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Abstract 
Healthy aging is the ultimate goal of all life science research and the most 
ideal state of a human being. There are many factors that affect aging, in-
cluding genetic background, the environment, mental state and living habits 
and so on, which affect the body’s internal environment and its steady state. 
The ultimate starting point of the body’s aging all comes down to cellular ag-
ing. At the cellular level, aging is an irreversible block in the cell cycle, and the 
P53 gene plays a pivotal role in regulating the cell cycle. Aging is not only re-
gulated by genes but also influenced by epigenetics affecting gene expression. 
DNA methylation, a novel biomarker of aging, plays a major role in epige-
netics. This paper’s mini-review briefly summarizes P53 and DNA methyla-
tion in aging. 
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1. Introduction 

The process of human aging is complicated and individualized, taking place in 
the biological, psychological and social fields. Under normal conditions, aging 
usually refers to the progressive changes in cell metabolism and physical func-
tions with the increase of age after adulthood. Aging results in impaired 
self-regulation and regeneration, and leads to structural changes. This is a natu-
ral and irreversible process [1]. Diseases or other abnormal factors can cause 
pathological aging, making the above phenomena appear in advance [2]. Aging 
is characterized by the gradual loss of some physiological functions, and it drives 
the development of chronic diseases, including metabolic, cardiovascular, and 
neoplastic diseases [3]. It is therefore a risk factor for many diseases, such as car-
diovascular disease [4], cancer [5], and dementia [6]. 
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One of the main signs of aging is the modification of gene expression [7], and 
gradually up- or down-regulated with age. Gene expression changes are mainly 
achieved by epigenetic modification, including several DNA modifications and 
histone modifications [8]. Among them, DNA methylation occupies the domi-
nant position [9]. The correlation between the methylation level of CpG sites 
and the chronological age is one of the best signs of aging, and is even consi-
dered as the “apparent clock” [10]. By detecting the methylation status of CPGs 
in human tissue samples, the researchers found that with age, hypermethylation 
occurs in the promoter region, and hypomethylation occurs outside the promo-
ter [11]. 

The aging of life begins with the senescence of cells. The reason for cell senes-
cence is that the cell cycle is out of control [12]. Among the cell cycle regulation 
mechanism, the P53 pathway plays a crucial role [13]. The P53 is the most com-
mon mutant tumor suppressor [14]. The activation of this protein can regulate 
and control the aging process and senescence of cells. It has been observed that 
increased P53 expression in senescent cells [15]. 

2. P53 Pathway and DNA Methylation 

2.1. P53 Pathway  

The P53 signaling pathway plays an important role in many aspects, such as cell 
cycle regulation, development, reproduction, metabolism, senescence, tumor in-
hibition, etc. [16] [17]. P53 also plays a regulatory role in Alzheimer’s disease, 
Parkinson’s disease and other age-related diseases [18] [19]. As a “guardian of 
the genome”, it is particularly important during cell growth. When cells respond 
to, for example, genotoxic damage, proto-oncogene activation, hypoxia, or se-
vere stress, normal wild-type P53 is activated and induces a variety of biological 
response, such as regulating the cell cycle, participating in DNA repair, inducing 
apoptosis and senescence as well as regulating cell differentiation. It can even 
interfere with the formation and regulation of blood vessels [20] [21]. In the 
normal physiological systems, the expression level of the P53 is mainly con-
trolled by the negative feedback loop of intracellular ubiquitinated with the 
Mouse double minute 2 (MDM2)-P53. On the one hand, the P53 can activate the 
MDM2 expression [22] [23] [24] [25]; on the other hand, the P53 binds to 
MDM2 to form an oligomer, which inhibits the transcriptional function acti-
vated by P53. The function of mouse double minute 4 (MDM4) is similar to that 
of MDM2 [26], which can reduce the inhibitory effect of P53 on cell prolifera-
tion and induce cell apoptosis [27]. 

P53 would initiate its survival mechanism under some certain conditions, for 
example, when the nutrition in the cell is limited, autophagy occurs to remove 
unnecessary or dysfunctional intracellular components, accompanied by auto-
phagy the cell would downregulate P53 function to prevent cell damage and tis-
sue denaturation [28]. Due to drastic changes in metabolism, the P53 maintains 
its survival by reshaping the metabolic pathway [28]. For example, the P53 can 
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activate genes such as AMPKβ, TSC2, and PTEN, which suppress the mamma-
lian target of rapamycin (mTOR, sensor of nutrient supply) signaling and the 
TP53-induced glycolysis and apoptotic regulator (TIGAR), regulate aerobic gly-
colysis and promote oxidative phosphorylation. Finally, P53 activates MDM2, 
indicate of its ability to destroy (called the feedback loop) the cell cycle to make 
it return to normal. This ability to regulate pathways can sense the availability of 
nutrients for cell survival and is an important P53 response to ensure homeosta-
sis [29]. 

2.2. DNA Methylation 

DNA methylation is catalyzed by DNA methyltransferases (DNMTs). The un-
methylated cytosine on DNA is catalyzed by DNMT so that the fifth carbon 
atom is covalently linked with methyl to from 5-methylcytosine, which is pro-
vided by SAM, and SAM is converted to S-adenosine homocysteine (SAH) 
(Figure 1) [30]. In mammals, DNA methylation does not occur on non-CPG 
dinucleotide cytosine [31]. In many cases, the clusters of CpG sequence called 
“CpG island” are formed in the gene promoter region. Some studies have found 
that the overall DNA shows a low methylation status, while the DNA hyperme-
thylation status appears locally, by copying mammalian senescent cells [32]. Af-
ter the fifth carbon atom of cytosine on the CpG island of DNA is methylated, 
the gene expression is usually inhibited. On the contrary, demethylation can in-
duce or reactivate gene expression. Demethylation is the conversion of methy-
lated cytosine to unmethylated cytosine mediated by demethylase [33]. 

DNMTs are the managers of the conversion of unmethylated cytosines to 
5-methylcytosines in mammals. They include DNMT1, DMMT3A, DNMT3b 
and DNMT3L, which work together to catalyze and maintain mammalian DNA 
methylation and methylation levels [34] [35]. In the process of aging, During 
DNA replication, the methylation of the hemi-methylation site is achieved by a  
 

 
Figure 1. Under the action of methyl catalase, the methyl provided by S-adenosylmethionine 
(SAM) is covalently linked to the fifth carbon atom of cytosine on the double strand of 
DNA to form 5-methylcytosine, convert SAM into SAH. 

https://doi.org/10.4236/jbbs.2021.114007


Y. Y. Wang, J. S. Shi 
 

 

DOI: 10.4236/jbbs.2021.114007 86 Journal of Behavioral and Brain Science 
 

conservative methylation pattern by DNMT1; in this way, the production of a 
methylated DNA double strand using hemi-methylated DNA as a substrate is 
intended to stabilize the inheritance of specific DNA methylation patterns in the 
body [36]. 

There are two mechanisms to achieve DNA demethylation, including active 
mechanism and passive mechanism: 1) In the active mechanism, the demethyla-
tion process is mainly mediated by DNA demethyltransferase; 2) In the passive 
mechanism, DNA methylation cannot be completely removed because nuclear 
factors attach to methylated DNA in this mechanism, which can only block the 
effect of DNMT1. One of the demethyltransferases is the methyl-CpG binding 
domain 2 (Mbd2) protein, a member of the conservative methyl-CpG binding 
domain (MBD) family. These proteins include MBD1, MBD2, MBD3, MBD4 
and Methyl-CpG binding protein 2 (MeCP2). Methylated binding proteins spe-
cifically recognize methylated DNA and silence genes by recruiting co-repressors. 
MBD1 can inhibit transcription inhibition of genes, which can be partially re-
versed by histone acetylase inhibitors through DNA methylation, and MBD1 
binds to symmetric methylated CpG sequences. It has also been found that chro-
matin-related factors (MCAF) containing MBD1 are considered to have a tran-
scriptional regulatory role, through its binding to the transcriptional inhibitory 
domain (TRD) of MBD1 to form an inhibitory complex [37]. All MBDs may 
lead to silencing of regions showing DNA methylation. Therefore, there are 
mainly two ways to inhibit the expression of DNA methylation genes: 1) the 
promoter region of DNA methylation directly affects the binding of transcrip-
tion activator and recognition sequence, and directly blocks the transcription of 
genes; 2) MBD identifies the methylated CpG dinucleotide sequence and recruits 
HDAC to the methylated site, indirectly inhibiting gene transcription under the 
synergistic effect of transcription factors and RNA polymerase II [38]. 

In addition, methylcytosine dioxygenase TET contributes to DNA demethyla-
tion. There are three members of the TET family protein, namely TET1, TET2 
and TET3 [39]. The TET protein can even oxidize 5m C to 5f C and 5ca C in vi-
tro [40]. Then thymine deoxyribonucleic acid glycosylase (TDG) converts it into 
unmethylated cytosine through a base excision repair mechanism [41] [42]. 
There is currently no consensus on how the expression of DMNTs or TETs 
changes with age; some studies have shown that with age, some decline, and 
some remain unchanged [43].  

3. P53 and DNA Methylation in Aging  

3.1. The P53 

The most common phenotype of aging is cell senescence [44]. There are two 
classic pathways related to aging are P16INK4a/RB and P53/P21. P16INK4a can 
block the cell cycle process by inhibiting the cyclin dependent kinases4/6 (CDK4/6) 
complex, thereby activating Rb (retinoblastoma) pathway to inhibit E2F tran-
scription [45]. 
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P53 signaling pathway plays a key role in regulating cell senescence and body 
aging [46]. Moreover, studies have shown that an appropriate P53 expression 
level is very important in the process of controlling cell senescence [47]. The first 
identified P53 target is the cyclin dependent kinases1A (CDKN1A), commonly 
known as P21, which also plays an important role in cell cycle arrest and aging 
[48]. In normal cells, the expression of P53 is maintained at a low level through 
negative feedback regulation. When P53 is activated, cell proliferation is effec-
tively inhibited by cell cycle arrest, apoptosis or senescence [49]. P53 can directly 
activate P21 and mediate cell cycle arrest and senescence by transcriptional in-
duction of P21 [50] [51] [52] [53]. When P21 binds to CDK, it forms a prolife-
rating cell nuclear complex called P21-cyclin-CDK-PCNA, which can inhibit the 
binding of CDK and PCNA to other molecules and thereby inactivate them [54]. 
The phosphorylation of Rb protein by CDK is reduced and the phosphorylation 
of Rb is blocked. Rb can form a complex with E2F, further hindering the tran-
scription of E2F and negatively regulating the cell cycle, thus making the cell 
unable to differentiate and proliferate [55]. Increased P21Waf1/Cip1 expression 
and/or Rb activity leads to cell senescence (Figure 2) [56]. 

Moreover, many studies have confirmed that expression of P53 can affect ag-
ing through different pathways. For example, the pharmacological activation of 
P53 can promote the increase of senescence skeletal muscle stem cells in the body 
[57]. The activation of 53 is inhibited by fibroblast growth factor 21 (FGF21) by 
improving mitochondrial biogenesis and in an AMPK (AMP-activated protein 
kinase)-dependent manner, thereby preventing Angiotensin II (Ang II)-induced  
 

 
Figure 2. P53/P21 pathway in the process of aging. 
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cerebrovascular aging [58]. IL-10 induces activated hematopoietic stem cell (HSC) 
aging by increasing P53 protein expression, thereby reducing liver fibrosis in rats 
[59]. With regard to the effect of P53 in human aging, there is evidence that a 
relatively active class of individuals carry a common P53 polypeptide variant 
(proline, rather than arginine), and that leads to cell cycle arrest and senescence 
[60]. In vivo studies on the effects and mechanisms of BZBS on age-related hy-
pogonadism, it was found that the expression of P53 was significantly increased 
in the aging group, and after the administration of BZBS, it was found that the 
hypogonadism was alleviated pathologically, and the expression of P53 also de-
creased to the expression level of normal mice [61]. In the study on the an-
ti-aging effect of mint and thyme, it was found that the activity of β-galactosidase 
was decreased in senile cells, but the expression of P53 protein was significantly 
increased [62]. P53 regulates mitochondrial dynamics through the PKA-DRP1 
pathway, thereby inducing cell senescence [63]. 

3.2. DNA Methylation in Aging 

Recent research suggests that epigenetics, especially DNA methylation, play a 
mechanistic role in aging process. The DNA methylation age, or the epigenetic 
clock has been shown to be highly correlated with age. Epigenetic clocks can 
measure changes in hundreds of specific CpG sites and can accurately predict 
the age of various species, including humans [64]. 

The cyclin dependent kinases1A (CDKN1A, p16 ink4a/Arf) is a cell cycle in-
hibitor whose expression is a mature aging marker [65], its expression is con-
trolled by methylation and is frequently activated in various cancers [66]. Brain 
and muscle Arnt-like protein-1 (BMAL1) is a circadian rhythm gene associated 
with cell aging [67] and its expression is also regulated by epigenetic modifica-
tion of DNA methylation and histone modification [68]. The study found that 
age-related changes in the major histocompatibility complex class 1 (MHC1) 
gene promoter and intra-gene methylation involved in immune function are 
closely related to changes in gene expression [69]. During aging, DNA methyla-
tion changes occur in tissues [70], The rDNA activity is decreased, and both its 
coding and promoter regions became increasingly methylated [71]. Age-related 
methylation was originally observed on the CpG island promoter of protein-coding 
genes [22] [72]. In mice, CpG sites with more than 20% CpG methylation in the 
whole genome showed age-related variations, and methylation and hypomethy-
lation were observed [73] [74]. In humans, the blood methylation distribution of 
32 pairs of mothers and their progeny were analyzed using Illumina’s human 
methylation 450 bead chips, and it was found that the methylation level in CpG 
islands at the promoters of the three genes was significantly correlated with age 
[75]. Another research team used a different but similar DNAm-age indicator to 
prove that interventions related to aging (such as calorie restriction) can reduce 
methylation aging in rhesus monkeys [76]. Studies have analyzed the stem cells 
from human exfoliated deciduous teeth (SHED) and permanent teeth of young 
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(Y-DPSCs) and old (A-DPSCs) adults. In the elderly group, there is less methyl 
donor S-adenosylmethionine and hypomethylation of the aging marker P16 
(CDNK2A) [77]. A study of 92 patients aged between 18 to 93 years old (mean 
age = 54.3 years, median age = 55.5 years) of human serum DNA samples was 
performed with bisulphite conversion and pyrophosphoric acid sequencing, in-
cluding 44 males and 48 females. Age was found to be linearly correlated with 
DNA methylation levels at the CpG site. Among them, 19 showed hypermethy-
lation of ELOVL2, TRIM59, KLF14, and FHL2, while 8 showed hypomethylation 
of MIR29B2CHG. Nine CpG loci of ELOVL2 gene showed the strongest correla-
tion with age, and hypermethylation showed a significant linear correlation with 
age (R = 0.833 ~ 0.919). Importantly, DNA methylation levels were significantly 
increased at all CpG sites in the ELOVL2 gene. There were also four hyperme-
thylated CpG loci in TRIM59 gene, which showed a significant linear relation-
ship with age, and the methylation level increased with age [78]. 

3.3. Interactions between DNA Methylation and P53  

The most important methyltransferase in DNA methylation is DNMT1, which 
also has the same function of regulating cell cycle as P53 [79]. P53 acts as a tran-
scription factor in the nucleus, also mediates the regulation of DNMT1 gene ex-
pression. In the absence of genotoxic stress, P53 locates in the nucleus and binds 
to the common site of DNMT1 promoter, thereby blocking DNMT1 gene ex-
pression. But, when DNA damage occurs, P53 signaling pathways are activated 
by modification after translation or after the interaction with other transcription 
factors to eliminate the P53 inhibition of DNMT1, leading to a rise in DNMT1 
expression [80], RB protein as downstream gene P53 pathway, not the phospho-
rylation of RB and E2F union, will raise to the HDAC complexes and prevent the 
cyclin E, PCNA and E2F-1 cell cycle protein expression level to maintain DNMT1 
[81]. In addition, some researchers found the relationship between DNMT1 and 
P53 is not only the inhibition of the expression of DNMTA by P53, but also the 
interaction between DNMT1 and NEAT1, thus inhibiting the expression of P53, 
in the pathogenesis of lung cancer [82]. 

4. Expectation and Unresolved Questions 

In the past few decades, our research on aging has never stopped; The P53-mediated 
effects play a vital role in the aging and the healthy aging process [83], and regu-
late various organs and overall aging via many ways [84] [85] [86]. Therefore, 
P53 may be of great value in the future research on aging and aging-related dis-
eases. Epigenetics research has never stopped in the field of aging; there have 
been many studies on its relationship with aging. It has been proposed that the 
epigenetic changes in the aging process will lead to the decline of physical and 
cognitive functions; moreover, the accelerated aging of epigenetics is related to 
disease and all-cause mortality in old age [87]. DNA methylation is an important 
part of epigenetics. People are also curious about how it relates to aging. Studies 
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on aging have found that the CpG of many genes has different levels of methyla-
tion associated with aging. If we can regulate the methylation of CpG sites, we 
can regulate aging. The regulation of cell cycle by P53 pathway is one of the most 
classical pathways in aging research. In addition, proteins related to the regula-
tion of DNA methylation can interact with P53. However, at present, the specific 
genes and mechanisms of age-related DNA methylation and gene expression are 
not detailed and clear enough, but it is the most promising molecular marker for 
monitoring aging at present and warrants further investigation. 
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