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Abstract 
The elementary wave interactions for the Chapman-Jouguet model with 
combustion are investigated. We obtain the unique solution of the initial val-
ue problem under the global entropy conditions. We analyze the elementary 
wave interactions in the phase plane and construct uniquely the solution of 
this initial value problem. It is found that the combustion wave solution of 
the corresponding Riemann may be extinguished after perturbation which 
shows that the unburnt gas is unstable. 
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1. Introduction 

In this paper, we study the following equations  
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where , , 0u pρ < , T are the density, velocity, pressure, temperature respectively. 

iT  is the ignition temperature and q is the chemical binding energy. The total  

energy 
2

2
uE e q= + + , where e is the internal energy. The state equation is given 

by 
1p
ρ

= −  and 
2
pe
ρ

= − . The process of combustion is exothermic [1]. The 

early study for Chaplygin gas can be found in [2] [3]. 
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In [4], the authors investigated the two-dimensional Riemann problem for 
isentropic Chaplygin gas dynamic system according to different combinations of 
four elementary waves and they delivered a complete classification to the above 
problem. 

In [5], the authors studied two new types of self-similar solutions to the 
Chaplygin gas model in two space dimensions and they constructed the solu-
tions to the interaction of two rarefaction simple waves. 

The authors [6] investigated several two-dimensional Riemann problems for 
Chaplygin gas model and proved the existence of the unique solution. 

In [7], the authors studied the appearance of delta shock wave and vacuum 
state in the vanishing pressure limit of Riemann solutions to the non-isentropic 
generalized Chaplygin gas equations. 

The authors [8] constructed the solutions of Riemann problem for the isen-
tropic relativistic Euler equations with the extended Chaplygin gas and studied 
the asymptotic limits of solutions to the Riemann problem for the relativistic 
Euler equations. 

We use usually two mathematical models to investigate the combustion phe-
nomena. One is the Chapman-Jouguet (CJ) model, and the other is the Zeldo-
vich-von Neumann-Döring (ZND) model [1] [9]. In [1], the authors obtained 
the partial combustion solutions for the CJ model. In [10], the authors investi-
gated the following CJ model  
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here 
1τ
ρ

=  and τ  is the specific volume, 0p > . It is followed that there is  

unique solution for (2). In [11] we got uniquely the solution of the generalized 
Riemann problem for (2). 

In [12] the authors studied the following selfsimilar ZND model  
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and constructed its unique solution under some hypothesis. In [13], the authors 
determined when the temperatures along the burning solutions of (3) are higher 
than the ignition temperature which is the necessary condition to study the limit 
behavior as the reaction velocity tends to infinity. 

In [14], we obtained the Riemann solution of (1) with the following initial 
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In this paper, we investigate the initial value problem for (1) with the follow-
ing initial values  
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In [15], we considered the generalized Riemann problem for (1) and found 
some interesting phenomena. 

It is shown that the structures of the Riemann solutions can retain their forms 
after perturbation for most of the cases, while for some other cases, the pertur-
bation can make a big difference. It is observed that although there is no com-
bustion wave in the corresponding Riemann solution, the combustion wave may 
occur after perturbation. It shows the instability of the unburnt gas. 

The paper is arranged as follows. In Section 2, we list the preliminaries. We 
obtain the unique solution for the initial value problem (1) and (5) in Section 3. 
Section 4 gives our main result. 

2. Preliminaries 

In this section we give some preliminaries [14] [15] [16] [17]. 
The characteristic roots for (1) are given by  
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it follows that (1.1) is strictly hyperbolic. The right characteristic vector of 
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and the shock wave curves ( )S l
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( )

,

1 ,   , or .

l l

l
l l

l l l

p p

u u
p p p p

p p p

ρ ρ

ρ

=


− = ± − > < −

               (8) 

The contact discontinuity J is  
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Further, the delta shock Sδ  satisfies the entropy condition  
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The non-combustion wave curves can be shown in the phase plane ( ),u p  
(Figure 1). 

From the R-H condition 
 

   
(i)                                     (ii) 

Figure 1. The non-combustion wave curves. (i) The backward wave curves; (ii) The for-
ward wave curves. 
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we find that  
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The forward combustion wave curve in ( ),u p  (Figure 2) is 
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where 0rp p< <  or 02
r

r

q
p p

τ
< − . When 0rp p< < , it is the detonation 

wave curve and when 02r rp p q ρ< − , it is the deflagration wave curve [1]. 
When 0q+ > , the forward wave curve ( )W +



 is  

( ) ( ) ( ) ( ) ( ) ,SW W S DF DTδ+ + + + +
 

 

     

here  

( ) ( ) ( ).SW R S+ + +
 

   

When 0q+ = , 0q− = , it is studied in [16]. Otherwise, we proceed as follows. 
Case 2.1. When 00, 0q q q− += = > . 
The backward wave curve is ( ) ( ) ( )SW W Sδ− = − −

 

 , and the forward wave 
curve is ( ) ( ) ( ) ( ) ( )SW W S DF DTδ+ = + + + +

 
 

    (Figure 3). 
 

 

Figure 2. The combustion wave curve in (u, p). 
 

 

Figure 3. The wave curves in Case 2.1. 
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Subcase 2.1.1 p pu u
ρ ρ
− +

− +
− +

− < − + − . 

To guarantee the unique solution of the Riemann problem, we give the global 
entropy conditions: 

We select the unique solution from the four intersection points (at most) in 
the following order: 

1) the solution with the parameter δ  as small as possible, where δ  is de-
fined as oscillation frequency of ( )T ζ  between the set ( ){ }1 : iR T Tζ ζ∈ ≤  
and the set ( ){ }1 : iR T Tζ ζ∈ > ; 

2) the solution containing the combustion wave as many as possible. 
For simplicity, 1∗  is the intersection point of ( )SW −



 and ( )SW +


 and 2∗  
is the intersection point of ( )SW −



 and ( )DF +


 or ( )DF +


 The temperature 
is respectively 1T , 2T  at the point 1∗ , 2∗  (Figure 4). 

1) When iT T− > , 2 iT T> , then ( )1 1δ ∗ = , ( )2 1δ ∗ = , due to (ii), we pick 
out 2∗  and get the combustion wave solution DF or DT (Figure 4(i)). 

2) When iT T− > , 2 iT T≤  ( 1 iT T⇒ ≤ ), then ( )1 1δ ∗ = , ( )2 3δ ∗ = , due to (i), 
we pick out 1∗  and get the noncombustion wave solution (Figure 4(ii)). 

3) When iT T− ≤ , 1 iT T≤ , then ( )1 0δ ∗ = , ( )2 2δ ∗ = , due to (i), we pick out 

1∗  and get the noncombustion wave solution (Figure 4(ii)). 
4) When iT T− ≤ , 1 iT T>  ( 2 iT T⇒ > ), then ( )1 2δ ∗ = , ( )2 2δ ∗ = , due to 

(ii), we pick out 2∗  and get the combustion wave solution DF or DT (Figure 
4(i)). 

Subcase 2.1.2 
p pu u
ρ ρ
− +

− +
− +

− ≥ − + − . 

It is shown that we can get the delta shock wave solution Sδ  [14] [15] [16]. 
 

 
(i) 

 
(ii) 

Figure 4. The analysis in Subcase 2.1.1. (i) combustion wave solution; (ii) non-combustion 
wave solution. 

https://doi.org/10.4236/jamp.2021.94049


Y. J. Liu 
 

 

DOI: 10.4236/jamp.2021.94049 689 Journal of Applied Mathematics and Physics 
 

Case 2.2. When 0, 0q q− +> > . We go on as follows. 
We know that ( ) ( ) ( ) ( ) ( )SW W S DT DFδ− = − − − −

 
 

   , and  
( ) ( ) ( ) ( ) ( )SW W S DT DFδ+ = + + + +

 
 

    (Figure 5). 

Subcase 2.2.1 When p pu u
ρ ρ
− +

− +
− +

− < − + −  (Figure 6). 

Since we have 0δ =  for Case (1), 2δ =  for Case (2)-(4), we pick out the 
intersection point a and get the non-combustion wave solution. 

Subcase 2.2.2 When p pu u
ρ ρ
− +

− +
− +

− ≥ − + − . We get the delta shock wave 

solution for this case similarly. 
Theorem 2.1. Under the given global entropy conditions, we obtain uniquely 

the Riemann solution for (1) and (4). 

3. Elementary Wave Interactions for (1) with (5) 

For simplicity, we just consider the case that the delta shock wave does not ap-
pear. We consider the four kinds of wave interactions: 
 

 

Figure 5. The wave curves in Case 2.2. 
 

 

Figure 6. The discussions in Subcase 2.2.1. Case (i) solution of the point a; Case (ii) solu-
tion of the point b; Case (iii) solution of the point c; Case (iv) solution of the point d. 
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A combustion wave DT


 and a shock wave S


, a combustion wave DF


 
and a shock wave S



, a combustion wave DT


 and a rarefaction wave R


, a 
combustion wave DF



 and a rarefaction wave R


. 
Case 3.1. DT



 and S


 (Figure 7) 
We know 1m lµ η µ< <  for DT



, and 2r mµ η µ< <  for S


, where 1η  and 

2η  are the velocity of DT


 and S


 respectively. ( ) ( )DTm W l∈


, ( ) ( )r S m∈


. 
From the global entropy conditions, we know that the solution for this case is 

.DT S S J S+ → + +


  

 

Theorem 3.1. For the wave interaction between the shock wave and the deto-
nation wave, we find that it may extinguish the combustion wave which shows 
that the unburnt gas is unstable. And after the elementary wave interaction 
process, we observe that the contact discontinuity may emerge.  

Case 3.2. DF


 and S


 
In this case (Figure 8), it follows that the shock wave will overtake the com-

bustion wave and we need to investigate the new initial value problem. Consi-
dering the fact that ( ) ( )DFm W l∈



, and due to ( ) ( )r S m∈


, we get that the re-
sults from the global entropy conditions are described by 

or ,DF S R S J S+ → + +


  

 

 

  

Figure 7. The interaction of DT


 and S


. 
 

    

Figure 8. The interaction of DF


 and S


. 
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Theorem 3.2. In this situation, the result of the wave interaction between the 
shock wave and the deflagration wave is that the deflagration combustion wave 
may be extinguished. Furthermore, we find that the contact discontinuity may 
emerge after the elementary wave interaction process.  

Case 3.3. DT


 and R


 
For this situation (Figure 9), it follows that DT



 will interact with R


, and 
the new initial value problem is formed. Due to ( ) ( )DTm W l∈



, and considering 
that ( ) ( )r R m∈



, again from the global entropy conditions, we know that the 
result of the wave interaction process can be given by  

or .DT R S R J S+ → + +


  

 

Theorem 3.3. In this situation, the result of the wave interaction between the 
rarefaction wave and the detonation wave is that it may extinguish the combus-
tion wave. It shows that the unburnt gas is unstable. Further, we find that the 
contact discontinuity may emerge after the elementary wave interaction process.  

Case 3.4. DF


 and R


 
In this case (Figure 10), we know that the rarefaction wave will interact with 

the combustion wave. Then a new initial value problem is formed. Considering 
the fact ( ) ( )DFm W l∈



 and ( ) ( )r S m∈


, due to the global entropy conditions 
we get that the result of the wave interaction can be described by 

.DF R R J S+ → + +


 

 

 

   

Figure 9. The interaction of DT


 and R


. 
 

   

Figure 10. The interaction of DF


 and R


. 
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Theorem 3.4. In this situation, the result of the wave interaction between the 
rarefaction wave and the deflagration wave is the deflagration wave may be ex-
tinguished. Furthermore, we find that the contact discontinuity may emerge af-
ter the elementary wave interaction process.  

4. Conclusions 

Based on the above analysis, we conclude our main results. 
Theorem 4.1. There exists unique solution for the initial value problem (1) 

and (5). By studying the concrete elementary wave interactions, we observe in-
teresting combustion phenomenon. The combustion process may be extin-
guished which reveals that the unburnt gas is unstable.  

For simplicity, we suppose that the reaction rate in the combustion model (1) 
is infinite, Of course, it is still an important model to study the combustion 
phenomena in our many applications in every way. In our further study, we will 
study the self-similar ZND model which has a finite reaction rate. 
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