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Abstract 
In this paper, we consider the numerical treatment of an inverse acoustic 
scattering problem that involves an impenetrable obstacle embedded in a 
layered medium. We begin by employing a modified version of the well 
known factorization method, in which a computationally effective numerical 
scheme for the reconstruction of the shape of the scatterer is presented. This 
is possible, due to a mixed reciprocity principle, which renders the computa-
tion of the Green function at the background medium unnecessary. Moreo-
ver, to further refine our inversion algorithm, an efficient Tikhonov parame-
ter choice technique, called Improved Maximum Product Criterion (IMPC) is 
exploited. Our regularization parameter is computed via a fast iterative algo-
rithm which requires no a priori knowledge of the noise level in the far-field 
data. Finally, the effectiveness of IMPC is illustrated with various numerical 
examples.  
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1. Introduction 

The scientific field of inverse scattering theory for acoustic waves has been a very 
active field in the recent years, and its mathematical and modeling techniques 
are widely used in real-world problems. Acoustic scattering problems are very 
extensive and there a lot of examples due to the following areas: medical imaging, 
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ultrasound tomography, nondestructive testing, material science, radar, etc. The 
aim in this research field has been not only to detect but also to identify un-
known obstacles throughout the use of acoustic waves, and a lot of work has 
been done for direct scattering problems as well as for the inverse ones (see [1] 
[2] and the references therein). 

In particular, the inverse scattering problems are exterior problems where 
the measurement data are taken outside the scattering obstacles. The paper at 
hand deals with reconstructions of sound-soft two-dimensional obstacles from 
time-harmonic acoustic plane waves in a layered background medium. These 
types of problems arise in applications where the background is not homogene-
ous and hence is modeled as a layered medium. This topic was originally inves-
tigated by Bondarenko et al. [3] within the framework of the factorization me-
thod. 

As shown in Figure 1, let 2
2D ⊂   denote a non-penetrable obstacle which 

is an open and bounded domain with a 2C  boundary 2 1D S∂ ≡ . We also de-
note the background medium by 2

2\ D , which is divided, due to its 2C
-boundary 0S , into two connected domains: the bounded homogeneous do-
main 1D  and the homogeneous unbounded one, 0D  (see Figure 1). Hence 
the background medium will consist of a finite number of homogeneous layers 
(domains) jD , where without loss of generality, we will assume that 0,1j = , 
meaning that the background medium consists of two layers. Let j jk cω=  be 
the positive wave number in terms of the frequency ω  and the speed of sound 

jc  in the corresponding domain jD , 0,1j = . Mathematically, the problem of 
scattering of time-harmonic acoustic waves in a two-layered medium in 2  is 
described by the following boundary value problem: Determine the total field 

inc sctu u u= +  such that  

( ) ( )2
0 00, ,u x k u x x D∆ + = ∈                      (1) 

( ) ( )2
1 10, ,u x k u x x D∆ + = ∈                       (2) 

( ) 10, ,u x x S= ∈                           (3) 

( ) ( ) ( ) ( )
0 0, 0,

u x u x
u x u x x Sµ

ν ν

+ −
+ − ∂ ∂

= − = ∈
∂ ∂

             (4) 

( ) ( )0lim 0, : ,
sct

sct

r

u x
r ik u x r x

r→∞

 ∂
− = =  ∂ 

                (5) 

 

 
Figure 1. The problem configuration. 
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where incu  and sctu  denote the incident plane wave field and the corres-
ponding scattered field, respectively. The outward unit vector to jD  is denoted 
by ν , and u+ , u

ν

+∂
∂

 ( u− , u
ν

−∂
∂

) denote the limit of u, 
u
ν
∂
∂

 on 0S  from the  

outside (inside) of 0S . In addition, 0
0

1

ρ
µ

ρ
=  is a non-negative constant written  

in terms of the density jρ  in the corresponding medium jD , 0,1j = . The 
Dirichlet boundary condition will be applied on 1S  and corresponds to a 
sound-soft obstacle, whereas the transmission one will be imposed on 0S  and 
represents the continuity of the medium and equilibrium of the forces acting on 
it. 

An application of the Green’s formula implies that the solution u of the direct 
problem (1)-(5), has the asymptotic behavior [4] 

( ) ( ) ( )3 2eˆ , :
ikr

sctu x u x O r r x
r

∞ −= + =                (6) 

uniformly with respect to ˆ Sx x x= ∈  (S is the unit circle) for some analytic 
function u∞  which is called the far-field pattern of sctu  defined on S. In the 
case of the inverse problem, it represents the measured data. In particular, the 
inverse problem that will be considered here is the problem of recovering the 
shape of the imbedded objects from a complete knowledge of the far-field pat-
tern. 

The existence, uniqueness and stability of the direct problem, modeled by 
(1)-(5), have been established by Liu et al. in [5]. Most of the theoretical work for 
the corresponding inverse problem, including a rigorous proof of the factoriza-
tion method for recovering imbedded obstacles, has been done in [3] within the 
framework of the factorization method [2] [6], and with the use of a mixed reci-
procity principle which doesn’t require knowledge of the Green function for the 
background medium. Therefore, the resulting method is more computationally 
efficient than its counterparts. 

Recall that the main idea of the factorization method is that the support of the 
scattering obstacle is obtained by solving an integral equation of the first kind 
and noting that the norm of an appropriate indicator function becomes un-
bounded as a point lying on a rectangular grid containing the scatterer ap-
proaches its boundary. Due to the ill-posedness of the corresponding integral 
equation, Tikhonov regularization with the regularization constant computed 
via Morozov’s discrepancy principle [7] is employed. It is well known however 
that Morozov’s discrepancy principle is time-consuming and requires an a priori 
knowledge of the noise level in the data, something that is unavoidable in real 
life applications. Therefore we employ an Improved Maximum Product Crite-
rion (IMPC), developed by Bazán et al. [8], which via a fast and efficient algo-
rithm chooses as regularization parameter, the critical point associated with the 
largest local maximum, of a product created by the regularized solution norm 
and the corresponding residual norm. The IMPC is an improved version of the 
Maximum Product Criterion (MPC) that originally appeared in [9]. Moreover, 
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as with MPC, IMPC does not depend on user specified input parameters (like 
subspace dimension or truncating parameter) and requires no a priori know-
ledge of the noise level [9]. As we mentioned before, IMPC extends in a very 
elegant way the maximum product criterion, and it is worth mentioning that has 
been applied with great success in reconstructing obstacles in acoustics [9], elec-
tromagnetics [8] as well as applications in elastic scattering [10]. In addition to 
employing IMPC, the introduction of the mixed reciprocity relation avoids the 
computation of the far field of the Green function by replacing it with the total 
wave, and therefore renders the resulting algorithm even more attractive with 
respect to the computational point of view [3]. 

We organize our paper as follows. In Section 2 by using [3] as our main ref-
erence, we formulate a two-layered background medium problem and present a 
mixed reciprocity relation along with a formulation of an appropriate version of 
the factorization method. In Section 3, after discussing recently introduced indi-
cator functions used for object reconstruction [11] [12], IMPC is revisited under 
the framework of the factorization method established in Section 2 and evidence 
is provided about why the method works so well in various applications tested so 
far. Using IMPC, the regularization parameter will be computed via a fast itera-
tive algorithm which requires no a priori knowledge of the noise level in the data. 
Consequently, in Section 4, full far-field patterns will be generated, and the me-
thod will be applied for the reconstruction of imbedded obstacles under the as-
sumption that the background medium is given in advance. Concluding remarks 
are given in Section 5. 

2. Formulation of the Problem 

Similarly as in [3], we let 2 1 1D D S D=   , and we denote the total field by 
inc sct

tu u u= + , where incu  and sctu  denote the incident plane wave and the 
corresponding scattering field respectively. In particular, the scattering of inci-
dent plane waves in a two-layered background medium can be formulated as: 

2
0 00, in ,t tu k u D∆ + =                       (7) 

2
1 0, in ,t tu k u D∆ + =                       (8) 

0 0, 0, ont t
t t

u u
u u Sµ

ν ν

+ −
+ − ∂ ∂
= − =

∂ ∂
                (9) 

0lim 0, : ,
sct

sctt
tr

u
r ik u r x

r→∞

 ∂
− = = 

∂ 
               (10) 

Recall that the fundamental solution of the Helmholtz equation is given by 

( ) ( ) ( )1
0, ,

4
ix y H k x y x yΦ = − ≠                 (11) 

in which ( )1
0H  is the Hankel function of order zero and of the first kind. Now, 

let ( ),u d∞ ⋅  be the far field pattern of the scattered field ( ),sctu d⋅  due to an 
incident plane wave ( ),incu d⋅  with the incident direction Sd ∈ . In addition, if 
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the incident field is generated by a point source ( , )zΦ ⋅  with source point 
2z∈ , we denote by ( ),s zΦ ⋅  its scattered field and by ( ), z∞Φ ⋅  its far field 

pattern. Following Potthast [3] and [13], the following mixed reciprocity relation 
has been established. 

Theorem 1. (Mixed reciprocity relation) For acoustic scattering of plane 
waves ( ),incu d⋅ , Sd ∈  and point sources ( ), zΦ ⋅ , 2z∈  from an obstacle 

2D  we have  

( )
( )
( )

0

0

ˆ, ,
ˆ,

ˆ, ,
t

t

u z x z D
x z

u z x z Dµ
∞

∈Φ = 
∈

                 (12) 

where ( )ˆ,tu x⋅  solves the transmission problem (7)-(10). 
For the proof, we refer the reader to [3]. 
The far field patterns ( )ˆ,u x d∞ , ˆ, Sx d ∈  given by (6), define the far field 

operator ( ) ( )2 2: S SF L L→  by  

( )( ) ( ) ( ) ( )
S

ˆ ˆ ˆ; d , SFg x u x d g d s d x∞= ∈∫               (13) 

It is well known that the factorization method is looking for a regularized so-
lution ( )2 Sg L∈  of the equation 

( )( ) 0
4

ˆ 2

0

eˆ e ,
8

i
ik x z

zFg x z
k

− ⋅
π

=
π

∈                  (14) 

where F  is a self-adjoint operator and the right hand side is chosen as the far 
field pattern of the problem specific Green function. We now proceed with the 
theoretical background needed for the recovery of the interface, and the shape 
and location of the imbedded obstacle. 

For recovering the interface, we replace F  in Equation (14), by the well 
known operator ( )1 4

F F  which characterizes the factorization method as de-
veloped by Kirsch in [6]. Hence Equation (14) takes the form 

( ) 0
41 4 ˆ

0

e e
8

i
ik x z

zF F g
k

− ⋅
π

π
=                    (15) 

and the spectral properties of F are used for the reconstructions. To be more 
specific, since F is normal and compact, which guarantees the existence of a sin-
gular system { }, ,c c c

j j ju vσ , j∈ , of F with c c
j j jv s u=  and js ∈  with 

1js = , then the characterization of the object depends on a range test as de-
scribed in the following theorem due to Kirsch [6]. 

Theorem 2. For any 2z∈  let zΦ  denote the right hand side of Equation 
(15). Assume that 2

0k  is not a Dirichlet eigenvalue of 2−∆  in D i.e. the corres-
ponding homogeneous problem has only the trivial solution. Then a point 

2z∈  belongs to D if and only if the series  

( ) 2

1

, c
z j

c
j j

v

σ

∞

=

Φ
∑                          (16) 

converges, or equivalently, z D∈  if and only if zΦ  belongs to the range of the 
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operator ( )1 4*F F .  
A consequence of the above result is that if one considers the partial sum of 

the first n terms of the series (16), for large n the partial sum must be large for z 
outside D, as the corresponding series fails to converge, and small for z inside. 
The factorization method characterizes the object by plotting a suitable indicator 
function which can be defined in several ways. More precisely, one defines an 
indicator function depending on 2z∈ , so that the function is relatively large 
when z D∈  and small otherwise. Several indicator functions will be presented 
and discussed later. 

In reconstructing the imbedded obstacle, we employ a variant of the factoriza-
tion method, called #F -factorization, described in [2] and also successfully used 
by Bondarenko et al. to recover this type of obstacles in [3]. To this end, we re-
place the left hand side operator, F , of Equation (14) by the operator 2

#
1F  

with # Re ImF F F= + , i.e. we now obtain the modified integral equation 

( ) 0
4

ˆ 2
#

0

1 2 eˆ e , ,
8

i
ik x z

zF g x z
k

− ⋅
π

∈
π

=                 (17) 

where the real and imaginary parts of F are self-adjoint operators given by 

( )*1Re
2

F F F= +  and ( )*1Im
2

F F F
i

= − . 
Consequently, consider the far field patterns ( )ˆ,tu x d∞ , ˆ, Sx d ∈ , and define 

the far field operator ( ) ( )2 2
0 : S SF L L→  by 

( )( ) ( ) ( ) ( )0 S
ˆ ˆ ˆ; d , StF g x u x d g d s d x∞= ∈∫              (18) 

Then it follows that the scattering operator ( ) ( )2 2
0 : S SL L→  can be de-

fined by 
2

4

0 0 0
0

e2
8

i

ik F
k

π

π
= +                      (19) 

where   denotes the identity. It can be shown that 0  is unitary [2]. 
We now formulate the main theorem of the paper, which will allow us to cha-

racterize the imbedded obstacle. Its proof can be found in our main reference 
[3]. 

Theorem 3. For any 2 1 1z D D S D∈ =   , let ( )ˆz xΦ  defined by  
( ) ( )ˆ ˆ ˆ, , Sz tx u z x xΦ = − ∈  where ( )ˆ,tu x⋅ −  solves the problem (7)-(10), and as-

sume that 2
1k  is not a Dirichlet eigenvalue of 2−∆  in 2D . Then a point z be-

longs to 2D  if and only if the series 

( ) 2

1

,z j

j j

v

λ

∞

=

Φ
∑                         (20) 

converges, or equivalently, 2z D∈  if and only if zΦ  belongs to the range of 
the operator 2

#
1F . Finally, ( ),j jvλ  is the eigensystem of the operator #F  

which is given by  

( )( ) ( )( )* *
# 0 0 0 0Re ImF F F F F= − + −               (21) 
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It is now obvious from the Theorem above, that the explicit use of the Green’s 
function of the background medium (which corresponds to solving a direct 
problem for each grid point z) is avoided due to the utilization of the near field 
data sctu  that have already been computed. In addition, similar to interface re-
construction, obstacle reconstructions are also performed through appropriate 
indicator functions. 

3. On Sampling Indicator Functions 

In practice, we work with finite dimensional approximations of the linear oper-
ator Equations (15) (resp. (17)) and characterize the object through related indi-
cator functions. The following analysis concerns some indicator functions asso-
ciated with (15) but something similar can be elaborated to determine objects by 
means of (17). Let { }, 1

, ,
n

j j j
u vσ

=
 be a singular system of a finite dimensional 

approximation of the far-field operator F, CI n n
nF ×∈ , constructed by some nu-

merical method. When using the factorization method, for each sampling point 
2z∈  we deal with the system of linear equations  

( )1 4* ,n n zF F g r=                       (22) 

where *F  denotes the conjugate transpose of F and zr  denotes the discretized 
version of the right hand side in (15), and then we calculate the discrete the in-
dicator function 

( )
12

2

2
1

,
M j

z
j j

W z g
α

σ

−

−

=

 
 =
 
 
∑                   (23) 

where *
j j zv rα =  is the Fourier coefficient of zr  along the jth right singular 

vector of nF  and zg  is the unique solution of (22), ( ) 1 4*
z n n zg F F r

−
= , where 

for simplicity, this solution is denoted with the same symbol as that of the con-
tinuous case, see (15). 

The factorization method determines the shape of the object by inspecting the 
sampling points z where ( )W z  becomes large. The rationale behind such a 
strategy lies on the fact that 2zg  remains within reasonable bounds when z 
belongs to the scatterer and becomes large when z moves away from the boun-
dary. Actually, because of Theorem 2, for sampling points z inside the scatterer, 
it is mandatory that the Fourier coefficients ( ), c

z jvΦ  decay faster than c
jσ  

to assure convergence of the series (16). This is not the case for z outside D be-
cause for these sampling points the series diverges and therefore the associated 
Fourier coefficients should get larger than jσ  even for small j. Most impor-
tantly, this observation is proven numerically valid in the case of finite approxi-
mations of the operator Equation (15), even using noisy far-field data, as one can 
see in Figure 2, which compares Fourier coefficients for a sampling point inside 
D, denoted as above by jα , Fourier coefficients for a sampling point outside D, 
denoted by ˆ jα , and jσ . This illustration corresponds to the reconstruction 
of a kite using 64 incident and observation directions, 100 100×  sampling  
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Figure 2. Singular values and Fourier coefficients. 
 
points, and Far-field data corrupted by additive noise with relative noise level 
5%. Data are taken from [9]. 

From the behavior of the Fourier coefficients described above, it is evident 
that:  

1) For points z outside and close to D, 2zg  is necessarily large as in this 
case most Fourier coefficients remain above the singular values, so ( )W z  be-
comes very small;  

2) As Fourier coefficients for external points are on the average much larger 
than the Fourier coefficients for internal points, which generally remain below 
the singular values, for z inside D the solution norm 2zg  will be of moderate 
size.  

Hence provided the Fourier coefficients behave as described above, ( )W z  
will be relatively large when z belongs to D and small for z outside. That is, 
whenever the Fourier coefficients separate into two well distinguished groups in 
terms of size, one group associated with points inside D and other groups for 
points outside, several sampling indicator functions can be considered. In fact, a 
class of sampling indicators that exploit such a separation considers the q-norm 
(q = 2 or 1) of the vector αΩ  where Ω  is a diagonal matrix such that, for 
chosen natural  , 1 n<   , , 0i iΩ =  for 1 i≤ ≤   and , 1i iΩ =  otherwise. 
Then a sampling indicator function can be defined as  

( )FC , 2 or 1, 0.qI z qµα µ= Ω = ≠                 (24) 

We recall that the decision to take 1n − +  Fourier coefficients jα  in this 
indicator lies on the fact that 2α  remains constant for all sampling point z, 
hence no recovering is possible. The choice 2q = , 1µ =  leads to a method 
known as SVD-tail proposed in [14], for which, unlike ( )W z , ( )FCI z  becomes 
large for z outside D and small for z inside. Obviously, for ( )FCI z  to behave 
similarly as ( )W z  it suffices taking 1µ = − . In this work, we have tested the 
choice 1q = , which avoids calculating squares and square roots, and our con-
clusion has been that both choices work relatively well, but showing low contrast 
profile reconstruction. 

Apart from the indicators in (24), although not explicitly mentioned in the li-
terature, some recently published qualitative methods, referred to as direct sam-
pling methods (DSM), also rely on the separation of Fourier coefficients. As 
examples we quote the indicators  
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( ) 1 2 2**
DSM

1 ,n zI z r F r β α= =    Σ  Σ               (25) 

where β  is the vector of Fourier coefficients of zr  with respect to left singular 
vectors of nF , α  is the vector of Fourier coefficients jα  defined above and 

1 2Σ  is the diagonal matrix with diagonal entries equal to jσ , and  

( ) ( )1 4 * 2* * 1 4 1 4 1 4
DFM1 2

,n n zI z r F F r α α α   = = Σ Σ = Σ            (26) 

see [11] [12] for details. We observe in passing that (23) as be regarded as a sam-
pling indicator of a direct sampling method since, like (26) we use a diagonal 
weighted matrix,  

( ) 1 2 2

2
.W z α− −

= Σ                        (27) 

It is evident that the sampling indicator functions mentioned above avoid 
solving linear system and are therefore very efficient in terms of computational 
effort. From a theoretical point of view, it is known that DSM and DFM1 are 
equivalent and that the indicators decay as the sampling point z moves away 
from the scatter, see Theorems 1 and 4 in [15]. A missing information however, 
is how the indicators behave for z outside and close to D, and this may partially 
be the cause of low contrast reconstruction profiles as well as the presence of ar-
tifacts such as spurious oscillatory peaks in the corresponding surfaces, although 
of course, numerical results presented in [11] indicate that DFM1 delivers better 
accuracy than DSM. 

3.1. Understanding Drawbacks Attributed to DSM and DFM  
Indicators 

In this section, we intend to some extent, explain why the graphs of the indicator 
functions (25)-(26) include spurious oscillatory peaks. For this, it will be suffi-
cient to show, not with proofs or theorems but with strong arguments, that the 
frequency content of DFM1I  is high and that high frequency modes in the indi-
cator are propagated for z outside D. The oscillatory behavior of the Fourier 
coefficients seen in Figure 2 is the key piece in our analysis and requires there-
fore justification. For this, we take n equidistantly distributed angles on the unit 
circle, ( )2 1 , 1, ,j j n j nω − =π=  , and set ( )cos ,sinj j jt ω ω= . With this no-
tation, we see that the discretized version of the right hand side of the operator 
Equation (15) reads  

0 1 0 2 0
4 T

0

e e ,e , ,e
8

N
i

ik t z ik t z ik t z
zr k

− ⋅ − ⋅ − ⋅
π

= =
π

 
 

where the superscript T denotes transpose of a vector or matrix, and thus the 
Fourier coefficient jα  can be expressed as  

0*
,

1
e ,j

n
ik t z

j j z k j
k

v r Vα − ⋅

=

= = ∑                     (28) 

where the bar denotes complex conjugate. This shows that jα  involves a sum 
of weighted harmonics, with potentially high frequency content, and oscillatory 
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weights that are the components of singular vectors jv . Weight oscillation is 
because singular vectors jv  oscillate strongly as j grows, which is well known in 
connection with discrete inverse problems, see, for example [16]. This justifies 
the oscillatory behavior of the jα  displayed in Figure 2. 

To complete our explanation, notice now that because the indicator computes 
inner products of the vector 1 4αΣ  with itself, the highest frequency in the in-
dicator will be at least twice the highest frequency in α . Hence, oscillatory 
peaks in the indicator behavior become completely natural because the weights 
4

jσ  propagate high oscillations in α , this being more pronounced for z out-
side D in which case jα  gets larger. To illustrate this a 3D graph of ( )DFM1I z  
for far-field data used to build Figure 2 is presented in Figure 3 where spurious 
peaks are evident. 

We close the section with the observation that the effect of oscillatory jα  
on ( )W z  is not so dramatic since for z outside D, the weight 1 jσ  implies 
that 2zg  gets large, which is good for separating the indicator behavior, while 
for z inside, since on the average j jα σ< , see Figure 2, the coefficient 

j jα σ  remains relatively small and so 2zg  gets moderate size. That is, 
although as already commented, the reconstructed profiles obtained with ( )W z  
suffer from low contrast reconstruction, spurious oscillatory peaks are mitigated. 
A similar observation holds true for ( )FCI z . 

To overcome the above drawbacks, post-filtering strategies have been pro-
posed recently for the above DSM methods [17], whereas for Kirch’s factoriza-
tion method (FM) the ad-hoc strategy has been to use Tikhonov regularization 
often based on Morozov’s generalized discrepancy principle (GDP). However, 
while filtering did not completely succeed in eliminating artifacts for DSMs, the 
performance of Tikhonov regularization has been highly satisfactory in several 
reconstruction problems, specially when the regularization parameter is selected 
via the Improved Maximum Product Criterion (IMPC). Recall that unlike GDP 
which requires a priori knowledge of the noise level in the data, IMPC does not 
require any user specified input parameters such as noise level or others. 

To illustrate the superior reconstruction quality of the Tikhonov regularized 
based method coupled with IMPC over the above DSMs, we normalize the indi-
cators dividing them by their maximum values and use level curves to recover 
the profile of the obstacle. Level curves at the values 0.5, 0.6, 0.7, and 0.8 for the 
indicators ( )DFM1I z , ( )W z  and the one based on the Tikhonov based ap-
proach coupled with IMPC, labeled here by W-FP, are displayed in Figure 4.  
 

 

Figure 3. Mesh version of DFM1I . 
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The level curves behavior confirms two facts. First, that reconstructed profiles 
obtained by ( )DFM1I z  are indeed contaminated by spurious peaks and second, 
that the Tikhonov regularized version of ( )W z  coupled with IMPC mitigates 
significantly the effects of oscillatory jα . 

In addition to the level curves behavior displayed in Figure 4, to reinforce 
once more the superior reconstruction quality of W-FP over the other indica-
tors, in Figure 5 we display flat surface plots for ( )DFM1I z , ( )W z , W-FP and 

FCI , where the last one is denoted by AFC and corresponds to 1q µ= − = , 
10p = . Flat surface plots are obtained using the built-in matlab function pcolor. 

As we can see, although this particular form of visualization hides oscillating 
peaks, the same is not true if we focus on the background, where small oscilla-
tions are evident. Other than that, the low reconstruction contrast of profiles 
obtained with ( )W z  and FCI  is also evident. 

Despite the fact that DSMs are theoretically stable and computationally cheap 
[11] [15], motivated for their shortcomings and the superior quality of the re-
constructions obtained with W-FP, perhaps the most important observation 
here is that if the main objective is the quality of the reconstruction, one should 
choose W-FP. With this motivation, DSMs will no longer be used in this paper, 
and to justify using IMPC, in the next section, we revisit IMPC to describe new 
theoretical properties. 

3.2. Revisiting IMPC and GDP 

We first revisit a modified version of (23) based on Tikhonov regularization 
where the regularization parameter is chosen by the improved maximum prod-
uct criterion (IMPC) [9]. In this case, the indicator function takes the form 

( )
( )

12
2

,2 221
, ,

n j j
z

j
j

W z gλ

σ α
λ

λ σ

−

−

=

 
 =
 +  
∑                 (29) 

 

 

Figure 4. Level curves for ( )DFM1I z , ( )W z  and W-FP. 

 

 

Figure 5. Reconstructed objects using four indicator functions. 
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with 

( )
21 4 2* 2

, 2CI 2
arg min ,

nz n n z
g

g F F g r gλ λ
∈

 
= − + 

 
             (30) 

where the regularization parameter 0λ >  is a critical point of the product of 
the regularized solution norm and the corresponding residual norm. Let ,zλρ  
be the residual vector corresponding to the regularized solution ,zgλ , that is, 

( )1 4*
, ,z z n n zr F F gλ λρ = − . From the SVD of nF , it is simple to check that ,zgλ , 

,zλρ  and the corresponding squared norms are given by  

[ ] [ ]( )
*

*
, ,

1 1
, 1 ,

n n
i z

z i i z i i z i
i ii

v r
g v v r vλ λ
λ λϕ ρ ϕ

σ= =

= = −∑ ∑            (31) 

[ ]( ) [ ]( )
22 22 2 2

, ,2 2
1 1

, 1
n n

i
z i z i i

i ii

g λ λ
λ λ

α
ϕ ρ ϕ α

σ= =

= = −∑ ∑           (32) 

where [ ]
i
λϕ  are the Tikhonov filter factors, 

[ ]
2 2

1,

,
ii

i
i i i

λ σ λσ
ϕ

σ λ σ λ σ λ

= ≈ 
+ 





                (33) 

It is well known that 
2

, 2zgλ  and 
2

, 2zλρ  vary monotonically with λ , the 
former being decreasing and the latter increasing [16]. Recall that if ( ) ,r zλλ ρ= , 
( ) ,s zgλλ = , IMPC selects as regularization parameter the largest maximum 

point of  

( ) ( ) ( )2 2
r s .λ λ λΨ =                            (34) 

which is simple to compute via a fast fixed point procedure [8] [9]. It is instruc-
tive to notice that  

( ) ( ) ( )( ) ( ){ }2 2 22r s s .λ λ λ λ λ
′

′Ψ = −                       (35) 

Hence, since ( ){ }2
s 0λ

′
<    for all 0λ > , as seen in [9], λ



 is maximum 
point of Ψ  if and only if λ



 is a fixed point of ( ) ( ) ( )r sλ λ λΦ = , and 

( ) 1λ′Φ >


 [9]. For convergence details and practical implementation of IMPC 
the reader is referred to [8]. 

The goal of this subsection is to give further insight into the theoretical prop-
erties of IMPC to fully understand why it work so well. A key fact for this is to 
understand the behavior of Ψ  as a function of the sampling point z. Figure 6 
displays a typical behavior of Ψ  for points outside and inside D, labeled as 

outΨ  and onΨ , respectively, as well as the corresponding functions Φ . To ex-
plain such a behavior we assume, as usual, that Ψ  has only maximum point, 
and we will examine its location. 

The expressions in (31)-(32) are the basis for our analysis of the first factor in 
(35). Notice that for z outside D, for 0λ ≈ , , 2zgλ  becomes close to 2zg , 
which is large, because generally the Fourier coefficients iα  remain above 

iσ , see Figure 2. Assume now that λ  lies not so far from nσ  such that  
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Figure 6. Typical behavior of functions Ψ  and Φ  for z outside (resp. inside) the 
scatterer. Maximum points of Ψ  or equivalently related Fixed points of Φ  are 
marked with small circle. 
 

1 1n p pσ σ λ σ σ+≤ ≤ ≤ < ≤ ≤ 
 with p filter factor close to 1 and 

n p−  small filter factors. Then, based on (33) we have  
2

2 22 22 2
, ,22 2

1 1 1
and .

p n n
i i

z i z i
i i p i pi

gλ λ

α σ
λ λ α ρ α

σ λ= = + = +

≈ + ≈∑ ∑ ∑  

Thus, for z outside D and λ  relatively close to nσ , that is, p n≈ , it is clear 
that 

2 22 2
, 22z zg gλλ λ≈  dominates 

2
, 2zλρ  (because 2zg  becomes large), 

so ( ) 0λ′Ψ > , and Ψ  increases most often quickly and dramatically as λ  
moves away from nσ , until the maximum is reached. From there, as p dimi-
nishes or equivalently, as λ  starts to get away from nσ , 

2
, 2zλρ  dominates  

22
, 2zgλλ  and so Ψ  is decreasing and becoming small as λ  approaches  

1σ . A similar phenomenon happens when z lies inside D, but with the differ-
ence that, as λ  moves away from nσ , Ψ  increases much slower than 
when z is outside D because the coefficients iα  remain below iσ , see again 
Figure 2; in this case, the maximum point of Ψ  is reached relatively close to 

1σ . A simple way to see this is by noting that since 
22

, 2zgλλ  can be ap-
proximated as  

22 2
, 2

1
,

p

z i
i

gλλ α
=

≈ ∑                        (36) 

a relatively large number of Fourier coefficients in 
2

, 2zλρ  is required for 
22

, 2zgλλ  to be dominated by 
2

, 2zλρ . That is, the maximum point should be 
relatively close to 1σ .  

Having discussed the behavior of function Ψ  for points inside and outside 
D, to strengthen the conclusions above we now describe some theoretical prop-
erties in the following theorem. 

Theorem 4. Assume that nF  is nonsingular with distinct singular values and 
0iα ≠ , 1, ,i n=  . Let ( ) ( ) ( )r sλ λ λΦ = . Then for all 0λ >   

( )
2 2

1

.
n

λ λλ
σ σ

≤ Φ ≤                      (37) 
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Consequently, 

( ) ( )10 0 , .nλ σ λ λ λ σ λ λ< ≤ ⇒ ≤ Φ ≤ ≥ ⇒ Φ ≥         (38) 

Moreover, irrespective of the sampling point, function Ψ  has always a 
maximum point λ



 that is a fixed point of Φ , 1nσ λ σ< <


, and this point 
is unique if ( ) ( )λ λ λ′Φ > Φ  for all 1,nλ σ σ ∈   .  

Proof: It is the well known that the solution to the optimization problem (30) 
satisfies the regularized normal equations,  

( ) ( )1 4* 2 *1 2

,n n z n n zF F I g F F rλλ + =  
               (39) 

where I denotes the n n×  identity matrix. Therefore  

( ) ( )1 4 1 42 * *
, ,

zz n n z n ng F F r F F gλ λλ  = −  
             (40) 

and hence, taking 2-norm on both sides of the above equality we see that  

( ) ( ) ( )1 4 1 4* *
,2

2

1s n n z n n zF F r F F gλλ
λ

 = −  
 

implies 

( )
( )

,2 2
1 4*

,
2

.z

n n zF F

λ

λ

ρ
λ λ

ρ
Φ =                    (41) 

Since ( )*
n nF F  is non-singular, from the SVD of nF  and well known eigen-

value properties of symmetric matrices, the inequalities in (37) are straightfor-
ward consequences of (41), while the inequalities in (38) are consequences of 
(37). In addition, from (38) it is clear that Φ  has at least a fixed point 

1,nλ σ σ ∈  


. It remains to show firstly that 1λ σ≠


, nλ σ≠


, and then 
that this fixed point maximizes Ψ  and is unique. We will do the first part by 
contradiction. Assume that nλ σ=



. Taking 2-norm on both sides of (40) and 
taking (31)-(32) into account, the fixed point equality ( )λ λ= Φ

 

 will be satis-
fied either when 0iα = , for 1, , 1i n= − , or when all singular values of nF  
are equal to nσ . This is a contradiction. Therefore nλ σ≠



. A similar analysis 
shows that 1λ σ≠



. What λ


 maximizes Ψ  is a consequence of (35) and 
the condition ( ) ( )λ λ λ′Φ > Φ . 

Finally, to prove uniqueness, assume that Ψ  has two maximum points, say 

1 2λ λ<  such that ( ) 1λ λΦ ≤  for 1nσ λ λ< ≤ . Following an analysis from 
[18] it follows that there exists a fixed point λ



 of Φ  between 1λ  and 2λ  
that minimizes Ψ . Using the mean value theorem for derivatives,  

( ) ( ) ( )( )1 1 1λ λ λ λ λ λ λ′− = Φ −Φ = Φ −
  

 with 1,λ λ λ ∈  


. This implies that  

( ) 1λ′Φ =  and so ( ) ( )1λ λ λ′Φ = < Φ  which is a contradiction because 
 

( )λ λΦ > . This completes the proof.                                   
Except for inequality (37), the statements of Theorem 4 were demonstrated in 

[9] [18] by other means. Here, these statements are elegantly proven from (37). 
In addition, the current approach allows us to explain to some extent what we 
discussed above about the location of the maximizing point of Ψ . Actually, us-
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ing the notation outΦ  and onΨ  introduced in Figure 6, and assuming that the 
maximum point of onΨ  is unique and achieved at λ λ=



, from (37) it follows 
that  

( ) ( )out on 1if ,
n

λλ λ λ λ σ
σ

Φ ≤ Φ ≤ ≤


            (42) 

( ) ( )out on
1

if .n
λλ λ σ λ λ
σ

Φ ≥ Φ ≤ ≤


            (43) 

In particular, at λ λ=


 we see that (42) implies  

( )out ,
n

λλ λ
σ

 
Φ ≤   

 



 

 

and this indicates that ( )out λΦ


 may reach a very large value and that this value 
may be much larger than ( )on λΦ



. If this is the case, the maximizer of outΨ  
must be smaller than λ



, a fact which, as we have seen, depends on the behavior 
of the Fourier coefficients. A line of analysis involving derivatives of Φ  can be 
used to characterize the location of the maximum point of outΨ . In fact, as 
Fourier coefficients associated with points outside D are generally larger than 
Fourier coefficients associated with internal points, to characterize such a loca-
tion it is reasonable to assume that ( ) ( )out onλ λ′ ′Φ > Φ . This can be seen as fol-
lows. Let ( ) ( ) ( )out onλ λ λΞ = Φ −Φ . It is clear that ( )0 0Ξ =  and that Ξ  is 
differentiable for 0λ > . Then  

( ) ( ) ( )
0

0 d ,
λ

λ ξ ξ′Ξ −Ξ = Ξ∫                   (44) 

where ’ denotes differentiation with respect to ξ . Based on (44) we obtain the 
following corollary. 

Corollary 1. Assume that ( ) ( )out onλ λ′ ′Φ > Φ  for all 10,λ σ ∈   . Then 
( ) ( )on outλ λΦ < Φ  and therefore, the maximizer of outΨ  lies on the left of the 

maximizer of onΨ . 
The discussion and analysis developed in this section regarding DSMs and 

IMPC are relevant in many ways. For example, since we have identified the 
source of oscillations and spurious peaks in DSM reconstructions, strategies to 
circumvent DSM difficulties can be thought of. Now, focusing on IMPC, what 
matters here is that we have provided additional insight to explain why the me-
thod works so well and why its reconstructions are potentially of better quality 
compared to those obtained by DSMs, although clearly at a higher cost. However, 
we emphasize that the IMPC cost is not a crucial issue in the case of 2D recon-
structions as IMPC is based on a fast fixed point iteration algorithm. A similar 
observation holds true for 3D reconstructions since in this case IMPC is applied 
in conjunction with a projection technique. Other than that, it is worth noting 
that if FCI  is used as a preprocessing step to identify a small region containing 
the object, by applying IMPC to that region the total cost of the reconstruction 
can be significantly reduced. This subject is left to future work. 
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Recall that GDP chooses as regularization parameter the only root of the non-
linear equation  

( ) ( )
21 4 2* 2

, , 22
0n n z z F zG F F g r gλ λλ δ= − − =             (45) 

where Fδ  is an estimate for ( ) ( )1 4 1 4* *

2
n n n nE F F F F= −   such that FE δ≤ . 

It is well known that G is convex for small λ  and concave for large λ . As a 
result, global and monotone convergence of Newton’s method cannot be guar-
anteed [19]. This difficulty is circumvented through a fast fixed-point algorithm 
proven convergent irrespective of the chosen initial guess [20]. 

We close the subsection with a new estimate for the only root of (45) that is 
again a consequence of (37). 

Corollary 2. Let the only root of (45) be denoted by GDPλ . Whenever 

1Fδ ε σ=  we have 

GDP 1 .nε σ λ ε σ≤ ≤                   (46) 

Estimates in (46) improve significantly an earlier estimate reported in Bazán 
([20], Theorem 3.2). 

4. Numerical Results 

In this section, we give several 2D numerical examples to illustrate the effective-
ness of IMPC in reconstructing interface and imbedded obstacles in layered me-
dium. To generate discrete data for the reference operator 0F  and the far-field 
operator F we use the boundary integral equation method as described in [3]. 
This yields finite approximations 0,nF  and nF  given as  

( ) ( )0, , 1 , 1
, , , ,

n n

n t j n jj j
F u F uθ θ θ θ∞ ∞

= =
   = =    

 

         (47) 

where 2j j nθ = π  and n is the number of incident and observation directions 
around the unit circle. For our examples we set 0 2k = , 1 1k =  and for the 
transmission parameter we chose 0 0.8µ = ; in all cases we used 64n =  and 
the reconstructions were made using a grid of 200 200×  equally spaced sam-
pling points on the rectangle [ ] [ ]6,6 6,6− × − . 

To recover the interface we rely on the ( )1 4
F F  method and use the indica-

tor functions (23) for noise free data as described in (47) and its regularized 
counterpart (29) for noisy data, with regularization parameter being chosen by 
IMPC and GDP and calculated by using fast fixed-point iterations as described 
in [8] [10]. Noisy data are generated as  

2n n nF F Fε= +                      (48) 

where 2⋅  denotes the spectral matrix norm,   is a complex random matrix 
satisfying 2 1= , and ε  gives the relative noise level in the data. On the 
other hand, the reconstruction of imbedded obstacles is based on a discrete 
counterpart of the linear operator Equation (17),  

1 2
,# ,n zF f r=                         (49) 
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where zr  is a discrete version of function zΦ  in Theorem 3 and  

( )( ) ( )( ),# 0, 0, 0, 0,Re Imn n n n n n nF F F S F F S= − + −          (50) 

with 0,nS  being obtained from (19) by replacing 0F  by 0,nF . In (50), the ab-
solute value of a Hermitian matrix A with eigenvalue decomposition *A V V= Λ  
is given as *A V V= Λ . Also, as usual, ( ) ( )*Re 2A A A= + , and  

( ) ( ) ( )*Im 2A A A i= − . Obviously, since ,#nF  is Hermitian positive definite, 
we have ( )1 4*

,# ,
1 2

# ,#n n nF F F= . Therefore, indicator functions ( )W z  and ( ),W zλ  
based on (49) are essentially the same as those based on (23) and (29). Noisy da-
ta ,#nF  is generated similarly as in (48). 

We report numerical results using noise free data and noisy data with 
0.05ε =  and 0.1ε = , that is, data with relative noise level 5% and 10% respec-

tively. In this sense, the numerical experiment performed here complement what 
is reported in [3] where reconstructions are based on nF  and ,#nF  without 
considering additive noise. Reconstruction based on noise free data are labeled 
by W and reconstructions based on noisy data are labeled by W-FP when we use 
IMPC and by W-GDP when we use Morozov’s generalized discrepancy prin-
ciple. For the implementation of GDP we use the noise level estimate 21.5F Eδ = , 
see (45). 

Example 1. The interface is given by a rounded square and the imbedded ob-
stacle is given by the union of an ellipse and a kite, see Figure 7. Both obstacles 
are assumed to be sound-soft. 

Results for noise level 5% shown in Figure 8 indicate that both GDP and 
IMPC produce good quality interface reconstructions (first line) and that the 
three indicators give comparable object reconstructions, with the observation  
 

 

Figure 7. Profile of interface and objects. 
 

 

Figure 8. Top: Reconstructed interfaces. Noiseless data (Left), Noisy data (Center and 
Right). Bottom: Reconstructed imbedded obstacles. 
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that the quality of the W-FP reconstruction looks better than that of W-GDP 
(second line). Reconstructions using data with noise level 10% are displayed in 
Figure 9. Again we see that the three indicators provide good quality interface 
reconstructions and comparable quality object reconstructions, although with 
the background better resolved with IMPC than with GDP. 

Example 2. In this example, the interface and obstacle are the same as in Ex-
ample 1 but now the kite is assumed to be sound-hard. Reconstructions using 
data with noise level 10% are displayed in Figure 10. Again we see that interface 
reconstructions are of good quality and that the reconstructions of the sound- 
soft object are visually of better quality than those of the sound-soft one. As ex-
plained in [3], this is because the values of the indicator functions are much 
smaller for the sound-hard obstacle compared to the sound-soft one, as these 
values depend on the physical property under consideration. 

Example 3. The interface is composed of one rounded square and a circle and 
the imbedded obstacles are an ellipse and a kite, see Figure 11. Both objects are 
assumed to be sound-soft. 
 

 

Figure 9. Top: Reconstructed interfaces. Noiseless data (Left), Noisy data (Center and 
Right). Bottom: Reconstructed imbedded obstacles. 
 

 

Figure 10. Top: Reconstructed interfaces. Noiseless data (Left), Noisy data (Center and 
Right). Bottom: Reconstructed imbedded obstacles. Obstacle is assumed to be sound-hard. 
 

 

Figure 11. Profile of interface and objects. 
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Figure 12 shows reconstructions using data with noise levels 5% (line 1 and 
line 2) and 10% (line 3 and line 4). As in example 1, we see that interface recon-
structions for both noise levels have comparable quality, while the reconstruc-
tion of the objects obtained with W-GDP appears to degrade when the noise lev-
el increases to 10%. Interestingly, the interface seems to be part of the back-
ground in the reconstruction of the objects. Anyway, here we can see that the 
best object reconstructions for both noise levels are obtained with W-FP. This 
confirms once again what is often seen when IMPC is compared to GDP in 
solving other inverse scattering problems, see, for instance [8] [9] [11] [21]. 

Example 4. In this example, the interface and object are as in Example 3 but 
the kite is assumed to be sound-hard. The reconstructions are shown in Figure 
13. As we can see, while interface reconstructions are robust to noise, as in the 
examples above, a certain lack of resolution seems to be present in the kite re-
construction, just as in Example 2 where we dealt with the sound-hard case. 
Other than that, note again that when reconstructing the objects, the interface 
seems to be part of the background. 

Example 5. The interface is composed of two rounded squares, as displayed in 
Figure 14, and the imbedded obstacles are an ellipse and a kite, assuming as in 
Example 4 that the ellipse is sound-soft and the kite is sound-hard. Reconstruc-
tions using data with noise level 10% are displayed in Figure 15. Once again, we 
see that the interface reconstructions are of good quality, while the reconstruc-
tions of the sound-hard object are as in Examples 2 and 4, that is, with slightly 
poor resolution. 
 

 

Figure 12. Top: Reconstructed interfaces. Noiseless data (Left), Noisy data (Center and 
Right). Bottom: Reconstructed imbedded obstacles. 
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Figure 13. Top: Reconstructed interfaces. Noiseless data (Left), Noisy data (Center and 
Right). Bottom: Reconstructed imbedded obstacles. 
 

 

Figure 14. Interface and imbedded obstacles. 
 

 

Figure 15. Top: Reconstructed interfaces. Noiseless data (Left), Noisy data (Center and 
Right). Bottom: Reconstructed imbedded obstacles. 

5. Conclusion 

We have presented an updated version of the Improved Maximum Product Cri-
terion (IMPC) which combined with a mixed reciprocity relation is used for the 
reconstruction of two-dimensional obstacles in a layered medium. Numerical 
results indicate that the method yields accurate and robust reconstructions and 
comparison with some recently developed direct factorization methods illu-
strates its superiority in terms of reconstruction quality. Extension to 3D recon-
structions can be a topic of future research in which the significant reduction of 
the computational cost will be a primary task. This can be achieved by using an 
indicator function that relies on the separation of the Fourier coefficients as a 
preprocessing step in order to identify a small region in which the object is lo-
cated, and then obtain the reconstruction by applying the IMPC. 
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