
Journal of Software Engineering and Applications, 2021, 14, 95-109
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2021.144007 Apr. 22, 2021 95 Journal of Software Engineering and Applications

A Comparative Evaluation of Test
Coverage Techniques Effectiveness

Xaveria Youh Djam*1, Nachamada Vachaku Blamah2, Modesta Ero Ezema3

1Department of Computer Science, University of Yaounde I, Yaounde, Cameroon
2Department of Computer Science, University of Jos, Jos, Nigeria
3Computer Science Department Faculty of Physical Sciences, University of Nigeria Nsukka, Nsukka, Nigeria

Abstract
Software systems have become complex and challenging to develop and
maintain because of the large size of test cases with increased scalability is-
sues. Test case prioritization methods have been successfully utilized in test
case management. However, the prohibitively exorbitant cost of large test
cases is now the mainstream in the software industry. The growth of agile
test-driven development has increased the expectations for software quality.
Yet, our knowledge of when to use various path testing criteria for cost-
effectiveness is inadequate due to the inherent complexity in software testing.
Existing researches attempted to address the issue without effectively tackling
the scalability of large test suites to reduce time in regression testing. In order
to provide a more accurate way of fault detection in software projects, we in-
troduced novel coverage criteria, called Incremental Cluster-based test case
Prioritization (ICP), and investigated its potentials by making a comparative
evaluation with three un-clustered traditional coverage-based criteria:
Prime-Path Coverage (PPC), Edge-Pair Coverage (EPC) and Edge Coverage
(EC) based on mutation analysis. By clustering test suites, based on their dy-
namic run-time behavior, the number of pair-wise comparisons is reduced
significantly. To compare, we analyzed 20 functions from 25 C programs, in-
strumented faults into the programs, and used the Mull mutation tool to
generate mutants and perform a statistical analysis of the results. The experi-
mental results show that ICP can lead to cost-effective improvements in fault
detection.

Keywords
Software Testing, Fault Detection, Mutation Analysis, Test Case
Prioritization, Control Flow Coverage

How to cite this paper: Djam, X.Y., Bla-
mah, N.V. and Ezema, M.E. (2021) A
Comparative Evaluation of Test Coverage
Techniques Effectiveness. Journal of Soft-
ware Engineering and Applications, 14,
95-109.
https://doi.org/10.4236/jsea.2021.144007

Received: December 1, 2020
Accepted: April 19, 2021
Published: April 22, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.144007
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.144007
http://creativecommons.org/licenses/by/4.0/

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 96 Journal of Software Engineering and Applications

1. Introduction

Despite the huge advancement in agile test-driven development, the problem of
inexhaustible testing continues to pose a major challenge in software quality as-
surance. The inherent complexity in software testing makes traditional un-
clustered path testing criteria inadequate. Software testing is an important veri-
fication and validation activity to reveal program failures in order to improve the
quality of software [1]. Unfortunately, the problem of finding all faults in a pro-
gram (or proving their absence), for any meaningful program, is inexhaustible.
Owing to the complexities in software testing, therefore, developers and testers
need ways to evaluate their testing efforts in terms of their ability to detect faults
in order to make intelligent decisions about testing. The ability, given a test
suite, to predict whether it is effective at finding faults is essential to rational
testing efforts. In retrospect, using the set of defects discovered during a software
product’s lifetime, the quality of a test suite could be evaluated by measuring its
ability to detect those faults. Faults directly jeopardize software by decreasing its
performance and overall software quality.

Software systems have become complex and challenging to develop and
maintain because of scalability issues. Software testing is a demanding task and
the challenges of testing large-scale software cannot be overemphasized due to
the large test suite size.

However, the question of real concern to researchers and potential users of
test adequacy criteria is it possible to reduce the test suite size without compro-
mising quality? Prioritization techniques involving humans present a lot of sca-
lability issues because the maximum number of comparisons a human can make
consistently is approximately 100, above this threshold, inconsistency grows sig-
nificantly, leading to reduced effectiveness. Unfortunately, large-scale systems
often contain many test cases potentially requiring more than 100 comparisons.

Furthermore, Developers and Tester would like to know whether the invest-
ment in systems to monitor code coverage is worthwhile and whether the effort
to cluster test cases that increase coverage is important. They would like to know
the additional cost of achieving adequate coverage through the use of incremen-
tal clustering using the Analytical Hierarchy Process (AHP), the payback for that
cost, and in particular, whether fault detection increases significantly if test sets
are adequate or close to adequate according to the criteria.

To address this problem, this paper uses incremental clustering-based priori-
tization (ICP) approach to reduce the cost of human-interactive prioritization.
In our approach, the human tester prioritizes not the individual test cases but
clusters of similar test cases.

Globally, this paper seeks to answer the following main research question:
RQ: How cost-effective is Incremental Clustering-based Prioritization (ICP)

compared to PPC, EPC, and EC in fault detection?
This question was addressed by experimentation on 25 well-known C pro-

grams of various sizes. To make our results as relevant as possible to professional

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 97 Journal of Software Engineering and Applications

software developers and testers, we searched available public archives for speci-
fications and C programs that would be suitable for the study. We used mutants
as proxies for faults. Experiments were performed by comparing the control flow
coverage on four testing criteria: ICP, PPC, EPC, and EC using subject programs
developed at Siemens Corporate Research.

The primary contributions of this paper are as follows:
1) The paper presents a novel use of clustering in test case prioritization using

AHP for fault detection in software projects. A novel Comparison Coverage Ma-
trix Generator was developed, in order to evaluate the effectiveness of a test suite
for revealing faults.

2) This paper introduces novel coverage criteria, called Incremental Clus-
ter-based test case Prioritization (ICP), and investigates its potentials by making
a comparative evaluation with three unclustered traditional coverage-based cri-
teria: Prime-Path Coverage (PPC), Edge-Pair Coverage (EPC), and Edge Cover-
age (EC) based on mutation analysis. The results of the empirical study show
that APH-based prioritization can lead to cost-effective improvements over
un-clustered coverage-based prioritization.

The rest of this paper is organized as follows: Section 2 summarizes relevant
prior work on test criteria. Section 3 presents the background of this work. Sec-
tion 4 introduces the incremental cluster-based test case prioritization tech-
nique. Section 5 describes our experimental comparison in detail including the
subject pool and the method used results are discussed in Section 6. Treat to va-
lidity is discussed in section 7, with a conclusion and future work in Section 8.

2. Background

Structural coverage measures have long been studied as a means for evaluating
the effectiveness of a test suite.

Test criteria can be compared both theoretically and experimentally. The two
most common theoretical comparison techniques are traditional subsumption
and the number of test requirements. A test criterion C1 subsumes another test
criterion C2 if and only if every set of test cases that satisfies criterion C1 is
guaranteed to satisfy C2. For example, if a test set takes every branch in a control
flow graph (CFG), that test set is guaranteed to cover every node, thus edge cov-
erage subsumes node coverage (also called statement coverage).

A lot of researches have been done on coverage criteria to determine their ef-
fectiveness, yet there is still a dual need for a more robust comparative technique
to improve the strength of existing researches. Test case prioritization seeks to
find an efficient ordering of test case execution to reduce time in regression
testing. In recent times, many efforts have been dedicated to code coverage crite-
ria to monitor the thoroughness of software tests [2] [3] [4] [5]. More recently,
data flow-based methods have been defined and been implemented in several
tools [6] [7]. Various comparisons have been made of the theoretical relations
between coverage methods [8] [9] [10] [11] [12].

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 98 Journal of Software Engineering and Applications

3. Related Work

Test adequacy criteria based on data flow were proposed Hutchins, et al. [12].
The first data flow adequacy tool was implemented by Frankl, et al. [13] [14],
who built the ASSET system that operated on Pascal code in accordance with the
definitions of Rapps and Weyuker. Test adequacy criteria based on data flow
have been proposed in literature but yet the gap still exists to choose the most
appropriate criteria in complex structures in large-scale systems. Many previous
studies have attempted to evaluate the cost and effectiveness of test criteria.
Frankl, et al. [14] [15] [16] carried out several studies comparing data flow crite-
ria with EC, mutation coverage, and manual testing approaches. Ammann and
Offutt [17] also compared data flow (all-uses) with mutation testing. The only
study that involved edge-pair or prime paths was by Li, et al. [18], who com-
pared mutation, EPC, all-uses, and PPC without clustering the test cases. The
study found little difference between EPC and PPC, both were stronger than
all-uses, and mutation testing was stronger than the other three. Structural cov-
erage is an often used surrogate for fault detection capabilities [19] [20] [21]
[22], above studies had a lot of gaps in prioritizing test cases. Our study is a bit
larger in terms of subjects and number of test set pool than these older studies
with novel coverage criteria, called Incremental Cluster-based test case Prioriti-
zation (ICP) with the use of Analytic Hierarchy Process (AHP). AHP algorithm
[23] has been used in various software Engineering fields to help decision mak-
ers to prioritize tasks.

4. Incremental Cluster-Based Test Case Prioritization
Technique

We wish to find an approach to reduce delay in testing (reducing testing efforts
and cost) without compromising quality. To this end, we employed test case
prioritization technique. This paper aims to reduce the number of comparisons
required for the pair-wise comparison approach through the use of incremental
clustering-based prioritization (ICP) using AHP (Analytical Hierarchical Process)
technique, which has been studied in the field of Requirement Engineering. In-
stead of prioritizing individual test cases, clusters of test cases are prioritized us-
ing AHP technique and compare with three unclustered traditional cover-
age-based criteria: Prime-Path Coverage (PPC), Edge-Pair Coverage (EPC) and
Edge Coverage (EC) based on mutation analysis. By clustering test suites, based
on their dynamic run-time behaviour, the number of pair-wise comparisons is
reduced significantly.

A pair-wise comparison approach for prioritization requires O(n2). The maxi-
mum number of comparisons a human can make consistently is approximately
100 [23], above this threshold, inconsistency grows significantly, leading to re-
duced effectiveness. In order to require less than 100 pair-wise comparisons, the
test suite should contain no more than 14 test cases. Considering the scale of real
world testing projects, the scalability issues present a significant challenge. For

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 99 Journal of Software Engineering and Applications

example, suppose there 1000 test cases to prioritize, the total number of pair-
wise comparisons would be 499,500. It is unrealistic to expect a human tester to
provide reliable responses for such a large number of comparisons. This research
aims to reduce the number of pair-wise comparisons through the use of incre-
mental cluster-based test case prioritization technique using AHP.

The clustering process partitions objects into different subsets so that objects
in each group share common properties. The clustering criterion determines
which properties are used to measure the commonality. When considering test
case prioritisation, the ideal clustering criterion would be the similarity between
the faults detected by each test case. However, this information is inherently un-
available before the testing task is finished. Therefore, it is necessary to find a
surrogate for this, in the same way as existing coverage-based prioritisation
techniques turn to surrogates for fault-detection capabilities [23].

In this paper we utilize dynamic execution traces of each test case as a surro-
gate for the similarity between features tested. Execution of each test case is
represented by a binary string. Each bit corresponds to a statement in the source
code. If the statement has been executed by the test case, the digit is 1; otherwise
it is 0. The similarity between two test cases is measured by the distance between
two binary strings using Hamming distance.

A pair-wise comparison approach for prioritization requires O(n2) compari-
sons. While redundancy may make pair-wise comparison very robust, the high
cost has prevented it from being applied to test case prioritization. The test cases
are grouped into clusters: out-of-range, within-range (considering boundary value
analysis and equivalent partitioning). It would be more advantageous to execute
test suites in incremental clusters than an entire cluster. The latter approach
would result in repeating similar parts of SUT before the prioritization tech-
nique chooses the next clusters.

In ICP, intra-cluster prioritization is performed first. Based on the results of
intra-cluster prioritization, each cluster is assigned a test case that represents the
cluster. Using this representative, ICP performs incremental cluster prioritiza-
tion.

AHP allows the tester to compare two entities with degrees of preference ra-
ther than simply binary relations and in this research we call it prioritization
score (PS). Previous work using human input for test case prioritization only
required binary relations, which were obtained by checking which test case de-
tects more faults than the other. We derived varying degrees of relative impor-
tance by checking how much difference there is between the numbers of faults
detected by two test cases in an incremental preference.

Suppose two test cases Xa and Yb are being compared. Let fa be the number of
faults detected by Xa and fb by Yb, this paper sets the prioritization score (PS)
between Xa and Yb as shown in Table 1.

An incremental hierarchical clustering technique was employed and a com-
parative coverage matrix (M’) was derived as shown in Algorithm 1.

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 100 Journal of Software Engineering and Applications

Table 1. Prioritization Score (PS) for the Tester (User).

Condition Prioritization Score (PS) Intensity of Importance

Xa = Yb 1 Equal

Xa > Yb and Xa = 0 2 Very Strongly Prefer

Xa > 0, Yb > 0, Xa ≥ 4Yb 3 Extremely Prefer

Xa > 0, Yb > 0, Xa ≥ 3Yb 4 Very Strongly Prefer

Xa > 0, Yb > 0, Xa ≥ Yb 5 Strongly Prefer

Algorithm 1. Comparison coverage matrix generator.

Input: A set of n Test Cases, Ti, an ordered set of Clustered, CK

Output: Clusters of Test Cases, C, Comparison Coverage Matrix Generator, M’

let Ti ε T be the ith test cases

Form n clusters, each with one test case Ti

C ← {}

Add clusters to C

Identify clusters CK with minimum distances from parent node to child node

For i = 1 to i ≤ n

M [i, i] = 1 (1 ≤ i ≤ n)

M [j, j] = 1 (1 ≤ j ≤ n)

M’ (i, j) = (M (i, j)/Σi ≤ k ≤ nM (i, k))*PS

By comparing a test case T1 with other test cases, Ti in pairs so that the value

of the level of importance of all the test cases in the form of qualitative opinions
is obtained based on the level of fault detection. To change these results into a
form of quantitative opinion, the rating scale ratio is used (Table 1). Compari-
sons are made based on decision-making policies by assessing the importance of
one test case to another in revealing fault.

When using multiple criteria, AHP requires the human user to determine the
relative importance not only between test cases that are being prioritized (i.e. Ti
ε T) but also between criteria themselves (i.e. expert knowledge and state-
ment-based prioritization). Using Table 1, this paper applies a set of 5 different
human-to-coverage preference values called prioritization score, PS. The process
starts from the hierarchy level which is intended to identify clusters with mini-
mum distances from parent node to child node. Then the arrangement of all or-
dered clusters, CK multiply with their corresponding prioritization score (PS)
will form a Coverage Cluster Matrix, M’. The results of comparisons are com-
bined in an n by n matrix M’ as shown in the Comparison Coverage Matrix Ge-
nerator algorithm. Data normalization is done by dividing the elements in each
column with the total number per column in question, then the normalized rela-
tive weight values are obtained by dividing each element. After that, proceed
with calculating the eigenvalue of the vector and testing its consistency, if it is

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 101 Journal of Software Engineering and Applications

not consistent then the data retrieval needs to be repeated. The eigenvalue of the
vector in question is the maximum eigenvector value obtained from each eigen-
vector per line. Eigenvector values per line are obtained by dividing the total
score on the line of each criterion by the number of columns. The maximum ei-
genvector value (Ei) is obtained by summing the multiplication of the total score
in each criterion column with eigenvector per line. That is, the priority weight-
ing vector E is the eigenvector of a matrix M’, which is calculated from M, by
normalizing the columns. E is calculated by taking average across the rows of M’:

Priority Weighting Vector Ei = (Σi ≤ k ≤ nM (i, k))/n

5. Experimental Design

This section, describes the subject programs, the faulty programs, test cases and
the experiments performed. The major results of this paper are gotten from an
experiment to compare the cost-effectiveness of ICP, EC, EPC and PPC based on
mutation analysis. This paper seeks to answer the following research question:

RQ: How cost-effective is Incremental Clustering-based Prioritization (ICP)
compared to PPC, EPC and EC in fault detection?

In response to the research question, we designed an experiment with three
(3) independent variables and two (2) dependent variables: The first indepen-
dent variable is the Test Criterion, and it has four (4) values (ICP, EC, EPC, and
PPC). The second is the identification of clusters. The third independent varia-
ble is the set of mutants. As stated previously, recent researches have questioned
whether using all mutants is valid for experimental comparisons of test criteria.
This study used the traditional approach of using all mutants as proxies for
faults, as well as finding the minimal set (as defined below), and using them as
proxies for faults. This not only allows us to have two views of the differences
among the criteria we evaluate, but also provides evidence about the claim that
experimental comparisons should use minimal sets of mutants. The experiment
has two dependent variables: effectiveness and cost. Effectiveness is measured by
the number of faults the criterion is able to reveal.

5.1. Experimental Subject Program

We used a set of 25 well-known subject programs written (classes) in C as expe-
rimental subject programs. These subject programs are the so-called Siemens
Suite of Program, which is a well-known open-source program and one of the
programs—Space, was developed at the European Space Agency. Table 2 sum-
maries the subject programs. We chose these programs as they are used in simi-
lar researches and accepted as standard. For each program, the table shows the
name, number of lines of code, number of mutants generated by all operators,
number of equivalent mutants, and number of tests in the mutation adequate
test set. Equivalent mutants were determined by hand analysis. The number of
mutants yielded from each subject ranged from 18 in TrashAndTakeout to 3987
in PrintTokens 2. The subject programs (Table 2) were chosen to meet special

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 102 Journal of Software Engineering and Applications

criteria: To allow creation of a reasonable test pool, they must have an unders-
tandable specification. Because each program must be understood by several
people (to seed faults, and to examine test cases in clusters), they must not be
overly complex. But they also have to be large and complex enough to be consi-
dered realistic, and to permit the seeding of many hard-to-find errors. Each
program must be able to compile and execute as a stand-alone unit. We chose
these programs because of the maturity of the associated artifacts and because of
their historical significance.

Table 2. Description of subject programs.

Subject Program LOC Mutants
Equivalent

Mutants
Test pool Size
(#Test Cases)

Check Palindrome 110 157 24 9

Digital Reverser 117 389 53 23

Guassian 1253 19 16 22

Heap 1041 78 67 9

Inverse Permutation 115 565 47 12

Merge Sort 132 991 69 16

Num Zero 110 187 18 6

Power 211 278 17 9

PrintTokens 726 3454 137 24

PrintTokens 2 570 3987 145 26

PrintPrime 95 756 25 6

Queue 164 467 31 11

Quicksort 123 1034 26 12

Recursive Sort 117 546 12 9

Repace 564 1023 178 48

Schedule 412 294 35 35

Schedule2 374 305 45 31

Space 8905 38 297 50

Stack 156 56 12 12

Tcas 173 29 37 32

Totinfo 281 245 89 21

TestPad 124 24 7 12

TrashAndTakeout 159 18 14 10

TwoPred 113 23 19 16

UniCal 119 319 3456 21

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 103 Journal of Software Engineering and Applications

5.2. Mutation Operators

To generate mutants of the subject programs, we used Mull mutation tool to
generate mutants for code written in C. To generate mutants from a source file,
each line of code was considered in sequence and each of four classes of “muta-
tion operators” was applied (whenever possible). In other words, every valid ap-
plication of a mutation operator to a line of code resulted in another mutant be-
ing generated. The four classes of mutation operators were:
- Replace an integer constant C by 0, 1, −1, ((C) + 1), or ((C) − 1).
- Replace an arithmetic, relational, logical, bitwise logical, increment/decrement,

or arithmetic-assignment operator with another operator from the same
class.

- Negate the decision in an if or while statement.
- Delete a statement.

The first three operator classes were used to identify a set of “sufficient” muta-
tion operators, i.e., a set S of operators such that test suites that kill mutants
formed by S tend to kill mutants formed by a very broad class of operators. They
were adapted so that they would work on C programs rather than the Fortran of
the original research. The fourth operator, was added because some of the
subject programs contained a large number of pointer-manipulation and field-
assignment statements that would not be vulnerable to any of the sufficient mu-
tation operators. About 12.0% of the resulting mutants did not compile. The
numbers of mutants of each subject program that compiled appear in Table 2.
For the Space program, there were so many mutants generated that it was in-
feasible to run them all on the test suite. Therefore we ran the test suite on every
10th mutant generated. Because the number of mutants generated per line did
not follow any pattern that would interact with the selection of every 10th mutant
(it depends on the constructs on the line only), this amounted to a random se-
lection of 10% of the mutants, taken from a uniform distribution over all the
possible mutants. Additionally, this ensured that the whole source code was
seeded with faults (and not simply a few functions/procedures).

5.3. Effectiveness Analysis

The effectiveness of a test case can be measured by its ability to detect faults for
both instrumented and none instrumented programs. Test cases of various sizes
were used. For each subject program, we created a set of adequacy test sets by
hand. The number of test cases for each program is shown in the last column of
Table 2: Mull (an open-source mutation tool) was used to generate all mutants.
After generating mutants, we designed adequate test sets and identified equiva-
lent mutants by hand. To evaluate the effectiveness of a criterion (ICP, PPC,
EPC, EC) for any subject program, we used all the adequate test sets. The effec-
tiveness of any program, is the average of the mutation score. Effectiveness is
calculated twice, once for all the mutants generated from each subject program
and again for just the weak set of mutants.

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 104 Journal of Software Engineering and Applications

5.4. Cost Analysis

The cost analysis for each criterion is based on two values:
1) The number of test cases needed;
2) The number of faults detected for clustered and unclustered test cases.
The two measures are dynamic in the sense that they are computed based only

on the source code of the system under test (SUT). ICP can detect more faults
(Table), especially in programs that have complicated control flows, but at a
higher cost. Thus, a practical tester can make an informed cost versus benefit
decision. A better understanding of which structures in the programs contribute
to the expense might help to choose when to use PPC. This led to an argument
that the expense of ICP is worthwhile because it will help the software testers
find more faults. In general, human intervention is needed to determine pair-
wise comparison and the choice of dissimilarity metric for clustering.

6. Results and Discussion

Table 3 shows data regarding the effectiveness of the test sets selected for each
criterion. The first column gives the names of the 25 subject programs, as in Ta-
ble 2. The next four columns, grouped under Mutation Score (full), show the
mutation scores on the full set of mutants obtained by the test sets that satisfy
ICP, PPC, EPC, and EC. For these programs, ICP-adequate test sets performed
better than PPC, EPC- and EC-adequate test sets across the board. Across the
programs, none achieved a 100% full mutation score. The next four columns,
grouped under Weak Mutation Score, show the mutation score on the minimal
set of mutants by the four criteria. As shown in Table 3, the minimal sets have
significantly fewer mutants. For instance, the ICP test sets selected for the first
subject program (Check Palindrom) killed on average 78% of the mutants.

Considering all subject programs, the mean mutation scores (full) achieved by
the test sets for ICP, PPC, EPC, and EC were 98%, 97%, 95% and 95% respec-
tively. The mean mutation scores (weak) achieved by the test sets for ICP, PPC,
EPC, and EC were 79%, 78%, 71% and 68% respectively.

Table 4 gives an approximation of the cost-effectiveness ratio of the 4 criteria
on the experimental subjects. It is important to note that this table only counts
the number of tests, not the cost of creating those tests. The metric cost would
vary dramatically by the amount of automation used, particularly if automatic
test data generation was available. As in Table 4, these data indicate that PPC is
the most efficient in detecting faults and EC the least. Anecdotally, we found out
that generating and satisfying the test requirements for ICP was more difficult
than PPC, EPC and EC. Finding values to kill the last few mutants was quite
time consuming as well as intellectually challenging.

7. Treat to Validity

A common threat in software engineering experiments is the representative na-
ture of the programs. No matter how many programs are used, it will never be

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 105 Journal of Software Engineering and Applications

Table 3. Effectiveness of complete mutant sets and weak mutant set considering reduced
requirement.

Subject Program
Mutation Score (Ful) Weak Mutation Score

PPC EPC EC ICP PPC EPC EC ICP

Check Palindrom 0.93 0.91 0.67 0.93 0.68 0.46 0.37 0.78

Digital Reverser 0.93 0.95 0.88 0.96 0.51 0.49 0.61 0.61

Guassian 0.93 0.77 0.94 0.94 0.62 0.57 0.44 0.72

Heap 0.96 0.93 0.74 0.97 0.63 0.54 0.24 0.73

Inverse Permutation 0.94 0.96 0.65 0.90 0.73 0.65 0.62 0.83

Merge Sort 0.93 0.87 0.93 0.94 0.53 0.47 0.53 0.63

Num Zero 0.97 0.92 0.84 0.98 0.57 0.52 0.74 0.67

Power 0.87 0.91 0.74 0.88 0.77 0.54 0.71 0.87

PrintTokens 0.98 0.93 0.83 0.99 0.58 0.43 0.52 0.68

PrintTokens 2 0.94 0.97 0.86 0.95 0.64 0.47 0.46 0.74

PrintPrime 0.96 0.98 0.87 0.94 0.58 0.58 0.47 0.68

Queue 0.98 0.89 0.97 0.99 0.68 0.69 0.37 0.78

Quicksort 0.95 0.88 0.98 0.96 0.55 0.68 0.58 0.65

Recursive Sort 0.97 0.92 0.91 0.98 0.57 0.51 0.51 0.67

Repace 0.89 0.86 0.76 0.87 0.81 0.46 0.36 0.83

Schedule 0.89 0.94 0.92 0.99 0.98 0.51 0.41 0.97

Schedule2 0.99 0.93 0.73 0.98 0.79 0.43 0.52 0.69

SPace 0.97 0.98 0.91 0.97 0.77 0.58 0.71 0.77

Stack 0.98 0.89 0.92 0.99 0.58 0.69 0.92 0.68

Tcas 0.91 0.88 0.83 0.92 0.61 0.58 0.64 0.71

Totinfo 0.98 0.95 0.89 0.99 0.78 0.67 0.21 0.79

TestPad 0.93 0.86 0.79 0.94 0.99 0.56 0.49 0.98

TrashAndTakeout 0.96 0.89 0.88 0.97 0.81 0.79 0.43 0.91

TwoPred 0.97 0.93 0.95 0.98 0.79 0.63 0.51 0.89

UniCal 0.96 0.84 0.84 0.97 0.56 0.44 0.75 0.66

Min(%) 91 84 67 91 0.51 0.43 0.21 0.61

Max(%) 97 0.95 0.98 97 0.79 0.79 0.75 0.89

SD 0.04 0.03 0.05 0.04 0.11 0.23 0.22 0.21

Mean (Average) 0.97 0.96 0.95 0.98 0.78 0.71 0.68 0.79

Table 4. Cost-effectiveness ratio of full mutant sets.

 Test Cases Faults Cost/Effectiveness (%)

PPC 17,985 67 0.97

EPC 1456 34 0.96

EC 894 25 0.95

ICP 19,972 78 0.98

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 106 Journal of Software Engineering and Applications

possible to ensure the results can generalize to all programs. The subjects were
from Simen programs and open sources programs, rather than part of thousands
of industrial software products. Therefore, the results may not generalize to in-
dustrial settings. In principle, given that the programs used in our experimental
study are smaller than programs that solve industrial-scale, real-world problems,
we cannot conclusively rule out the possibility that the results may not be gene-
ralized to larger and more complex programs. Our experimental design required
completely adequate test suites, which had to be created by hand, thus limiting
the size of the programs. This makes our conclusions more definitive at the po-
tential cost of generalization.

Another threat is the selection of test cases. Given that we adopted the notion
of building a minimal set of mutants, we needed a minimal test set to compute it.
First, we generate for each program, by hand, a universe of mutation-adequate
test cases. This potentially is a threat because the results could be diverse with
different test sets. We opted for a reduced test pool because the larger the num-
ber of test cases in a test suite, the more likely it is that some test cases would be
redundant. This is a somewhat non-intuitive consequence of the notion of mi-
nimal sets of mutants; testers really do not need nearly as many tests as we have
always thought. We just need the right tests. Unfortunately, creating such test
sets for 25 programs is a very demanding task and to create multiple sets for
each program would be impractical. The second point is that the selection of test
cases to cover structural criteria is also restricted to this universe of test cases
and so could have the same threat. Nevertheless, in terms of code coverage, what
matters is the sequence in which the test cases are applied since we know that all
structural requirements are covered after applying all test cases.

8. Conclusion and Future Work

A testing criterion is good if and only if it is capable of revealing faults during
the testing process in the system under test. We introduced novel coverage crite-
ria, called Incremental Cluster-based test case Prioritization (ICP) and investi-
gated it potentials by making a comparative evaluation with three unclustered
traditional coverage-based criteria: Prime-Path Coverage (PPC), Edge-Pair Cov-
erage (EPC) and Edge Coverage (EC) based on mutation analysis. We experi-
mentally compared ICP, EC, EPC, and PPC in terms of cost and effectiveness
using 25 C programs along with their test suits. As expected, the results indi-
cated that ICP depicted more faults than other criteria. Based on the efficiency
ratio in Table 4, ICP is the most efficient criterion.

ICP can detect more faults, especially in programs that have complicated con-
trol flows, but at a higher cost. Thus, a practical tester can make an informed
cost versus benefit decision. A better understanding of which structures in the
programs contribute to the expense might help to choose when to use PPC. This
led to an argument that the expense of ICP is worthwhile because it will help the
software testers find more faults.

https://doi.org/10.4236/jsea.2021.144007

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 107 Journal of Software Engineering and Applications

Our experimental results open considerably a number of research issues.
With the current development in software testing, the combination of cover-

age criteria with symbolic execution technology in a large project such as kernel
suites is our next line of action. Furthermore, further exploration of the weak-
nesses/strength of coverage criteria in order to move students from trial-and-error
testing to evidence-based testing is equally an important part of future research.
Future work equally includes improving the efficiency of our experiments to
other problems in software testing, such as software fault prediction, software
fault localization, test suite prioritization and test suit minimization.

Acknowledgements

Many thanks to Siemens Corporate Research Team for making the Siemens and
Space programs available for this research. Many thanks to Anne Sah for sharing
and discussing her Java DU-coverage tools, which helped me to choose the ap-
propriate mutant tool for C programs. Thanks also to all the researchers who
worked on and improved these subject programs and artifacts over the years.
We would like to also thank Victor Phaho Blaise for reviewing drafts of this pa-
per.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Andrews, J.H. and Zhang, Y. (2003) General Test Result Checking with Log File

Analysis. IEEE Transactions on Software Engineering, 29, 634-648.
https://doi.org/10.1109/TSE.2003.1214327

[2] Ma, Y.-S., Offutt, J. and Kwon, Y.-R. (2005) Mujava: An Automated Class Mutation
System. Software Testing, Verification, and Reliability, 15, 97-133.
https://doi.org/10.1002/stvr.308

[3] Hemmati, H. (2015) How Effective Are Code Coverage Criteria? 2015 IEEE Inter-
national Conference on Software Quality, Reliability and Security, Vancouver, 3-5
August 2015, 151-156. https://doi.org/10.1109/QRS.2015.30

[4] Schwartz, A. and Hetzel, M. (2016) The Impact of Fault Type on the Relationship
between Code Coverage and Fault Detection. IEEE/ACM International Workshop
in Automation of Software Test, Austin, 2016, 29-35.
https://doi.org/10.1145/2896921.2896926

[5] Papadakis, M., Henard, C., Harman, M., Jia, Y. and Le Traon, Y. (2016) Threats to
the Validity of Mutation-Based Test Assessment. Proceedings of the International
Symposium on Software Testing and Analysis, Saarbrücken, Germany, 2016, 354-365.
https://doi.org/10.1145/2931037.2931040

[6] Chekam, T.T., Papadakis, M., Traon, Y.L. and Harman, M. (2017) An Empirical
Study on Mutation, Statement and Branch Coverage Fault Revelation that Avoids
the Unreliable Clean Program Assumption. Proceedings of the International Con-
ference on Software Engineering (ICSE), Buenos Aires, Argentina, 20-28 May 2017,
597-608. https://doi.org/10.1109/ICSE.2017.61

https://doi.org/10.4236/jsea.2021.144007
https://doi.org/10.1109/TSE.2003.1214327
https://doi.org/10.1002/stvr.308
https://doi.org/10.1109/QRS.2015.30
https://doi.org/10.1145/2896921.2896926
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1109/ICSE.2017.61

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 108 Journal of Software Engineering and Applications

[7] Kurtz, B., Ammann, P., Offutt, J. and Kurtz, M. (2016) Are We There Yet? How
Redundant and Equivalent Mutants Affect Determination of Test Completeness.
2016 IEEE Ninth International Conference on Software Testing, Verification and
Validation Workshops, Chicago, 11-15 April 2016, 142-151.
https://doi.org/10.1109/ICSTW.2016.41

[8] Yan, Z. and Zhang, L.J. (2019) A Data Dependent Parallel Computing Method
Based on LLVM Intermediate Representation. Computer Application Research, 37,
437-442.

[9] Ammann, P., Offutt, J. and Xu, W.Z. (2008) Coverage Computation Web Applica-
tions. http://cs.gmu.edu:8080/offutt/coverage/

[10] Frankl, P.G., Weiss, S.N. and Hu, C. (1997) All-Uses Versus Mutation Testing: An
Experimental Comparison of Effectiveness. Journal of System Software, 38, 235-253.
https://doi.org/10.1016/S0164-1212(96)00154-9

[11] Ammann, P. and Offutt, J. (2017) Introduction to Software Testing. 2nd Edition,
Cambridge University Press, Cambridge, UK.
https://doi.org/10.1017/9781316771273

[12] Hutchins, M., Foster, H., Goradia, T. and Ostrand, T. (1994) Experiments of the Ef-
fectiveness of Dataflow- and Controlflow-Based Test Adequacy Criteria. Proceed-
ings of the 16th International Conference on Software Engineering, Sorrento, Italy,
16-21 May 1994, 191-200.

[13] Rothermel, G. and Harrold, M.J. (1998) Empirical Studies of a Safe Regression Test
Selection Technique. IEEE Transsction on Software Engineering, 24, 401-419.
https://doi.org/10.1109/32.689399

[14] Frankl, P.G. and Iakounenko, O. (1998) Further Empirical Studies of Test Effec-
tiveness. ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, 23, 153-162. https://doi.org/10.1145/291252.288298

[15] Vokolos, F.I. and Frankl, P.G. (1998) Empirical Evaluation of the Textual Diffe-
rencing Regression Testing Technique. Proceedings of International Conference on
Software Maintenance, Bethesda, MD, USA, 20-20 November 1998, 44-53.

[16] Harder, M., Mellen, J. and Ernst, M.D. (2003) Improving Test Suites via Operation-
al Abstraction. Proceedings of 25th International Conference on Software Engi-
neering, Portland, OR, USA, 3-10 May 2003, 60-71.
https://doi.org/10.1109/ICSE.2003.1201188

[17] Ammann, P., Delamaro, M.E. and Offutt, J. (2014) Establishing Theoretical Minim-
al Sets of Mutants. 2014 IEEE 7th International Conference on Software Testing,
Verification and Validation, Cleveland, 31 March-4 April 2014, 21-30.
https://doi.org/10.1109/ICST.2014.13

[18] Li, N., Praphamontripong, U. and Offutt, J. (2009) An Experimental Comparison of
Four Unit Test Criteria: Mutation, Edge-Pair, All-Uses and Prime Path Coverage.
Fifth Workshop on Mutation Analysis, IEEE Mutation, Denver, 1-4 April 2009,
220-229. https://doi.org/10.1109/ICSTW.2009.30

[19] Offutt, A.J., Lee, A., Rothermel, G., Untch R.H. and Zapf, C. (1996) An Experimen-
tal Determination of Sufficient Mutation Operators. ACM Transactions on Software
Engineering and Methodology, 5, 99-118. https://doi.org/10.1145/227607.227610

[20] Lee, J., Kang, S. and Jung, P. (2020) Test Coverage Criteria for Software Product
Line Testing: Systematic Literature Review. Information and Software Technology,
122, 301-329. https://doi.org/10.1016/j.infsof.2020.106272

[21] Grano, G., Titov, T.V. and Sebastiano, P.H.C. (2019) Branch Coverage Prediction in

https://doi.org/10.4236/jsea.2021.144007
https://doi.org/10.1109/ICSTW.2016.41
http://cs.gmu.edu:8080/offutt/coverage/
https://doi.org/10.1016/S0164-1212(96)00154-9
https://doi.org/10.1017/9781316771273
https://doi.org/10.1109/32.689399
https://doi.org/10.1145/291252.288298
https://doi.org/10.1109/ICSE.2003.1201188
https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1109/ICSTW.2009.30
https://doi.org/10.1145/227607.227610
https://doi.org/10.1016/j.infsof.2020.106272

X. Y. Djam et al.

DOI: 10.4236/jsea.2021.144007 109 Journal of Software Engineering and Applications

Automated Testing. Journal of Software Evolution and Process, 31, 1-18.
https://doi.org/10.1002/smr.2158

[22] Yoo, S., Harman, M., Tonella, P. and Susi, A. (2009) Clustering Test Cases to
Achieve Effective and Scalable Prioritisation Incorporating Expert Knowledge. Pro-
ceedings of the Eighteenth International Symposium on Software Testing and
Analysis, Chicago, 19-23 July 2009, 201-212.
https://doi.org/10.1145/1572272.1572296

[23] Saaty, T. (1980) The Analytic Hierarchy Process, Planning, Priority Setting, Re-
source Allocation. McGraw-Hill, New York, USA.

https://doi.org/10.4236/jsea.2021.144007
https://doi.org/10.1002/smr.2158
https://doi.org/10.1145/1572272.1572296

	A Comparative Evaluation of Test Coverage Techniques Effectiveness
	Abstract
	Keywords
	1. Introduction
	2. Background
	3. Related Work
	4. Incremental Cluster-Based Test Case Prioritization Technique
	5. Experimental Design
	5.1. Experimental Subject Program
	5.2. Mutation Operators
	5.3. Effectiveness Analysis
	5.4. Cost Analysis

	6. Results and Discussion
	7. Treat to Validity
	8. Conclusion and Future Work
	Acknowledgements
	Conflicts of Interest
	References

