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Abstract 
In view of the complex problems that freight train ATO (automatic train op-
eration) needs to comprehensively consider punctuality, energy saving and 
safety, a dynamics model of the freight train operation process is established 
based on the safety and the freight train dynamics model in the process of its 
operation. The algorithm of combining elite competition strategy with mul-
ti-objective particle swarm optimization technology is introduced, and the 
winning particles are obtained through the competition between two elite 
particles to guide the update of other particles, so as to balance the conver-
gence and distribution of multi-objective particle swarm optimization. The 
performance comparison experimental results verify the superiority of the 
proposed algorithm. The simulation experiments of the actual line verify the 
feasibility of the model and the effectiveness of the proposed algorithm.  
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1. Introduction 

Railway transport is an indispensable mode of transportation. With the conti-
nuous increase of the scale of the railway transport network in our country, the 
freight operation is becoming more and more onerous, and the requirements for 
the comprehensive performance of train operation are getting higher and higher. 
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Among them, safety, punctuality, energy saving and other performance are par-
ticularly worthy of attention. Therefore, the research on the multi-objective op-
timization of trains can not only ensure the safety and energy-saving operation 
of trains, but also be of great economic significance to reduce energy consump-
tion [1]. 

For the optimization of train operation process, a lot of research has been 
done at home and abroad. An improved genetic algorithm is proposed in [2]. 
The constrained problem is transformed into an unconstrained problem by pe-
nalty function method. According to the characteristics of train operation, the 
dynamic model of train operation process is established in [3], and the linear 
weight method and multi-objective genetic algorithm are used to solve it. In [4], 
the non-inferior solution is obtained by multi-objective mixed integer elite ge-
netic algorithm, and the expected results are obtained. In view of the problem 
that the train speed track is easy to fall into local convergence in [5], an im-
proved multi-objective hybrid optimization method based on comprehensive 
learning strategy is proposed, which has good advantages. In [6], a multi-objective 
particle swarm optimization algorithm is proposed to solve the multi-objective 
optimization problem. Reference [7] based on the subway train, the mul-
ti-objective particle swarm optimization algorithm is used to obtain the 
non-inferior solution of energy consumption and time in the ATO system, tak-
ing into account the comfort of passengers. In order to balance the convergence 
and distribution of multi-objective particle swarm optimization, an adaptive 
multi-objective particle swarm optimization algorithm is proposed in [8], which 
improves the convergence of the algorithm. In [9], a multi-objective particle 
swarm optimization algorithm based on decomposition is proposed under the 
framework of genetic algorithm MOEA/D. 

Based on the above analysis, combined with the characteristics of freight train 
operation, taking the freight train interval running time and energy consump-
tion as the optimal control objectives, train operation safety factors and dynamic 
equations as constraints, the dynamic model of the freight train operation is es-
tablished. In order to solve the problem that the distribution and convergence of 
the traditional multi-objective particle swarm optimization algorithm cannot be 
well balanced, the elite competition strategy is introduced to replace the update 
strategy of the traditional particle swarm. The effectiveness of the algorithm is 
verified by experimental simulation results. 

2. Dynamic Model of Freight Train 
2.1. Analysis on the Operation Process of Freight Train 

The basic operation process of the freight train is to overcome the basic resis-
tance and additional resistance and run on the established line under the action 
of electric locomotive traction and braking force. The freight train is affected by 
many factors in the actual operation, and the force situation is more compli-
cated. Considering that the freight train runs along the track direction, only the 
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longitudinal force of the freight train is considered, in order to simplify the 
analysis. It is divided into traction force ( )tF v , braking force ( )bF v  and basic 
resistance of operation 0 ( )w v  and additional resistance of the line ( )g x . 

The basic running resistance of the freight train depends on many factors, and 
the empirical equation is usually obtained through a large number of experi-
ments. Taking HXD1 electric locomotive as an example, the empirical equation 
of basic resistance as follows: 

2
0 ( )w v a bv cv= + + .                       (1) 

In Equation (1), v is the freight train speed, a, b and c are basic resistance 
coefficients. 

The resistance encountered by freight train under additional conditions 
(through ramps, curves, tunnels) is called additional resistance. Different from 
the basic resistance, the unit additional resistance acting on locomotives and 
rolling stock is the same under the same line condition. The calculation equation 
of unit additional resistance is as follows: 

( ) 1000sin
600( )

( ) 0.00013
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 =
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.                     (2) 

In order to facilitate the calculation, the unit plus ramp resistance is defined as 
the sum of three units of additional resistance: 

( ) ( ) ( ) ( )i r sg x w x w x w x= + + .                   (3) 

In Equation (2) and Equation (3), iw  is the additional resistance of the unit 
ramp, rw  is the additional resistance of the unit curve, sw  is the additional 
resistance of the unit tunnel, i is the slope of the ramp per thousand, R is the ra-
dius of the curve, sL  is the length of the tunnel. 

In the process of freight train operation, there are four operating conditions: 
traction, idling, cruising (traction and braking force take turns to realize the 
uniform speed of the freight train) and braking, as shown in Figure 1. The re-
sultant force acting on the freight train is different under different working con-
ditions. The equation for calculating the resultant force of the freight train under 
different working conditions is shown in Equation (4). 

0

0

0

   Traction
        coasting

 braking

t

b

c f w g
c w g
c w g f

= − −
 = − −
 = − − −

.                    (4) 

In Equation (4), c represents the total force received during the train opera-
tion, tf  represents the unit traction force of the train, 0w  represents the basic 
resistance of the train operation unit. 

For this reason, the train movement process can be expressed by the dynamic 
equations shown in Equation (5). 

0( )   
1000(1 ) 1000(1 ) t t b b

dv g g dxc u f u f w g v
dt dtγ γ

= = − − − =
+ +

     (5) 
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Figure 1. Four typical operating conditions of freight train ATO. 

 
In Equation (5), γ  is the slewing mass coefficient, x is the running distance 

of the train, t is the running time of the train, g is the acceleration of gravity, c is 
the total force of the train, [0,1]tu ∈  and [0,1]bu ∈  respectively represent the 
traction force utilization coefficient and the braking force utilization coefficient. 

2.2. Multi-Objective Model Building 

Operation energy consumption includes the energy consumption of providing 
traction power for freight trains, the energy consumption needed to overcome 
resistance and the energy consumption of freight train auxiliary equipment, 
which accounts for more than 80% of the total energy consumption, so it is of 
great value to reduce the operation energy consumption. This paper only con-
siders the energy consumed by the traction and braking process and auxiliary 
equipment of freight trains. 

t
b

F vdt
E F vdt ATλ

η
= + +∫ ∫                     (6) 

In Equation (6), η  is the conversion coefficient of electric energy into me-
chanical energy during the freight train traction, λ  is the utilization rate of re-
generative braking energy, A is the auxiliary power, T is the freight train opera-
tion time. 

The running time is the time required for the freight train to run from the 
departure point to the end point, and the closer it is to the planned running time 
of the freight train, the higher the punctuality. The punctuality studied in this 
paper only refers to the running time between stations, without considering the 
stopping time. The evaluation model of punctuality of freight trains is as follows: 

0T T T∆ = − .                         (7) 

In Equation (7), 0T  is the planned running time, T is the actual running 
time, T∆  represents the deviation between the actual running time T and 
planned running time 0T , and the smaller the deviation, the higher the punc-
tuality. 
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To sum up, the multi-objective optimization of freight train operation can be 
expressed as follows: under the conditions of satisfying the constraints of freight 
train operation safety, comfort and various kinematic models, the running time 
and the freight train energy consumption can be optimized as much as possible. 
The freight train dynamics model is as follows: 

}{
max

max

(0) ( ) 0
(0) 0, ( )

min ,      . .
( ) ( )

v v x
t t x T

f E T s t
v x v x
a a

= =
 = == ∆  ≤
 ≤

.              (8) 

In Equation (8), x is the total distance of the freight train running, max ( )v x  is 
the speed limit of the line at position x, a is the freight train acceleration and 

maxa  is the maximum allowable acceleration. 

3. Multi-Objective Particle Swarm Optimization Algorithm  
Based on Elite Competition Mechanism 

3.1. Competitive Particle Swarm Optimization 

Cheng and Jin simulated the individual competition mechanism of survival of 
the fittest in biology and proposed competitive particle swarm optimization 
(PSO) in 2014. The algorithm assumes that the population size is (a multiple of 
2) and initializes the population randomly within the search range; in each itera-
tion, the population is randomly divided into groups by pairwise competition, 
and each group of particles are divided into winners and losers according to the 
size of the fitness value. The winners will directly enter the next generation, and 
the losers will learn and update their positions from the winners according to 
Equation (9). 

1 1 2 3( 1) ( ) ( ) ( )( ( ) ( )) ( )( ( ) ( ))
( 1) ( ) ( 1)

l w l l

l l l

v t r t v t r t x t x t r t x t x t
x t x t v t

ϕ + = + − + −


+ = + +
.      (9) 

where: 1( )x t , represents the location vector of the loser and the winner, respec-
tively, 1( )v t  represents the speed vector of the loser, t is the number of itera-
tions, 1( )r t , 2 ( )r t , 3 ( )r t  are three random vectors uniformly distributed in the 
range of [0 1], ϕ  is a control factor, control ( )x t  the impact on loser location 
updates. 

3.2. Multi-Objective Particle Swarm Optimization with Elite  
Competition Mechanism 

The multi-objective particle swarm optimization algorithm based on elite com-
petition mechanism is mainly composed of two core parts: learning strategy 
based on competition mechanism and environment selection strategy. 

3.2.1. Learning Mechanism Based on Elite Competition 
The learning mechanism based on elite competition consists of elite particle se-
lection strategy, paired competition strategy and particle learning strategy. The 
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competitive strategy of the elite in pairs is described as follows: 
The particles of a and b are two particles randomly selected from the elite so-

lution set, the particles p are the current particles to be updated, 1θ  and 2θ  
are the angles between particles p to be updated and elite particles a and b. Cal-
culate the angles 1θ  and 2θ , respectively, and compare 1θ  and 2θ . The par-
ticle with a small angle with particle ip  is regarded as the winning particle, and 
the other as a competitive losing particle. As shown in Figure 2, where 1 2θ θ< , 
particle a is marked as the winning particle to guide the update of particle p. 

After the winning particle is selected, particle p to be updated updates its posi-
tion and speed attributes by learning from the winning particle. Assuming that 
the position attribute of particle p is iP , the velocity attribute is iV , and the po-
sition attribute of winning particle a is wP , the velocity update formula and po-
sition update equation of particle p are as follows: 

' ' '
1 2 ( )    i i w i i i iV R V R P P P P V= + − = + .               (10) 

In Equation (10), 1R  and 2R  is a randomly generated vector in the interval 
[0 1]. 

3.2.2. Environment Selection Strategy 
The main purpose of the environmental selection strategy is to select the next 
generation population containing N particles from the parent and offspring, that 
is, population P and offspring P'. The truncation factor is mainly used to cut all 
the particles arranged in the front of the first Pareto until they are exactly N in 
size, and then replicate them to the next generation population. 

3.3. CMOPSO Algorithm to Solve the Model 

The elite competition mechanism MOPSO algorithm is used to solve the Dy-
namics model of freight train autopilot. As shown in Figure 3, the specific steps 
are as follows: 

Step 1: Input basic simulation data and corresponding parameters. 
Step 2: Initial population and takes the working conditions as the decision va-

riable. 
Step 3: The fitness value of particles is calculated by using the dynamic model 

in the process of freight train operation. 
 

 
Figure 2. Competition mechanism between elite particles. 
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Figure 3. Flow chart of solving multi-objective optimization problem for freight train 
ATO. 
 

Step 4: According to the elite competitive learning mechanism, the elite par-
ticles are selected from the population by the combination of non-dominant 
sorting and crowded distance to form the elite solution set L, and then two par-
ticles are randomly selected to compete. The winning particles guide the update 
of the position and speed of the rest of the particles to be updated. 

Step 5: According to the environmental selection strategy, the next generation 
population containing N particles is selected from the parent and offspring pop-
ulations. 

Step 6: Judge whether the stop condition is reached or not, move on to step 3 
until the stop condition is met, and save the corresponding Pareto non-inferior 
solution. 

4. Simulation Analysis of Algorithm Example 
4.1. Algorithm Performance Test 

In order to test the distribution and convergence of the Pareto frontier of the 
proposed algorithm, a comparative experiment is carried out with the MOPSO 
algorithm on the ZDT1 - ZDT3 problem. The experimental parameters are set as 
follows: the population size is 100, the number of iterations is 300, the size of the 
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elite solution set is 10, and the algorithm is repeated for 30 times. 
The Pareto front of CMOPSO algorithm on ZDT1 and ZDT2 is shown in 

Figure 4, from which we can see that the solution set obtained by CMOPSO op-
timization is more uniform than that of MOPSO, and each curve can better re-
flect the uniform distribution of solutions. 

4.2. Simulation Analysis of an Example 

Based on an actual line with a total length of 25 km, a simulation study is carried 
out on HXD1 electric locomotive. The parameters of the freight train are shown 
in Table 1. Set the running time to 1250 s and the time margin to 40 s. The ini-
tial population size of the algorithm is 50, and the maximum number of itera-
tions is 300. The simulation experiment is carried out under MATLAB. 

MOPSO algorithm and CMOPSO algorithm are used to solve the freight train 
Dynamics model respectively, and the running results are shown in Table 2. 

It can be seen from Table 2 that under the requirement of the freight train 
punctuality, the maximum and minimum energy consumption values obtained 
by CMOPSO are less than those obtained by MOPSO algorithm, indicating that 
the solution set obtained by CMOPSO algorithm is better, and the comprehen-
sive optimization performance is better. 
 

 
Figure 4. The non-dominant solution set obtained by the CMOPSO and MOPSO algo-
rithms on the two-dimensional ZDTI and ZDT2 problem. (a) CMOPSO; (b) MOPSO. 
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The curve with the best centralized punctuality solved by the two algorithms is 
shown in Figure 5. As can be seen from Figure 5, the freight train speed curves 
optimized by the two algorithms do not have the phenomenon of overspeed, and 
both reach the end point, so they meet the safety and punctuality constraints. 

According to the calculation, the energy consumption and running time cor-
responding to the two speed distance curves are shown in Table 3. It can be seen 
that the time required by CMOPSO optimization is 1.7 s less than that optimized 
by MOPSO, and the operation energy consumption is reduced by 1.4%. 
 

 
Figure 5. Speed-distance curve of freight train. 
 
Table 1. The freight train parameters. 

Parameters Value 

The freight train mass/t 200 

Maximum speed/(km/h−1) 120 

Maximum traction force/kN 760 

Maximum braking force/kN 461 

Energy consumption utilization η 0.9 

Regenerative braking feedback efficiency λ 0.85 

Basic unit resistance/(N/kN) 1.2 + 0.0065ν + 0.000125ν2 

 
Table 2. Comparison table of simulation results of MOPSO and CMOPSO. 

Results MOPSO CMOPSO 

Maximum running time/s 1290 1293 

Minimum running time/s 1231 1226 

Maximum energy consumption/kWh 1021 1014 

Minimum energy consumption/ kWh 805 793 

 
Table 3. Operation results. 

Results MOPSO CMOPSO 

Energy consumption/kWh 842.1 831.4 

Running time/s 1251.3 1249.6 
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5. Conclusions 

In this paper, the elite competition mechanism MOPSO algorithm is introduced 
to replace the update strategy of the traditional multi-objective particle swarm 
optimization algorithm through the elite competition strategy. 

The simulation analysis of the freight train operation example shows that the 
elite competition mechanism multi-objective particle swarm optimization algo-
rithm has a certain optimization effect on freight train operation energy con-
sumption, punctuality and other aspects, and can take into account the safety, 
punctuality and energy-saving operation of the freight train. The elite competi-
tive MOPSO algorithm is used to optimize the freight train operation process, 
and a set of instructive Pareto optimal sets can be obtained, which provides a 
more real and feasible speed curve for the freight train operation. 
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