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Abstract 
Software systems have become complex and challenging to develop and 
maintain because of the large size of test cases with increased scalability is-
sues. Test case prioritization methods have been successfully utilized in test 
case management. However, the prohibitively exorbitant cost of large test 
cases is now the mainstream in the software industry. The growth of agile 
test-driven development has increased the expectations for software quality. 
Yet, our knowledge of when to use various path testing criteria for cost- 
effectiveness is inadequate due to the inherent complexity in software testing. 
Existing researches attempted to address the issue without effectively tackling 
the scalability of large test suites to reduce time in regression testing. In order 
to provide a more accurate way of fault detection in software projects, we in-
troduced novel coverage criteria, called Incremental Cluster-based test case 
Prioritization (ICP), and investigated its potentials by making a comparative 
evaluation with three un-clustered traditional coverage-based criteria: 
Prime-Path Coverage (PPC), Edge-Pair Coverage (EPC) and Edge Coverage 
(EC) based on mutation analysis. By clustering test suites, based on their dy-
namic run-time behavior, the number of pair-wise comparisons is reduced 
significantly. To compare, we analyzed 20 functions from 25 C programs, in-
strumented faults into the programs, and used the Mull mutation tool to 
generate mutants and perform a statistical analysis of the results. The experi-
mental results show that ICP can lead to cost-effective improvements in fault 
detection. 
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1. Introduction 

Despite the huge advancement in agile test-driven development, the problem of 
inexhaustible testing continues to pose a major challenge in software quality as-
surance. The inherent complexity in software testing makes traditional un- 
clustered path testing criteria inadequate. Software testing is an important veri-
fication and validation activity to reveal program failures in order to improve the 
quality of software [1]. Unfortunately, the problem of finding all faults in a pro-
gram (or proving their absence), for any meaningful program, is inexhaustible. 
Owing to the complexities in software testing, therefore, developers and testers 
need ways to evaluate their testing efforts in terms of their ability to detect faults 
in order to make intelligent decisions about testing. The ability, given a test 
suite, to predict whether it is effective at finding faults is essential to rational 
testing efforts. In retrospect, using the set of defects discovered during a software 
product’s lifetime, the quality of a test suite could be evaluated by measuring its 
ability to detect those faults. Faults directly jeopardize software by decreasing its 
performance and overall software quality. 

Software systems have become complex and challenging to develop and 
maintain because of scalability issues. Software testing is a demanding task and 
the challenges of testing large-scale software cannot be overemphasized due to 
the large test suite size.  

However, the question of real concern to researchers and potential users of 
test adequacy criteria is it possible to reduce the test suite size without compro-
mising quality? Prioritization techniques involving humans present a lot of sca-
lability issues because the maximum number of comparisons a human can make 
consistently is approximately 100, above this threshold, inconsistency grows sig-
nificantly, leading to reduced effectiveness. Unfortunately, large-scale systems 
often contain many test cases potentially requiring more than 100 comparisons. 

Furthermore, Developers and Tester would like to know whether the invest-
ment in systems to monitor code coverage is worthwhile and whether the effort 
to cluster test cases that increase coverage is important. They would like to know 
the additional cost of achieving adequate coverage through the use of incremen-
tal clustering using the Analytical Hierarchy Process (AHP), the payback for that 
cost, and in particular, whether fault detection increases significantly if test sets 
are adequate or close to adequate according to the criteria. 

To address this problem, this paper uses incremental clustering-based priori-
tization (ICP) approach to reduce the cost of human-interactive prioritization. 
In our approach, the human tester prioritizes not the individual test cases but 
clusters of similar test cases. 

Globally, this paper seeks to answer the following main research question: 
RQ: How cost-effective is Incremental Clustering-based Prioritization (ICP) 

compared to PPC, EPC, and EC in fault detection? 
This question was addressed by experimentation on 25 well-known C pro-

grams of various sizes. To make our results as relevant as possible to professional 
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software developers and testers, we searched available public archives for speci-
fications and C programs that would be suitable for the study. We used mutants 
as proxies for faults. Experiments were performed by comparing the control flow 
coverage on four testing criteria: ICP, PPC, EPC, and EC using subject programs 
developed at Siemens Corporate Research.  

The primary contributions of this paper are as follows: 
1) The paper presents a novel use of clustering in test case prioritization using 

AHP for fault detection in software projects. A novel Comparison Coverage Ma-
trix Generator was developed, in order to evaluate the effectiveness of a test suite 
for revealing faults. 

2) This paper introduces novel coverage criteria, called Incremental Clus-
ter-based test case Prioritization (ICP), and investigates its potentials by making 
a comparative evaluation with three unclustered traditional coverage-based cri-
teria: Prime-Path Coverage (PPC), Edge-Pair Coverage (EPC), and Edge Cover-
age (EC) based on mutation analysis. The results of the empirical study show 
that APH-based prioritization can lead to cost-effective improvements over 
un-clustered coverage-based prioritization. 

The rest of this paper is organized as follows: Section 2 summarizes relevant 
prior work on test criteria. Section 3 presents the background of this work. Sec-
tion 4 introduces the incremental cluster-based test case prioritization tech-
nique. Section 5 describes our experimental comparison in detail including the 
subject pool and the method used results are discussed in Section 6. Treat to va-
lidity is discussed in section 7, with a conclusion and future work in Section 8. 

2. Background 

Structural coverage measures have long been studied as a means for evaluating 
the effectiveness of a test suite. 

Test criteria can be compared both theoretically and experimentally. The two 
most common theoretical comparison techniques are traditional subsumption 
and the number of test requirements. A test criterion C1 subsumes another test 
criterion C2 if and only if every set of test cases that satisfies criterion C1 is 
guaranteed to satisfy C2. For example, if a test set takes every branch in a control 
flow graph (CFG), that test set is guaranteed to cover every node, thus edge cov-
erage subsumes node coverage (also called statement coverage). 

A lot of researches have been done on coverage criteria to determine their ef-
fectiveness, yet there is still a dual need for a more robust comparative technique 
to improve the strength of existing researches. Test case prioritization seeks to 
find an efficient ordering of test case execution to reduce time in regression 
testing. In recent times, many efforts have been dedicated to code coverage crite-
ria to monitor the thoroughness of software tests [2] [3] [4] [5]. More recently, 
data flow-based methods have been defined and been implemented in several 
tools [6] [7]. Various comparisons have been made of the theoretical relations 
between coverage methods [8] [9] [10] [11] [12]. 
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3. Related Work 

Test adequacy criteria based on data flow were proposed Hutchins, et al. [12]. 
The first data flow adequacy tool was implemented by Frankl, et al. [13] [14], 
who built the ASSET system that operated on Pascal code in accordance with the 
definitions of Rapps and Weyuker. Test adequacy criteria based on data flow 
have been proposed in literature but yet the gap still exists to choose the most 
appropriate criteria in complex structures in large-scale systems. Many previous 
studies have attempted to evaluate the cost and effectiveness of test criteria. 
Frankl, et al. [14] [15] [16] carried out several studies comparing data flow crite-
ria with EC, mutation coverage, and manual testing approaches. Ammann and 
Offutt [17] also compared data flow (all-uses) with mutation testing. The only 
study that involved edge-pair or prime paths was by Li, et al. [18], who com-
pared mutation, EPC, all-uses, and PPC without clustering the test cases. The 
study found little difference between EPC and PPC, both were stronger than 
all-uses, and mutation testing was stronger than the other three. Structural cov-
erage is an often used surrogate for fault detection capabilities [19] [20] [21] 
[22], above studies had a lot of gaps in prioritizing test cases. Our study is a bit 
larger in terms of subjects and number of test set pool than these older studies 
with novel coverage criteria, called Incremental Cluster-based test case Prioriti-
zation (ICP) with the use of Analytic Hierarchy Process (AHP). AHP algorithm 
[23] has been used in various software Engineering fields to help decision mak-
ers to prioritize tasks. 

4. Incremental Cluster-Based Test Case Prioritization  
Technique 

We wish to find an approach to reduce delay in testing (reducing testing efforts 
and cost) without compromising quality. To this end, we employed test case 
prioritization technique. This paper aims to reduce the number of comparisons 
required for the pair-wise comparison approach through the use of incremental 
clustering-based prioritization (ICP) using AHP (Analytical Hierarchical Process) 
technique, which has been studied in the field of Requirement Engineering. In-
stead of prioritizing individual test cases, clusters of test cases are prioritized us-
ing AHP technique and compare with three unclustered traditional cover-
age-based criteria: Prime-Path Coverage (PPC), Edge-Pair Coverage (EPC) and 
Edge Coverage (EC) based on mutation analysis. By clustering test suites, based 
on their dynamic run-time behaviour, the number of pair-wise comparisons is 
reduced significantly. 

A pair-wise comparison approach for prioritization requires O(n2). The maxi-
mum number of comparisons a human can make consistently is approximately 
100 [23], above this threshold, inconsistency grows significantly, leading to re-
duced effectiveness. In order to require less than 100 pair-wise comparisons, the 
test suite should contain no more than 14 test cases. Considering the scale of real 
world testing projects, the scalability issues present a significant challenge. For 
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example, suppose there 1000 test cases to prioritize, the total number of pair- 
wise comparisons would be 499,500. It is unrealistic to expect a human tester to 
provide reliable responses for such a large number of comparisons. This research 
aims to reduce the number of pair-wise comparisons through the use of incre-
mental cluster-based test case prioritization technique using AHP. 

The clustering process partitions objects into different subsets so that objects 
in each group share common properties. The clustering criterion determines 
which properties are used to measure the commonality. When considering test 
case prioritisation, the ideal clustering criterion would be the similarity between 
the faults detected by each test case. However, this information is inherently un-
available before the testing task is finished. Therefore, it is necessary to find a 
surrogate for this, in the same way as existing coverage-based prioritisation 
techniques turn to surrogates for fault-detection capabilities [23].  

In this paper we utilize dynamic execution traces of each test case as a surro-
gate for the similarity between features tested. Execution of each test case is 
represented by a binary string. Each bit corresponds to a statement in the source 
code. If the statement has been executed by the test case, the digit is 1; otherwise 
it is 0. The similarity between two test cases is measured by the distance between 
two binary strings using Hamming distance. 

A pair-wise comparison approach for prioritization requires O(n2) compari-
sons. While redundancy may make pair-wise comparison very robust, the high 
cost has prevented it from being applied to test case prioritization. The test cases 
are grouped into clusters: out-of-range, within-range (considering boundary value 
analysis and equivalent partitioning). It would be more advantageous to execute 
test suites in incremental clusters than an entire cluster. The latter approach 
would result in repeating similar parts of SUT before the prioritization tech-
nique chooses the next clusters. 

In ICP, intra-cluster prioritization is performed first. Based on the results of 
intra-cluster prioritization, each cluster is assigned a test case that represents the 
cluster. Using this representative, ICP performs incremental cluster prioritiza-
tion.  

AHP allows the tester to compare two entities with degrees of preference ra-
ther than simply binary relations and in this research we call it prioritization 
score (PS). Previous work using human input for test case prioritization only 
required binary relations, which were obtained by checking which test case de-
tects more faults than the other. We derived varying degrees of relative impor-
tance by checking how much difference there is between the numbers of faults 
detected by two test cases in an incremental preference. 

Suppose two test cases Xa and Yb are being compared. Let fa be the number of 
faults detected by Xa and fb by Yb, this paper sets the prioritization score (PS) 
between Xa and Yb as shown in Table 1. 

An incremental hierarchical clustering technique was employed and a com-
parative coverage matrix (M’) was derived as shown in Algorithm 1. 
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Table 1. Prioritization Score (PS) for the Tester (User). 

Condition Prioritization Score (PS) Intensity of Importance 

Xa = Yb 1 Equal 

Xa > Yb and Xa = 0 2 Very Strongly Prefer 

Xa > 0, Yb > 0, Xa ≥ 4Yb 3 Extremely Prefer 

Xa > 0, Yb > 0, Xa ≥ 3Yb 4 Very Strongly Prefer 

Xa > 0, Yb > 0, Xa ≥ Yb 5 Strongly Prefer 

 
Algorithm 1. Comparison coverage matrix generator. 

Input: A set of n Test Cases, Ti, an ordered set of Clustered, CK 

Output: Clusters of Test Cases, C, Comparison Coverage Matrix Generator, M’ 

let Ti ε T be the ith test cases 

Form n clusters, each with one test case Ti 

C ← {} 

Add clusters to C 

Identify clusters CK with minimum distances from parent node to child node 

For i = 1 to i ≤ n 

M [i, i] = 1 (1 ≤ i ≤ n) 

M [j, j] = 1 (1 ≤ j ≤ n) 

M’ (i, j) = (M (i, j)/Σi ≤ k ≤ nM (i, k))*PS 

 
By comparing a test case T1 with other test cases, Ti in pairs so that the value 

of the level of importance of all the test cases in the form of qualitative opinions 
is obtained based on the level of fault detection. To change these results into a 
form of quantitative opinion, the rating scale ratio is used (Table 1). Compari-
sons are made based on decision-making policies by assessing the importance of 
one test case to another in revealing fault.  

When using multiple criteria, AHP requires the human user to determine the 
relative importance not only between test cases that are being prioritized (i.e. Ti 
ε T) but also between criteria themselves (i.e. expert knowledge and state-
ment-based prioritization). Using Table 1, this paper applies a set of 5 different 
human-to-coverage preference values called prioritization score, PS. The process 
starts from the hierarchy level which is intended to identify clusters with mini-
mum distances from parent node to child node. Then the arrangement of all or-
dered clusters, CK multiply with their corresponding prioritization score (PS) 
will form a Coverage Cluster Matrix, M’. The results of comparisons are com-
bined in an n by n matrix M’ as shown in the Comparison Coverage Matrix Ge-
nerator algorithm. Data normalization is done by dividing the elements in each 
column with the total number per column in question, then the normalized rela-
tive weight values are obtained by dividing each element. After that, proceed 
with calculating the eigenvalue of the vector and testing its consistency, if it is 
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not consistent then the data retrieval needs to be repeated. The eigenvalue of the 
vector in question is the maximum eigenvector value obtained from each eigen-
vector per line. Eigenvector values per line are obtained by dividing the total 
score on the line of each criterion by the number of columns. The maximum ei-
genvector value (Ei) is obtained by summing the multiplication of the total score 
in each criterion column with eigenvector per line. That is, the priority weight-
ing vector E is the eigenvector of a matrix M’, which is calculated from M, by 
normalizing the columns. E is calculated by taking average across the rows of M’: 

Priority Weighting Vector Ei = (Σi ≤ k ≤ nM (i, k))/n 

5. Experimental Design 

This section, describes the subject programs, the faulty programs, test cases and 
the experiments performed. The major results of this paper are gotten from an 
experiment to compare the cost-effectiveness of ICP, EC, EPC and PPC based on 
mutation analysis. This paper seeks to answer the following research question: 

RQ: How cost-effective is Incremental Clustering-based Prioritization (ICP) 
compared to PPC, EPC and EC in fault detection? 

In response to the research question, we designed an experiment with three 
(3) independent variables and two (2) dependent variables: The first indepen-
dent variable is the Test Criterion, and it has four (4) values (ICP, EC, EPC, and 
PPC). The second is the identification of clusters. The third independent varia-
ble is the set of mutants. As stated previously, recent researches have questioned 
whether using all mutants is valid for experimental comparisons of test criteria. 
This study used the traditional approach of using all mutants as proxies for 
faults, as well as finding the minimal set (as defined below), and using them as 
proxies for faults. This not only allows us to have two views of the differences 
among the criteria we evaluate, but also provides evidence about the claim that 
experimental comparisons should use minimal sets of mutants. The experiment 
has two dependent variables: effectiveness and cost. Effectiveness is measured by 
the number of faults the criterion is able to reveal. 

5.1. Experimental Subject Program 

We used a set of 25 well-known subject programs written (classes) in C as expe-
rimental subject programs. These subject programs are the so-called Siemens 
Suite of Program, which is a well-known open-source program and one of the 
programs—Space, was developed at the European Space Agency. Table 2 sum-
maries the subject programs. We chose these programs as they are used in simi-
lar researches and accepted as standard. For each program, the table shows the 
name, number of lines of code, number of mutants generated by all operators, 
number of equivalent mutants, and number of tests in the mutation adequate 
test set. Equivalent mutants were determined by hand analysis. The number of 
mutants yielded from each subject ranged from 18 in TrashAndTakeout to 3987 
in PrintTokens 2. The subject programs (Table 2) were chosen to meet special 
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criteria: To allow creation of a reasonable test pool, they must have an unders-
tandable specification. Because each program must be understood by several 
people (to seed faults, and to examine test cases in clusters), they must not be 
overly complex. But they also have to be large and complex enough to be consi-
dered realistic, and to permit the seeding of many hard-to-find errors. Each 
program must be able to compile and execute as a stand-alone unit. We chose 
these programs because of the maturity of the associated artifacts and because of 
their historical significance. 
 
Table 2. Description of subject programs. 

Subject Program LOC Mutants 
Equivalent 

Mutants 
Test pool Size 
(#Test Cases) 

Check Palindrome 110 157 24 9 

Digital Reverser 117 389 53 23 

Guassian 1253 19 16 22 

Heap 1041 78 67 9 

Inverse Permutation 115 565 47 12 

Merge Sort 132 991 69 16 

Num Zero 110 187 18 6 

Power 211 278 17 9 

PrintTokens 726 3454 137 24 

PrintTokens 2 570 3987 145 26 

PrintPrime 95 756 25 6 

Queue 164 467 31 11 

Quicksort 123 1034 26 12 

Recursive Sort 117 546 12 9 

Repace 564 1023 178 48 

Schedule 412 294 35 35 

Schedule2 374 305 45 31 

Space 8905 38 297 50 

Stack 156 56 12 12 

Tcas 173 29 37 32 

Totinfo 281 245 89 21 

TestPad 124 24 7 12 

TrashAndTakeout 159 18 14 10 

TwoPred 113 23 19 16 

UniCal 119 319 3456 21 
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5.2. Mutation Operators 

To generate mutants of the subject programs, we used Mull mutation tool to 
generate mutants for code written in C. To generate mutants from a source file, 
each line of code was considered in sequence and each of four classes of “muta-
tion operators” was applied (whenever possible). In other words, every valid ap-
plication of a mutation operator to a line of code resulted in another mutant be-
ing generated. The four classes of mutation operators were: 
- Replace an integer constant C by 0, 1, −1, ((C) + 1), or ((C) − 1). 
- Replace an arithmetic, relational, logical, bitwise logical, increment/decrement, 

or arithmetic-assignment operator with another operator from the same 
class. 

- Negate the decision in an if or while statement. 
- Delete a statement. 

The first three operator classes were used to identify a set of “sufficient” muta-
tion operators, i.e., a set S of operators such that test suites that kill mutants 
formed by S tend to kill mutants formed by a very broad class of operators. They 
were adapted so that they would work on C programs rather than the Fortran of 
the original research. The fourth operator, was added because some of the 
subject programs contained a large number of pointer-manipulation and field- 
assignment statements that would not be vulnerable to any of the sufficient mu-
tation operators. About 12.0% of the resulting mutants did not compile. The 
numbers of mutants of each subject program that compiled appear in Table 2. 
For the Space program, there were so many mutants generated that it was in-
feasible to run them all on the test suite. Therefore we ran the test suite on every 
10th mutant generated. Because the number of mutants generated per line did 
not follow any pattern that would interact with the selection of every 10th mutant 
(it depends on the constructs on the line only), this amounted to a random se-
lection of 10% of the mutants, taken from a uniform distribution over all the 
possible mutants. Additionally, this ensured that the whole source code was 
seeded with faults (and not simply a few functions/procedures). 

5.3. Effectiveness Analysis 

The effectiveness of a test case can be measured by its ability to detect faults for 
both instrumented and none instrumented programs. Test cases of various sizes 
were used. For each subject program, we created a set of adequacy test sets by 
hand. The number of test cases for each program is shown in the last column of 
Table 2: Mull (an open-source mutation tool) was used to generate all mutants. 
After generating mutants, we designed adequate test sets and identified equiva-
lent mutants by hand. To evaluate the effectiveness of a criterion (ICP, PPC, 
EPC, EC) for any subject program, we used all the adequate test sets. The effec-
tiveness of any program, is the average of the mutation score. Effectiveness is 
calculated twice, once for all the mutants generated from each subject program 
and again for just the weak set of mutants. 
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5.4. Cost Analysis 

The cost analysis for each criterion is based on two values: 
1) The number of test cases needed; 
2) The number of faults detected for clustered and unclustered test cases. 
The two measures are dynamic in the sense that they are computed based only 

on the source code of the system under test (SUT). ICP can detect more faults 
(Table), especially in programs that have complicated control flows, but at a 
higher cost. Thus, a practical tester can make an informed cost versus benefit 
decision. A better understanding of which structures in the programs contribute 
to the expense might help to choose when to use PPC. This led to an argument 
that the expense of ICP is worthwhile because it will help the software testers 
find more faults. In general, human intervention is needed to determine pair- 
wise comparison and the choice of dissimilarity metric for clustering. 

6. Results and Discussion 

Table 3 shows data regarding the effectiveness of the test sets selected for each 
criterion. The first column gives the names of the 25 subject programs, as in Ta-
ble 2. The next four columns, grouped under Mutation Score (full), show the 
mutation scores on the full set of mutants obtained by the test sets that satisfy 
ICP, PPC, EPC, and EC. For these programs, ICP-adequate test sets performed 
better than PPC, EPC- and EC-adequate test sets across the board. Across the 
programs, none achieved a 100% full mutation score. The next four columns, 
grouped under Weak Mutation Score, show the mutation score on the minimal 
set of mutants by the four criteria. As shown in Table 3, the minimal sets have 
significantly fewer mutants. For instance, the ICP test sets selected for the first 
subject program (Check Palindrom) killed on average 78% of the mutants. 

Considering all subject programs, the mean mutation scores (full) achieved by 
the test sets for ICP, PPC, EPC, and EC were 98%, 97%, 95% and 95% respec-
tively. The mean mutation scores (weak) achieved by the test sets for ICP, PPC, 
EPC, and EC were 79%, 78%, 71% and 68% respectively. 

Table 4 gives an approximation of the cost-effectiveness ratio of the 4 criteria 
on the experimental subjects. It is important to note that this table only counts 
the number of tests, not the cost of creating those tests. The metric cost would 
vary dramatically by the amount of automation used, particularly if automatic 
test data generation was available. As in Table 4, these data indicate that PPC is 
the most efficient in detecting faults and EC the least. Anecdotally, we found out 
that generating and satisfying the test requirements for ICP was more difficult 
than PPC, EPC and EC. Finding values to kill the last few mutants was quite 
time consuming as well as intellectually challenging. 

7. Treat to Validity 

A common threat in software engineering experiments is the representative na-
ture of the programs. No matter how many programs are used, it will never be  
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Table 3. Effectiveness of complete mutant sets and weak mutant set considering reduced 
requirement. 

Subject Program 
Mutation Score (Ful) Weak Mutation Score 

PPC EPC EC ICP PPC EPC EC ICP 

Check Palindrom 0.93 0.91 0.67 0.93 0.68 0.46 0.37 0.78 

Digital Reverser 0.93 0.95 0.88 0.96 0.51 0.49 0.61 0.61 

Guassian 0.93 0.77 0.94 0.94 0.62 0.57 0.44 0.72 

Heap 0.96 0.93 0.74 0.97 0.63 0.54 0.24 0.73 

Inverse Permutation 0.94 0.96 0.65 0.90 0.73 0.65 0.62 0.83 

Merge Sort 0.93 0.87 0.93 0.94 0.53 0.47 0.53 0.63 

Num Zero 0.97 0.92 0.84 0.98 0.57 0.52 0.74 0.67 

Power 0.87 0.91 0.74 0.88 0.77 0.54 0.71 0.87 

PrintTokens 0.98 0.93 0.83 0.99 0.58 0.43 0.52 0.68 

PrintTokens 2 0.94 0.97 0.86 0.95 0.64 0.47 0.46 0.74 

PrintPrime 0.96 0.98 0.87 0.94 0.58 0.58 0.47 0.68 

Queue 0.98 0.89 0.97 0.99 0.68 0.69 0.37 0.78 

Quicksort 0.95 0.88 0.98 0.96 0.55 0.68 0.58 0.65 

Recursive Sort 0.97 0.92 0.91 0.98 0.57 0.51 0.51 0.67 

Repace 0.89 0.86 0.76 0.87 0.81 0.46 0.36 0.83 

Schedule 0.89 0.94 0.92 0.99 0.98 0.51 0.41 0.97 

Schedule2 0.99 0.93 0.73 0.98 0.79 0.43 0.52 0.69 

SPace 0.97 0.98 0.91 0.97 0.77 0.58 0.71 0.77 

Stack 0.98 0.89 0.92 0.99 0.58 0.69 0.92 0.68 

Tcas 0.91 0.88 0.83 0.92 0.61 0.58 0.64 0.71 

Totinfo 0.98 0.95 0.89 0.99 0.78 0.67 0.21 0.79 

TestPad 0.93 0.86 0.79 0.94 0.99 0.56 0.49 0.98 

TrashAndTakeout 0.96 0.89 0.88 0.97 0.81 0.79 0.43 0.91 

TwoPred 0.97 0.93 0.95 0.98 0.79 0.63 0.51 0.89 

UniCal 0.96 0.84 0.84 0.97 0.56 0.44 0.75 0.66 

Min(%) 91 84 67 91 0.51 0.43 0.21 0.61 

Max(%) 97 0.95 0.98 97 0.79 0.79 0.75 0.89 

SD 0.04 0.03 0.05 0.04 0.11 0.23 0.22 0.21 

Mean (Average) 0.97 0.96 0.95 0.98 0.78 0.71 0.68 0.79 

 
Table 4. Cost-effectiveness ratio of full mutant sets. 

 Test Cases Faults Cost/Effectiveness (%) 

PPC 17,985 67 0.97 

EPC 1456 34 0.96 

EC 894 25 0.95 

ICP 19,972 78 0.98 
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possible to ensure the results can generalize to all programs. The subjects were 
from Simen programs and open sources programs, rather than part of thousands 
of industrial software products. Therefore, the results may not generalize to in-
dustrial settings. In principle, given that the programs used in our experimental 
study are smaller than programs that solve industrial-scale, real-world problems, 
we cannot conclusively rule out the possibility that the results may not be gene-
ralized to larger and more complex programs. Our experimental design required 
completely adequate test suites, which had to be created by hand, thus limiting 
the size of the programs. This makes our conclusions more definitive at the po-
tential cost of generalization. 

Another threat is the selection of test cases. Given that we adopted the notion 
of building a minimal set of mutants, we needed a minimal test set to compute it. 
First, we generate for each program, by hand, a universe of mutation-adequate 
test cases. This potentially is a threat because the results could be diverse with 
different test sets. We opted for a reduced test pool because the larger the num-
ber of test cases in a test suite, the more likely it is that some test cases would be 
redundant. This is a somewhat non-intuitive consequence of the notion of mi-
nimal sets of mutants; testers really do not need nearly as many tests as we have 
always thought. We just need the right tests. Unfortunately, creating such test 
sets for 25 programs is a very demanding task and to create multiple sets for 
each program would be impractical. The second point is that the selection of test 
cases to cover structural criteria is also restricted to this universe of test cases 
and so could have the same threat. Nevertheless, in terms of code coverage, what 
matters is the sequence in which the test cases are applied since we know that all 
structural requirements are covered after applying all test cases. 

8. Conclusion and Future Work 

A testing criterion is good if and only if it is capable of revealing faults during 
the testing process in the system under test. We introduced novel coverage crite-
ria, called Incremental Cluster-based test case Prioritization (ICP) and investi-
gated it potentials by making a comparative evaluation with three unclustered 
traditional coverage-based criteria: Prime-Path Coverage (PPC), Edge-Pair Cov-
erage (EPC) and Edge Coverage (EC) based on mutation analysis. We experi-
mentally compared ICP, EC, EPC, and PPC in terms of cost and effectiveness 
using 25 C programs along with their test suits. As expected, the results indi-
cated that ICP depicted more faults than other criteria. Based on the efficiency 
ratio in Table 4, ICP is the most efficient criterion.  

ICP can detect more faults, especially in programs that have complicated con-
trol flows, but at a higher cost. Thus, a practical tester can make an informed 
cost versus benefit decision. A better understanding of which structures in the 
programs contribute to the expense might help to choose when to use PPC. This 
led to an argument that the expense of ICP is worthwhile because it will help the 
software testers find more faults. 
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Our experimental results open considerably a number of research issues. 
With the current development in software testing, the combination of cover-

age criteria with symbolic execution technology in a large project such as kernel 
suites is our next line of action. Furthermore, further exploration of the weak-
nesses/strength of coverage criteria in order to move students from trial-and-error 
testing to evidence-based testing is equally an important part of future research. 
Future work equally includes improving the efficiency of our experiments to 
other problems in software testing, such as software fault prediction, software 
fault localization, test suite prioritization and test suit minimization. 
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