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Abstract 

Most reverse conversions in Residue Number Systems (RNS) are based on the 
Chinese Remainder Theorem (CRT) and the Mixed Radix Conversion 
(MRC). The complexity of the circuitry of the CRT is high due to the large 
modulo-M operation. The MRC has a simple circuitry but it’s a sequential 
process in nature. The purpose of this research is to obtain an efficient reverse 
conversion method to reduce the computational overhead found in the con-
ventional reverse conversion algorithms. In this paper, new algorithms for 
reverse conversion in RNS for four-moduli set and five-moduli set have been 
proposed and their correctness evaluated. Numerical evaluations to ascertain 
the correctness and simplicity of the algorithm have been presented. These 
algorithms have fewer multiplicative index operations than those in the con-
ventional CRT and MRC. The large modulo-M operation has been eliminated 
which reduces the computational overhead. 
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1. Introduction 

In recent times, digital processors based on RNS contribute significantly in many 
digital signal processing applications. In these related applications, addition is 
the common operation that is carried out using different kinds of adders. In RNS 
based arithmetic operations, there is no carry propagation which is a great li-
miting factor of archiving high speed processing time. Digital processors built 
based on RNS offer the advantages of parallelism and fault tolerance [1] [2] [3] 
[4]. In RNS, Integers are represented by taking the modulus operation of the 
given integer over a set of moduli. The respective residues represent the integer 
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in RNS. Some of the problems that limit the full utilization of RNS are difficult 
in carrying out division, magnitude comparison, sign detection and scaling [5] 
[6]. 

To utilize RNS based processors and their advantages, conventional number 
systems such as numbers in binary or decimal representation must be converted 
into residues and that is referred to as Forward Conversion, then the RNS pro-
cessor does the arithmetic operations and results are converted back to their bi-
nary or decimal equivalent and the process is referred to as Reverse Conversion. 
The Forward Conversion process is very fast and straight forward. The Reverse 
Conversion is more difficult and introduces much overhead in terms of time 
complexity and area [7] [8]. 

The conversions component of RNS structure is very essential in determining 
the performance of RNS. The conversion process may be computational inten-
sive in the circuitry and may introduce undue propagation delay and increase 
the area of the general architecture of the RNS system. This can derail the im-
portance of using RNS in digital processor applications. To completely build an 
RNS processor that can replace the currently used digital processors, there is the 
need to build efficient conversion algorithms that will still make the gains in 
terms of speed in RNS a worthwhile adventure. 

Currently available conversion algorithms are based on the Chinese Re-
mainder Theorem or the Mixed Radix Conversion techniques. The MRC is in-
herently a sequential process in nature; in computing the mixed radix digits, the 
correctness of the subsequent mixed radix digits depends on the preceding 
mixed radix value. This is a major challenge as an error in one mixed radix value 
will lead to an error in the preceding mixed radix value. The major problem with 
the Chinese remainder theorem based reverse conversion techniques is the need 
of a large modulo adder in the last stage. This can derail the general performance 
of the RNS architecture because it increases the computational intensity of the 
conversion process. 

In this paper, a new reverse conversion technique is presented for a four 
modular set and five modular set. The paper seeks to obtain a new reverse algo-
rithm without the need of a large modulo adder found in the CRT conversion 
technique. The proposed conversion technique also seeks to resolve the inherent 
sequential process found in the MRC. This technique is based on what is pro-
posed by Asiedu and Salifu (2021) but limited to a two-moduli set and a 
three-moduli set hence limiting the dynamic range (few numbers can be 
represented). The new scheme seeks to increase the dynamic range in order to 
allow applications with huge numbers to be represented.  

2. Related Algorithms 

Traditionally, there are two main known algorithms for reverse conversion, the 
Chinese Remainder Theorem (CRT) and the Mixed Radix Conversion (MRC). 
Other variants based on the CRT and MRC have been proposed. The advantage 
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of the CRT is because the data conversion can be parallelized to limit inherent 
errors in the conversion process. The disadvantage is that it has slow modulo-M 
operation. MRC has less complex circuitry but by nature, it is a sequential 
process where the value of the subsequent mixed radix depends on the preceding 
mixed radix value. This implies that an error in one mixed radix value will lead 
to an error in the subsequent mixed radix value. 

Asiedu and Salifu (2021) proposed a recent reverse conversion algorithm for 
two-moduli set and three-moduli set that are very simple and with fewer multip-
licative inverse operations than there are in the traditional algorithms like the 
Chinese Remainder Theorem (CRT) and Mixed Radix Conversion (MRC). 

2.1. Chinese Remainder Theorem 

Given the moduli set }{ 1 2 3, , , , nm m m m  and the RNS representation of an in-
teger X be represented as }{ 1 2 3, , , , nx x x x . Then the Chinese Remainder 
Theorem is as follows: 

1

1 i

N

i i iM mi M

X x M M−

=

= ∑                     (2.1) 

where M is the product of the mi 1
iM −  are the multiplicative inverse of iM  

with respect to mi i
i

MM
m

=  [9] [10]. 

2.2. Mixed Radix Conversion 

Consider the moduli set }{ 1 2 3, , , , nm m m m  and the RNS representation of an 
integer X be given as }{ 1 2 3, , , , nx x x x , it’s decimal equivalent is computed 
based of the Mixed Radix Conversion as follows: 

1 2 1 3 1 2 1 2 3 1n nX d d m d m m d m m m m −= + + + +            (2.2) 

where , 1, 2, ,id i n=   are the Mixed Radix Digits (MRDs) and computed as 
follows: 

1 1d x=  

( )
2 2

1
2 2 1 1 m m

d x d m−= −  

( )( )
3 3

3

1 1
3 3 1 1 2 2m m m

d x d m d m− −= − −  

  

( )( )( )1 1 1
3 1 1 2 2 1 1

n n n
n

n n nm m m
m

d x d m d m d m− − −
− −= − − − −   [11]   (2.3) 

That is, X in the interval [ ]0, M  can be unambiguously represented. 

3. Proposed Algorithms 

The proposed algorithm is based on the algorithm for reverse conversion pro-
posed by Asiedu and Salifu (2021). The authors proposed new algorithms for 
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reverse conversion for two-moduli set and for three-moduli set. In this paper, 
four-moduli set and a five-moduli set are proposed.  

3.1. Algorithm for Four Moduli Set 

Given a four moduli set { }1 2 3 4, , ,m m m m m=  and residues ( )1 2 3 4, , ,r r r r r= , 
moduli set m and residues r can be represented in congruence form as: 

1 1modX r m≡                        (3.1) 

2 2modX r m≡                        (3.2) 

3 3modX r m≡                        (3.3) 

4 4modX r m≡                        (3.4) 

Equation (1) can be written in an equation form as: 

1 1X m k r= +                         (3.5) 

Equation (5) must satisfy Equation (2) such that 

1 1 2 2modm k r r m+ ≡  

( )1 2 1 2modm k r r m≡ −  

( ) 1
2 1 1 2modk r r m m−⋅≡ −  

( )
2

1
2 2 1 1 m

k m t r r m−⋅= + − . 

Putting k into Equation (5), we have 

( )( )
2

1
1 2 1 2 1 1 1m

X m m t m r r m r−= + − +                (3.6) 

Equation (6) must satisfy Equation (3) such that 

( )( )
2

1
1 2 1 2 1 1 1 3 3mod

m
m m t m r r m r r m−+ − + ≡  

( )( )
2

1
1 2 3 1 2 1 1 1 3mod

m
m m t r m r r m r m−−≡ +−  

( )( ) ( )
2

11
3 1 2 1 1 1 1 2 3mod

m
r m r r m r m m mt −−− − + ⋅≡  

( )( ) ( )
2

3

11
3 3 1 2 1 1 1 1 2m m

m p r m r r m r mt m −−+ − − + ⋅=  

Putting t into Equation (5), we have  

( )( ) ( )

( )( )
2

3

2

11
1 2 3 3 1 2 1 1 1 1 2

1
1 2 1 1 1

m m

m

X m m m p r m r r m r m m

m r r m r

−−

−

= + − − + ⋅

+ −


 



+



  

( )( ) ( )

( )( )
2

3

2

11
1 2 3 1 2 3 1 2 1 1 1 1 2

1
1 2 1 1 1

m m

m

X m m m p m m r m r r m r m m

m r r m r

−−

−

 
 


= + − − + ⋅

+ − +

    (3.7) 

Now Equation (7) is the general form of decimal equivalent that satisfies Equ-
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ation (4) such that: 

( )( ) ( )

( )( )
2

3

2

4

11
1 2 3 1 2 3 1 2 1 1 1 1 2

1
1 2 1 1 1 4

m m

m
m

m m m p m m r m r r m r m m

m r r m r r

−−

−

 
+ − − + ⋅ 

 

+ − + =

 

where [ ]40,p r= .  
 

 

3.2. Algorithm for Five Moduli Set 

Following the algorithm for four moduli set above,  
 

 
 

Special case for four moduli sets with two or more of its residues being the 
same: Given a four moduli set { }1 2 3 4, , ,m m m m m=  and residues ( )1 2 3 4, , ,r r r r r= , 
if any two of these residues are the same then the value of s in the formula for 
four moduli set can be directly set to the value of the residues that appeared 
twice without any computation of s. 
 

 
 

With the advancement of four moduli set having two or more of its residues 
being the same, the number of multiplicative inverses and the number of arith-
metic operations are further reduced. 

NOTE: It should be noted that, the 1ir −  which gives the valid range for p 
( [ ]10, ip r −= ) can be chosen base on the least value of mi’s in a given moduli set 
corresponding to its residue to limit the range of p. 
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4. Evaluation 

Numerical evaluations of the algorithms are presented to ascertain the correct-
ness of the algothms as follows: 

Consider the four-moduli set as { }12 1,2 ,2 1,2 1n n n n−+ − − . 
As n = 4, we have M = {17, 16, 15, 7} and residues r = (7, 11, 0, 5). 
As n = 2, we have M = {5, 4, 3, 1} and residues r = (2, 1, 0, 0). 
Solution: 
With four moduli set, we have: 

 

 
 

From example 1, 

1 2 3 4 1 2 3 417, 16, 15, 7 7, 11, 0, 5m m m m r r r r= = = = = = = =  

( ) ( )( )1

15 7
17 16 15 17 16 0 17 16 5X p s s−= × × + × − × × + =  

where, 

( ) 1

16
17 11 7 17 7s −= − × +  

1617 4 1 7s = × +  

75s =  

( )( )1

15 7
4080 272 0 75 272 75 5X p −= + − × + =  

( )( )15 7
4080 272 75 8 211 5X p= + − × + =  

74080 272 0 75 5X p= + × + =  

74080 75 5p + =  

[ ]0,1,2,3,4,5p = . 

When p = 0, 

74080 0 75 5× + =  is satisfied. Since 775 5=  satisfied X at the value of 75 
( 4080 0 75× + ), we stop and take that value as its decimal equivalent. 

Therefore the decimal equivalent for n = 2 is 75. 
From example 2, 

1 2 3 4 1 2 3 45, 4, 3, 1, 2, 1, 0, 0m m m m r r r r= = = = = = = =  

( ) ( )( )1

3 1
5 4 3 5 4 0 5 4 0X p s s−= × × + × − × × + =  

where, 

( ) 1

4
5 1 2 5 2s −= − × +  
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( )
4

5 1 1 2s = − × +  

5 3 2s = × +  

17s =  

( )( )1

3 1
60 20 0 17 20 17 0X p −= + − × + =  

( )( )3 1
60 20 17 2 17 0X p= + − × + =  

160 20 2 17 0X p= + × + =  

160 57 0p + =  

[ ]0p = . 

When p = 0, 

160 0 57 0× + =  is satisfied. Since 
157 0=  satisfied X at the value of 57 

( 60 0 57× + ), we stop and take that value as its decimal equivalent.  
Therefore the decimal equivalent for n = 2 is 57. 
Consider the five-moduli set as { }1 12 1,2 1,2 ,2 1,2 1n n n n n− +− + − − . 
As n = 4 we have m = {7, 17, 16, 15, 31} and residues r = (4, 14, 4, 10, 5). 
As n = 5, we have m = {31, 65, 64, 63, 127} and residues r = (6, 6, 37, 5, 116). 
Solution: 
With five moduli set, we have:  

 

 
 

We earlier stated that to limit the range of p, the smallest im  can be chosen 
instead of using 1im −  for the range of p. Example 3 and 4 will be used for in-
stance. 

From example 3, the smallest modulus is 7 corresponding to residue 4 will be 
used for the range of p instead of the last modulus which is 31. For this instance,  

1 2 3 4 5 1 2 3 4 517, 16, 15, 31, 7, 14, 4, 10, 5, 4m m m m m r r r r r= = = = = = = = = =  

( ) ( )( )1

31 7
17 16 15 31 17 16 15 5 17 16 15 4X p q q−= × × × + × × − × × × + =  

where, 

( ) 1

16
17 4 14 17 14s −= − × +  

( )
16

17 10 1 14s = − × +  

17 6 14s = × +  

116s =  
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( ) ( )( )1

15
17 16 10 116 17 16 116q −= × − × × +  

( )( )15
272 106 8 116q = − × +  

272 7 109q = × +  

2020q =  

( )( )1

31 7
126480 4080 5 2020 4080 2020 4X p −= + − × + =  

( )( )31 7
126480 4080 2015 18 2020 4p + − × + =  

( )31 7
126480 4080 36270 2020 4p + − + =  

7126480 4080 0 2020 4p + × + =  

7126480 2020 4p + =  

[ ]0,1,2,3,4p = . 

When p = 0, 

7126480 0 2020 4× + =  is satisfied. Since 72020 4=  satisfied X at the value 
of 2020 (126480 0 2020× + ), we stop and take that value as its decimal equiva-
lent.  

Therefore the decimal equivalent as n = 4 is 2020. 
From example 4, the smallest modulus is 31 corresponding to residue 6 will be 

used for the range of p instead of the last modulus which is 127. For this in-
stance, 1 2 3 4 5 1 2 3 465, 64, 63, 127, 31, 6, 37, 5, 116m m m m m r r r r= = = = = = = = = , 

5 6r =  

( ) ( )( )1

127 31
65 64 63 127 65 64 63 116 65 64 63 6X p q q−× × × + × × − × × ×= + = , 

where, 

( ) 1

64
65 37 6 65 6s −− × +=  

6465 31 1 6s × +=  

65 31 6s × +=  

2021s =  

( ) ( )( )1

63
65 64 5 2021 65 64 2021q −= × − × × +  

( )( )63
4160 2016 32 2021q = − × +  

4160 0 2021q = × +  

2021q =  

( )( )1

127 31
33284160 262080 116 2021 262080 2021 6X p −= + − × + =  

( )( )127 31
33284160 262080 1905 82 2021 6p + − × + =  
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( )127 31
33284160 262080 156210 2021 6p + − + =  

3133284160 262080 0 2021 6p + × + =  

3133284160 2021 6p + =  

[ ]0,1,2, ,6p =  , 

when p = 0 

3133284160 0 2021 6× + =  is satisfied. Since 72021 4=  satisfied X at the 
value of 2021 ( 33284160 0 2021× + ) we stop and take that value as its decimal 
equivalent. 

Therefore the decimal equivalent as n = 5 is 2021. 
Numerical illustration for special case of four moduli sets with two or 

more of its residues being the same: 
As n = 2 in the four-moduli set, 1 2 3 4 1 25, 4, 3, 1, 2, 1m m m m r r= = = = = = , 

3 40, 0r r= = . Two of its residues are the same. That is 3 0r =  and 4 0r = . 
Hence the value of s in the formula for four moduli set must be set to the value 
of r3 or r4 which is zero (0). Moreover, 3 30 3r m= → =  and 4 40 1r m= → =  
should be set as 1 10 3r m= → =  and 2 20 1r m= → = . Therefore 1 23, 1m m= = , 

3 4 1 2 3 45, 4, 0, 0, 2, 1m m r r r r= = = = = = . Hence, 

( ) ( )
3

4

1
1 2 3 1 2 3 1 2 40 0

m m

X m m m p m m r m m r− 
 


+


= + − ⋅ =  

( ) ( )( )1

5 4
3 1 5 3 1 2 0 3 1 0 1X p −= × × + × − × × + =  

( )5 4
15 3 2 2 0 1X p= + × + =  

4415 3 0 1X p ×= + + =  

415 12 1X p= + =  

[ ]0,1,2,3p = . 

When p = 3, 

415 3 12 1× + =  is satisfied. Since 
457 1=  satisfied X at the value of 57 

(15 3 12× + ), we stop and take that value as its decimal equivalent. 
Therefore the decimal equivalent is still 57 as required. 

5. Conclusion 

A new algorithm for reverse conversion for four-moduli set and a five-moduli 
set have been proposed. This will have a reverse conversion algorithm with high 
dynamic range, where more numbers can be uniquely and unambiguously 
represented. Numerical evaluation shows the correctness of the algorithm.  
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