA algorithm. 

Our study identified 151 upregulated DEGs, which is relatively higher in num-
ber than previous studies [9] [10]. Through GO analysis, these genes were de-
termined to mostly enrichedin the functional categories of cell division, chro-
mosome, centromeric region, and protein binding using BP, CC and MF analy-
sis, respectively. Pathway analysis revealed that these genes enriched in the cate-
gories of the cell cycle, resolution of sister chromatid cohesion, and separation of 
sister chromatids pathway. These results are similar to those of previous studies 
[10] [12]. Module 1 is the most significant network complex that was filtered by 
PPI network analysis, and all genes are upregulated. The DEGs in Module 1 is 
similar to that described by Shen [10]. These genes play an important role in 
tumor cell cycle. Blocking the expression of any gene may lead to a disruption of 
the cell cycle, thereby delaying the occurrence and development of tumors. In 
addition, we also identified a total of 245 downregulated DEGs. Through GO 
analysis, these genes were shown to mostly enriched in the categories of epox-
ygenase P450 pathway, extracellular region, and heme binding with BP, CC, and 
MF analysis, respectively. Pathway analysis showed that these genes enriched in 
metabolic pathways, metal-binding metallothioneins bind-metals, and retinol 
metabolism. These results have also been described in previous studies [10] [13]. 
Module 2 is the second most significant network complex that was filtered using 
PPI network analysis, and the genes in module 2 are all downregulated. Howev-
er, the genes in module 2 differ from that described by Shen [10]. Furthermore, 
the genes in module 2 enriched in the complement and coagulation cascades 
pathway. The genes in module 3 enriched in the xenobiotics pathway, which is 
similar to module 2 of Shen’s study [10], but the genes in module 3 in our study 
significantly vary from that in module 2 of the same study [10]. These discre-
pancies may be attributed to the sample size of the datasets employed in the 
analysis and variations in the integration algorithm employed [10]. 

PPI network analysis was used to identify potential hub genes. Because not all 
DEGs are associated with HCC prognosis, we identified hub genes that may be 
related to HCC prognosis. We identified 141 hub genes, which is relatively high-
er than that reported by previous studies [9] [10] [12] [13]. Most of the DEGs 
with high interactive degree were upregulated. The top 10 upregulated DEGs 
were CDK1, CCNB1, CCNB2, CDC20, CCNA2, AURKA, MAD2L1, TOP2A, 
BUB1B, and BUB1. These results partially differ from the findings of previous 
studies [9] [10] [12] [13]. 

The CDK1 gene showed the highest degree of interaction in the PPI network. 
CDK1 is an M-phase promoting factor that plays a key role in eukaryotic cell 
cycle by modulating G1/S and G2/M phase transitions. Several studies have elu-
cidated the function of CDK1 in HCC [14] [15] [16]. Zhang et al. reported that 
miR-582-5p can inhibit cell proliferation and induce cell cycle arrest at the 
G0/G1 phase of HCC by targeting CDK1 and AKT3 [15]. Zhou et al. reported 
that metformin can induce miR-378 to downregulate CDK1, which in turn inhi-
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bits cell proliferation in HCC via G2/M arrest [16]. Wu et al. reported that the 
CDK1 inhibitor RO3306 can improve the efficacy of sorafenib in the treatment 
of HCC patient-derived xenograft tumor models by blocking the CDK1/PDK1/ 
β-catenin signaling pathway [14]. CCNB1 and CCNB2 encode proteins that are 
associated with CDK1 and are essential to the cell cycle by regulating the G2/M 
transition. CCNA2 controls G1/S and G2/M phase transitions by forming a se-
rine/threonine protein kinase complex with CDK1 or CDK2. Gu et al. reported 
that microRNA-144 can inhibit cell proliferation, migration, and invasion of 
HCC by targeting CCNB1 [17]. Chai et al. reported that FOXM1 can promote 
cell proliferation in HCC by directly binding and activating the CCNB1 gene at 
the transcriptional level [18]. Li et al. reported that the overexpression of CCNB2 
promotes cell proliferation and migration of HCC via the CCNB2/PLK1 path-
way, and CCNB2 is associated with poor prognosis [19]. Yue et al. reported that 
knocking down CCNA2 reduces cell proliferation, which is caused by ZHX2 
knockdown [20]. CDC20 act as a regulatory protein at multiple points in the cell 
cycle by interacting with other proteins. CDC20 is required for the activity of the 
anaphase-promoting complex/cyclosome, and the complex is modulated by 
MAD2L1, which is a component of the mitotic spindle assembly checkpoint. Li 
et al. reported that silencing CDC20 can inhibit cell proliferation by G2/M-phase 
arrest [21]. Li et al. and colleagues reported that miR-200c-5p can suppress cell 
proliferation, migration, and invasion of HCC by downregulating MAD2L1 [22]. 
AURKA is a mitotic serine/threonine kinase that regulates cell cycle progression. 
Chen et al. reported that the overexpression of AURKA induces entry into the 
epithelial-mesenchymal transition and cancer stem cell behaviors via the PI3K/ 
AKT pathway and silences AURKA-suppressed radiation-enhanced cell inva-
siveness in HCC [23]. Gao et al. reported that downregulation of AURKA results 
in G2/M phase cell arrest and induces apoptosis of HepG2 cells [24]. Also, Zhang 
et al. reported that AURKA promotes chemoresistance in HCC by targeting the 
NF-kappaB/microRNA-21/PTEN signaling pathway [25]. TOP2A is essential for 
proper segregation of daughter chromosomes during mitosis and meiosis by con-
trolling the topological states of DNA. Sudan et al. reported that quercetin-3-O- 
glucoside induces cell cycle arrest in HCC by suppressing TOP2A [26]. Both 
BUB1B and BUB1 encode serine/threonine-protein kinases that are involved in 
spindle checkpoint functions during mitosis [27]. Xu et al. reported that MiR-490- 
5p could inhibit cell proliferation, invasion, and migration as well as increase apop-
tosis by regulating the TGFβ/Smad signaling pathways by inhibiting BUB1 [28]. 
The top 10 upregulated DEGs are involved in mitosis and cell cycle regulation. 

This study also identified several downregulated hub genes that enriched in 
various metabolic pathways. However, these genes are also associated with HCC 
prognosis, indicating that these genes play an important role in HCC prolifera-
tion and progression. The top 10 downregulated DEGs were ESR1, IGF1, FTCD, 
CYP3A4, SPP2, C8A, CYP2E1, TAT, F9, and CYP2C9. ESR1 encodes an estro-
gen receptor that binds with a ligand steroid hormone to regulate gene expres-
sion and cell proliferation and differentiation in eukaryotic tissues. Tu et al. re-
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ported that the overexpression of ESR1 induces apoptosis in ESR1-negative 
Hep3B cells by binding ESR1 to SP1 protein [29]. Additionally, this ESR1-SP1 
complex binds to the TNFα gene promoter and active caspase 3 in a ligand-de- 
pendent manner [29]. Liu et al. reported that microRNA-18a stimulates cell pro-
liferation in HCC by suppressing ESR1 expression [30]. Therefore, microRNA- 
18a could block the protective effects of estrogen and promote the development 
of HCC in women [30]. Additionally, Dai et al. reported that ESR1 may be a tu-
mor suppressor gene in HCC, and ESR1 may be repressed by promoter hyper-
methylation [31]. IGF1 encodes a protein that is similar to insulin and is in-
volved in mediating growth and development. This study has also shown that 
IGF1 is positively correlated with HCC prognosis. In addition, Shen et al. re-
ported that preoperative low serum levels of IGF-1 indicate poor prognosis in 
HCC patients who have undergone hepatectomy [32], and Cho et al. reported 
that low baseline serum IGF-1 levels are independently correlated with shorter 
time to progression and poorer overall survival in patients with HCC who un-
derwent TACE [33]. Conversely, several studies have found that the IGF1 is po-
sitively correlated with HCC tumorigenesis [34] [35]. Liu reported that IGF-1 
promotes the invasive and migratory ability of HCC cells by epithelial-mesen- 
chymal transition via activating survivin [35]. Lei et al. reported that IGF-1 in-
duces the growth and metastasis of HCC by inhibiting proteasome-mediated 
CTSB degradation [34]. Therefore, the function and mechanism of IGF1 in HCC 
tumorigenesis still need to be verified in future studies. FTCD encodes a protein 
that participates in histidine catabolism. Naama and colleagues reported that 
histidine catabolism drains the cellular pool of tetrahydrofolate, which is an es-
sential cofactor in nucleotide synthesis [36]. Thus, upregulating FTCD may help 
inhibit cell proliferation. CYP3A4, CYP2E1, and CYP2C9 encode several mem-
bers of the cytochrome P450 superfamily of enzymes. Cytochrome P450 proteins 
can catalyze many reactions that are involved in the synthesis of cholesterol and 
steroids and in drug metabolism. Ashida et al. identified that CYP3A4 is a novel 
tumor suppressor gene, and its downregulation is related to poor HCC progno-
sis [37]. Liu et al. reported that HBx promotes cell growth by inhibiting CYP2E1 
expression by downregulating HNF4α [38]. Yu et al. reported that CYP2C9 is 
suppressed in HCC cells by hsa-miR-128-3p [39]. These studies indicate that 
CYP2C9, CYP2E1, and CYP3A4 are protective biomarkers for HCC patients, 
but their underlying mechanisms remain unclear [37] [38] [39]. These possibly 
inhibit tumorigenesis by regulating metabolic pathways [40] [41], as indicated 
by the results of pathway enrichment analysis in this study. C8A encodes protein 
that is a component of the complement cascade system. F9 encodes a protein 
that is involved in the blood coagulation cascade. However, these two genes also 
positively correlated to overall survival in HCC, although the underlying me-
chanisms are unknown. These may involve regulation of the complement and 
coagulation cascades pathway in which the two genes are involved, as demon-
strated in the results of KEGG pathway enrichment analysis. Lao et al. reported 
that phosphoprotein SPP2 can inhibit the growth and bone metastasis of BMP2- 
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induced prostate cancer [42]. However, the mechanism of lower SPP2 expres-
sion that is associated with poor prognosis of HCC remains unclear. Fu and col-
leagues reported that the downregulation of TAT contributes to the develop-
ment and progression of HCC [43]. However, the mechanism of TAT in the tu-
morigenesis inhibition of HCC is not clear. These genes may also become novel 
targets for the treatment of HCC, and the mechanisms of these genes may be 
elucidated in future studies. 

The hub genes identified in this study are much more reliable than hub genes 
identified in previous studies although this study identified much more hub 
DEGs than previous studies. This may be due to the use of a larger sample size 
for the included datasets, thereby reducing selection bias. The second reason is 
that the RRA algorithm in integrating DEGs may decrease data omissions. The 
third reason is that the DEGs were associated with the prognosis of HCC. How-
ever, the study also has several limitations. First, our prognostic analysis is based 
on TCGA data only. The sample size is relatively small and there is a certain bias 
risk. Second, these DEGs still need to be validated by in vivo and in vitro studies, 
as there were only identified by bioinformatics analysis. Also, the mechanism of 
several DEGs still need to be elucidated. 

5. Conclusion 

This study identified a significantly higher number of DEGs that are associated 
with HCC prognosis. Upregulated DEGs enriched in the cell cycle, whereas down- 
regulated DEGs enriched in the metabolism pathway. These results needed to be 
verified by in vivo and in vitro studies. 
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Supplementary Materials 
 

 
Figure S1. The top 10 functional categories of genes in module 1 (a), 2 (b) and 3 (c) with 
respect to biological process, cellular component and molecular function analysis.       
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Figure S2. The KEGG and REACTOME pathway enrichment analysis of genes in module 1 (a), 2 (b) and 3 
(c).       
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