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Abstract 

Let ( )1,,X h ∞  be a non-autonomous discrete system and ( )( )1,,X h ∞κ  be a 

set-valued discrete system induced by it. Where, ( )Xκ  is the space formed 
by all non-empty compact subsets of X endowed with the Hausdorff metric 
H, 1,h ∞  is a set-valued mapping sequence induced by 1,h ∞ . It is proved that 

1,h ∞  is  -chaos, then 1,h ∞  is  -chaos. Where  -chaos is denoted to 

 -sensitive, ( )1 2,  -sensitive,  -transitive,  -accessible,  -weakly 
mixing,  -m-sensitive, infinitely sensitive, or syndetically transitive. 
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1. Introduction 

As we all know, it is difficult to express some real problems using autonomous 
system, such as chemical problems, financial problems, biological problems, etc. 
Then, we need to study non-autonomous discrete systems. This research con-
siders the following non-autonomous discrete dynamic system: 

( )1 , .n n nx h x n +
+ = ∈                         (1) 

where, :nh X X→  is a continuous mapping sequence on compact metric 
space X with the metric d. +


 is the positive integer set. Denote { }1, 1n n

h h ∞
∞ =
= . 

The set-valued discrete dynamic system induced system (1) is expressed as  
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( )1 , .n n nA h A n +
+ = ∈                        (2) 

where, ( ) ( ):nh X X→κ κ  is set-valued mapping sequence induced by 1,h ∞  as 
( ) ( ){ }n nh A h x x A= ∈ . It is obvious that nh  is continuous mapping sequence. 
( )Xκ  is the space of all non-empty compact subsets of X endowed with the 

Hausdorff metric H and the Hausdorff metric on ( )Xκ  is defined by  

( ) ( ) ( ), max sup , ,sup ,
x A y B

H A B d x B d y A
∈ ∈

 =  
 

 

For any ( ),A B X∈κ . 
According to [1], ( )( ),X Hκ  is a compact metric space if and only if 

( ),X h  is a compact metric space. And by [2], for ( ),x A A X∈ ∈κ , 

( ) ( ){ }, ,B x y X d x y= ∈ <ε ε , 

( ) ( ) ( ){ }, ,B A B X H A B= ∈ <ε κ ε , 

( ) ( ){ }e A K X K A= ∉ ⊂κ , 

it is clear that ( )e A = φ  if and only if A = φ . 
Through the study of the mapping sequence nh , we understand how the 

points in the space X move. However, it is far from enough in demographics, 
species migration, chemical research and numerical simulation. Sometimes, it is 
needed to know the movement of a finite number of point in space X. For exam-
ple, one often iterates at the same time finite points while applying the method 
of numerical evaluation to the investigation of a chaotic system ( )1,,X h ∞ . At 
this time, any set of finite points in X is just an element of topological space 
( )Xκ . Therefore, it is necessary for us to consider the set-valued mapping se-

quence nh  related to a single mapping sequence nh . Since 2003, H. R. Flores 
[2] has studied the transitivity of individual mapping and set-valued mapping 
and many scholars have begun to study the interactions of some properties be-
tween ( ),X h  and ( )( ),X hκ . A. Fedeli [3] showed that h  is Devaney chaos, 
then h is Devaney chaos. Gu and Guo [4] proved that strong mixing and mild 
mixing between h and h  are equivalent, respectively. R. Gu [5] investigated the 
relationships between Kato’s chaoticity of the dynamical system (1) and Kato’s 
chaoticity of the set-valued discrete system (2). J. L. G. Guirao [6] considered 
distributional chaos, Li-Yoeke chaos, ω -chaos, Devaney chaos, topological 
chaos (positive topological entropy) between the dynamical system (1) and dy-
namical system (2). The other studies about chaotic properties of h and h  in 
autnomous systems, please refer to the literature [7] [8] [9] [10] [11]. In 2013, A. 
Khan [12] has investigated transitivity sensitivity and topological mixing be-
tween a non-autonomous dynamical system and its set-valued extension. In 
2017, Snchez [13] studied the interactions of transitivity, weak mixing and den-
sity of periodic points between system (1) and system (2). It can be seen that 
there are few studies on individual chaos and set-valued chaos in non-autonomous 
discrete system, so it is necessary to study the chaotic relationship between 1,h ∞  
and 1,h ∞ . 
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The structure of this paper is as follows. In Section 2, some basic definitions 
are given. In Section 3, the main results are established and proved.  

2. Preliminaries 

Throughout this paper, ( )1,,X h ∞  is seen as a non-autonomous discrete dy-
namical system and ( )( )1,,X h ∞κ  is a set-valued discrete system induced by it. 
{ } 1n n
h ∞

=
 is a continuous self-map over the metric space ( ),X d . A set M ⊂   

(  is the natural number set) is called syndetic [14] if there exists a positive in-
teger p such that such that { }, 1, ,i i i p M+ + ∩ ≠ ϕ  for any i +∈ ; a subset T 
of +


 is said to be cofinite if there is N +∈  such that [ ],N T+∞ ⊂ ; a sys-

tem ( )1,,X h ∞  (or maps sequence { } +n n
h

∈
) is called feebly open [15] if for any 

nonempty open subset V of H, ( )( )int nh V ≠ φ  for any n +∈ ; for conveni-
ence, write 

( ) ( ) ( )( ) { }{ }1 1, , min , : , , , 1, 2, , ,n n
i i i iG A m n d h x h y x y A i j m i j= ∈ ∈ ≠  

and 

( ) { }( ){
( ) }

1, , there , , , , 1, 2, , ,

, ,

is

such that

h m i iS A n x y A i j m i j

G A m n
∞

+= ∈ ∈ ∈ ≠

≥

λ

λ



 

where, ,m n +∈ , A is any nonempty open subset in X. 
For any 0>δ  and any non-empty open subset ,A B X⊂ , define  

( ) ( ) ( )( ){ }1, 1 1there, : , , is with n n
hN A n x y A d h x h y

∞
= ∈ ∈ >δ δ  

( ) ( ){ }1, 1, : n
hN A B n h A B

∞
= ∈ ≠ ϕ  

Definition 2.1 [16] Given an integer m with 2m ≥ . The system ( )1,,X h ∞  is 
called syndetic m sensitive, if there is a real number 0>λ  such that for any 
nonempty open subset A of X, there are 2m points 1 2 1 2, , , ; , , ,m mx x x y y y A∈   
and n +∈  such that ( )

1, , ,h mS A
∞

λ  is a syndetic set. 
Definition 2.2 Let ( )1,,X h ∞  be a given non-autonomous dynamical system 

and   a given Furstenberg family. 
1) The system ( )1,,X h ∞  is  -sensitive [17] with the sensitivity constant λ  

if for any nonempty open subset A of X, ( )
1,

,hN A
∞

∈δ  ; 
2) The system ( )1,,X h ∞  is  -transitive if for any nonempty open subsets 
,A B  of X, ( )

1,
,hN A B

∞
∈ ; 

3) The system ( )1,,X h ∞  is ( )1 2,  -sensitive [17] with the sensitive con-
stant λ  if for any x X∈  and any 0>ε , there exist y X∈  with ( ),d x y < ε  
such that  

( ) ( )( ){ }1 1 2: ,k kk d h x h y+∈ > ∈δ   

and 

( ) ( )( ){ }1 1 1: ,k kk d h x h y+∈ < ∈δ   

for any 0>δ ; 
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4) The system ( )1,,X h ∞  is  -accessible if for any 0>ε  and any two 
nonempty open subsets ,A B X⊂ , there are two points x A∈  and y B∈  
such that 

( ) ( )( ){ }1 1: ,k kk d h x h y < ∈ε  ; 

5) The system ( )1,,X h ∞  is  -weakly mixing if for all nonempty open sub-
sets , , 1, 2i iA B i =  of X such that  

( ) ( ){ }1 1 1 1 2 2and: k kk h A B h A B≠ ≠ ∈ ϕ ϕ   

6) The system ( )1,,X h ∞  is  -m-sensitive if there is a real number 0>λ  
such that for any nonempty open subset A of X, there are m points  

1 2 1 2, , , ; , , ,m mx x x y y y A∈   and n∈  such that ( )
1, , ,h mS A
∞

∈λ  ; 
7) The system ( )1,,X h ∞  is syndetically transitive [15] if for any nonempty 

open subsets ,A B  of X, ( )
1,

,hN A B
∞

 is syndetic; 
8) The system ( )1,,X h ∞  is infinitely sensitive [18] if there exist 0>η  such 

that for any y X∈  and 0>ε , there exists ( ),y B x∈ ε  and n∈  such that 

( ) ( )( )limsup ,n n

n
d h x h y

→∞
≥η . 

3. Main Result 

This section will show the relationship between 1,h ∞  and 1,h ∞  about 
-sensitivity,  -sensitivity,  -transitivity,  -accessible,  -weakly mix-
ing,  -m-sensitivity, infinitely sensitivity and syndetically transitivity. 

Lemma 3.1 [2] Let A and B be subset of X, then 
1) if A is a nonempty open subset of X, then ( )e A  is a nonempty open sub-

set of ( )Xκ ; 
2) ( ) ( ) ( )e A B e A e B=  ; 
3) ( )( ) ( )( )h e A e h A⊂ ; 
4) n nh h= . 
Theorem 3.2 Let ( ),X d  be a compact metric space and 1,h ∞  be continuous 

self-mapping sequence on X. 1,h ∞  is  -sensitive, then 1,h ∞  is  -sensitive. 
Proof. Let U be a nonempty open subset of X, the ( )e U  be a nonempty 

open subset of ( )Xκ . Since 1,h ∞  is  -sensitive with the sensitive constant 
0>λ , then ( )( )

1,
,hN e U

∞
∈λ  . Let ( )( )

1,
,hk N e U

∞
∈ ∈λ  , by the defini-

tion, there exist ( )1 2,K K e U∈  with ( ) ( )( )1 1 1 2,k kH h K h K ≥ λ . Now, let x U∈ , 
taking { } ( )1K x e U= ∈ . Then 

{ }( ) ( )( ) ( ) ( )( )1 1 2 1 1 2, ,k k k kH h x h K H h x h K= ≥ λ . 

Hence,  

( ) ( )( ) ( ) ( )( )
2

1 1 2 1 1, sup ,k k k k

y K
H h x h K d h x h y

∈
= ≥ λ  

According to the compactness of 2K  and the continuity of ( )nh n∈Ν , 
there exists 0 2y K∈  such that 

{ }( ) ( )( ) ( ) ( )( )1 1 2 1 1 0, ,k k k kH h x h K d h x h y= ≥ λ , 
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that is for any U X⊂ , there exist 0,x y U∈  such that ( )
1,

,hk N U
∞

∈ ∈λ   
and hence ( )( ) ( )

1,1,
, ,hhN e U N U

∞∞
⊂ ∈λ λ  . 

Thus, 1,h ∞  is  -sensitive. 
This proof has been completed. 
Theorem 3.3 Let ( ),X d  be a compact metric space and 1,h ∞  be continuous 

self-mapping sequence on X. 1,h ∞  is ( )1 2,  -sensitive, then 1,h ∞  is ( )1 2, 
-sensitive. 

Proof. Since 1,h ∞  is ( )1 2,  -sensitive with the sensitive constant 0>λ , 
then for any open set U of ( )Xκ  and any 0>ε , there exist ( ),V B U∈ ε  
such that 

( ) ( )( ){ }1 1 2: ,k kk H h U h V+∈ > ∈λ   

and 

( ) ( )( ){ }1 1 1: ,k kk H h U h V+∈ < ∈λ  . 

By the definition, there are two integers ,m p∈  such that 

( ) ( )( )1 1,m mH h U h V > λ  and ( ) ( )( )1 1,p pH h U h V < λ . 

Now, let x X∈  and 0>ε  be given, then, taking { } ( )U x X= ∈κ . We ob-
tain that there exists { }( ),V B x∈ ε  such that 

{ }( ) ( )( ) ( ) ( )( )1 1 1 1, ,m m m mH h x h V H h x h V= > λ  

and 

{ }( ) ( )( ) ( ) ( )( )1 1 1 1, ,p p p pH h x h V H h x h V= < λ . 

And since 

( ) ( )( ) ( ) ( )( )1 1 1 1, sup ,k k k k

y V
H h x h V d h x h y

∈
= ≥ λ  

for any k ∈ . Then, according to the compactness of V and the continuity of 

( )nh n +∈ , there is 0y V∈  such that 

( ) ( )( ) ( ) ( )( )1 1 1 1 0, ,m m m mH h x h V d h x h y= > λ  

and 

( ) ( )( ) ( ) ( )( )1 1 1 1 0, ,p p p pH h x h V d h x h y= > λ  

that is 

( ) ( )( ){ }1 1 0: ,k km k d h x h y+∈ ∈ > λ  

and 

( ) ( )( ){ }1 1 0: ,k kp k d h x h y+∈ ∈ < λ . 

Since { }( ),U B x∈ ε  implies ( ),U B x⊂ ε . And consequently, ( )0 ,y B x∈ ε . 
Then  

( ) ( )( ){ } ( ) ( )( ){ }1 1 1 1 0: , : ,k k k kk H h U h V k d h x h y+ +∈ > ⊂ ∈ >λ λ   
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and 

( ) ( )( ){ } ( ) ( )( ){ }1 1 1 1 0: , : ,k k k kk H h U h V k d h x h y+ +∈ < ⊂ ∈ <λ λ   

Thus, 1,h ∞  is ( )1 2,  -sensitive. 
This proof has been completed. 
Theorem 3.4 Let ( ),X d  be a compact metric space and 1,h ∞  be continuous 

self-mapping sequence on X. 1,h ∞  is  -transitive, then 1,h ∞  is  -transitive. 
Proof. Let ,U V  be two nonempty open subsets of X, due to Lemma 3.1, 
( )e U  and ( )e V  are nonempty open subsets of ( )Xκ . Since 1,h ∞  is 

-transitive, then ( ) ( )( )
1,

,hN e U e V
∞

∈ . By the definition, let 

( ) ( )( )
1,

,hm N e U e V
∞

∈ ∈ , 

then  

( )( ) ( )1
mh e U e V∩ ≠ φ , 

according to Lemma 3.1, 

( )( ) ( ) ( ) ( )( )1 1
m mh e U e V h e U e V∩ = ∩ ≠ φ . 

Further, we obtain  

( )( ) ( ) ( )( ) ( ) ( )( )1 1 1
m m mh e U e V e h U e V e h U V∩ ⊆ ∩ = ∩ ≠ φ . 

Hence, 

( )1
mh U V∩ ≠ φ  i.e. ( ) ( )( )1,

,hN e U e V
∞

∈ . 

Thus, 1,h ∞  is  -transitive. 
This proof has been completed. 
Theorem 3.5 Let ( ),X d  be a compact metric space and 1,h ∞  be continuous 

self-mapping sequence on X. If 1,h ∞  is  -accessible, then 1,h ∞  is  -ac- 
cessible. 

Proof. Let ,U V  be two nonempty open subsets of X, due to Lemma 3.1, 
( )e U  and ( )e V  are nonempty open subsets of ( )Xκ . Since 1,h ∞  is 

-accessible, then for any 0>ε , there exists ( ) ( )1 2,K e U K e V∈ ∈  such that 

( ) ( )( ){ }1 1 1 2: ,k kk H h K h K+∈ < ∈ε  , 

by the definition, let 

( ) ( )( ){ }1 1 1 2: ,k km k H h K h K+∈ ∈ < ε  

one has 

( ) ( )( )1 1 1 2,m mH h K h K < ε . 

Now, for any x U∈ , let { } ( )1K x e U= ∈  then 

{ }( ) ( )( ) ( ) ( )( )1 1 2 1 1 2, ,m m m mH h x h K H h x h K= < ε  

that is 

( ) ( )( ) ( ) ( )( )
2

1 1 2 1 1, sup ,m m m m

y K
H h x h K d h x h y

∈
= < ε  
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according to the compactness of 2K  and the continuity of ( )nh n +∈ , there is 

0 2y K∈  such that 

( ) ( )( ) ( ) ( )( )1 1 2 1 1 0, ,m m m mH h x h K d h x h y= < ε , 

one has 

( ) ( )( ){ }1 1 0: ,m mm k d h x h y+∈ ∈ < ε , 

then 

( ) ( )( ){ } ( ) ( )( ){ }1 1 1 2 1 1 0: , : ,k k k kk H h K h K k d h x h y+ +∈ < ⊆ ∈ < ∈ε ε    

and hence 

( ) ( )( ){ }1 1 0: ,m mk d h x h y+∈ < ∈ε  . 

Thus, 1,h ∞  is  -accessible. 
This proof has been completed. 
Theorem 3.6 Let ( ),X d  be a compact metric space and 1,h ∞  be continuous 

self-mapping sequence on X. 1,h ∞  is  -weakly mixing, then 1,h ∞  is 
-weakly mixing.  

Proof. Let ( ), 1, 2i iU V i =  be two nonempty open subsets of X, due to Lemma 
3.1, ( ) ( )( ), 1, 2i ie U e V i =  are nonempty open subsets of ( )Xκ . Since 1,h ∞  is 
 -weakly mixing, then 

( )( ) ( ) ( )( ) ( ){ }1 1 1 1 2 2and: k kk h e U e V h e U e V+∈ ∩ ≠ ∩ ≠ ∈ϕ ϕ   

Taking 

( )( ) ( ) ( )( ) ( ){ }1 1 1 1 2 2a: ndk km k h e U e V h e U e V+∈ ∈ ∩ ≠ ∩ ≠ ∈ϕ ϕ   

one has 

( )( ) ( )1 1 1
mh e U e V∩ ≠ φ  and ( )( ) ( )1 2 2

mh e U e V∩ ≠ φ  

Due to Lemma 3.1, 

( )( ) ( )1 1 1
mh e U e V∩ ≠ φ  and ( )( ) ( )1 2 2

mh e U e V∩ ≠ φ . 

Further, one has 

( )( ) ( ) ( )( )1 1 1 1 1 1
m me h U e V e h U V∩ = ∩ ≠ φ  

and 

( )( ) ( ) ( )( )1 2 2 1 2 2
m me h U e V e h U V∩ = ∩ ≠ φ  

by Lemma 3.1, 

( )1 1 1
mh U V∩ ≠ φ  and ( )1 2 2

mh U V∩ ≠ φ . 

That is 

( ) ( ){ }1 1 1 1 2 2and: k km k h U V h U V+∈ ∈ ∩ ≠ ∩ ≠ϕ φ  

Then 
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( )( ) ( ) ( )( ) ( ){ }
( ){ }

1 1 1 1 2 2

1 1 1 1 2 2

and:

: a( nd)

k k

k k

k h e U e V h e U e V

k h U V h U V

+

+

∈ ∩ ≠ ∩ ≠

⊆ ∈ ∩ ≠ ∩ ≠ ∈

ϕ φ

ϕ ϕ 





 

This proves that 1,h ∞  is  -weakly mixing. 
This proof has been completed. 
Theorem 3.7 Let ( ),X d  be a compact metric space and 1,h ∞  be continuous 

self-mapping sequence on X. 1,h ∞  is  -m-sensitive, then 1,h ∞  is 
-m-sensitive. 

Proof. Let U be a nonempty open subsets of X, then ( )e U  is nonempty open 
subsets of ( )Xκ . Since 1,h ∞  is  -m-sensitive, then there exist a real number 

0>λ  and m open sets ( )1 2 1 2, , , ; , , ,m mA A A B B B e U∈   such that  

( )( )
1, , ,h kS e U
∞

∈λ  . 

Taking ( )( )
1, , ,h kp S e U
∞

∈ λ , one has 

( ) ( )( )1 1,p p
i iH h A h B ≥ λ  

for any { }( ), 1, 2, ,i j m i j∈ ≠ . That is, ( )
1, , ,h kp S U
∞

∈ λ . 
Now, let 1 2, , , mx x x U∈ , taking 

{ } { } { } ( )1 1 2 2, , , m mB x B x B x e U= = = ∈  

Then 

{ } ( )( ) ( ) ( )( )1 1 1 1, ,p p p p
i j i jH h x h B H h x h B= ≥ λ  

for any { }( ), 1, 2, ,i j m i j∈ ≠ . And since 

( ) ( )( ) ( ) ( )( )1 1 1 1, sup ,
j j

p p p p
i j i j

y B
H h x h B d h x h y

∈
= ≥ λ  

According to the compactness of { } { } { }1 1 2 2, , , m mB x B x B x= = =  and the 
continuity of ( )nh n +∈ , there is 1 1 2 2, , , m my B y B y B∈ ∈ ∈  such that  

{ } ( )( ) ( ) ( )( )1 1 1 1, ,p p p p
i j i iH h x h B d h x h y= ≥ λ , 

for any { }( ), 1, 2, ,i j m i j∈ ≠ . 
One has that ( )

1, , ,h kp S U
∞

∈ ∈λ  . This proves that 1,h ∞  is  -m-sensitive. 
This proof has been completed. 
Theorem 3.8 Let ( ),X d  be a compact metric space and 1,h ∞  be continuous 

self-mapping sequence on X. 1,h ∞  is infinitely sensitive, then 1,h ∞  is infinitely 
sensitive. 

Proof. Let U be a nonempty open subsets of X, then ( )e U  is nonempty open 
subsets of ( )Xκ . Since 1,h ∞  is infinitely sensitive with the sensitive constant 

0>λ , then there exist ( )1 2,K K e U∈  such that 

( ) ( )( )1 1 1 2limsup ,k k

k
H h K h K

→∞
≥ λ  

Now, let x U∈ , taking { } ( )1K x e U= ∈ . Then 

{ }( ) ( )( ) ( ) ( )( )1 1 2 1 1 2limsup , limsup ,k k k k

k k
H h x h K H h x h K

→∞ →∞
= ≥ λ  
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And since 

( ) ( )( ) ( ) ( )( )
2

1 1 2 1 1, sup ,k k k k

y K
H h x h K d h x h y

∈
= ≥ λ  

According to the compactness of 2K  and the continuity of ( )nh n +∈ , 
there exists 0 2y K∈  such that 

( ) ( )( ) ( ) ( )( )1 1 2 1 1 0limsup , limsup ,k k k k

k k
H h x h K d h x h y

→∞ →∞
= ≥ λ , 

that is for any U X⊂ , there exist 0,x y U∈  such that  

( ) ( )( )1 1 0limsup ,k k

k
d h x h y

→∞
≥ λ  

Thus, 1,h ∞  is infinitely sensitive. 
This proof has been completed. 
Theorem 3.9 Let ( ),X d  be a compact metric space and 1,h ∞  be continuous 

self-mapping sequence on X. 1,h ∞  is syndetically transitive, then 1,h ∞  is syn-
detically transitive. 

Proof. Let ,U V  be two nonempty open subsets of X, due to Lemma 3.1, 
( )e U  and ( )e V  are nonempty open subsets of ( )Xκ . Since 1,h ∞  is syndeti-

cally transitive, then  

( ) ( )( ) ( )( ) ( ){ }
1, 1, : n

hN e U e V n h e U e V
∞

= ∈ ∩ ≠ ϕ  

is syndetic. For any ( ) ( )( )
1,

,hm N e U e V
∞

∈ , one has that ( )( ) ( )1
mh e U e V∩ ≠ φ . 

according to Lemma 3.1, 

( )( ) ( ) ( )( ) ( )1 1
m mh e U e V h e U e V∩ = ∩ ≠ φ . 

Further, we obtain 

( )( ) ( ) ( )( ) ( )1 1
m mh e U e V e h U e V∩ ⊆ ∩ ≠ φ  

So, ( )1
mh U V∩ ≠ φ , i.e. ( )

1,
,hm N U V

∞
∈ . 

Thus, ( )
1,

,hN U V
∞

 is syndetic, which proves that 1,h ∞  is syndetically transi-
tive. 

This proof has been completed. 

4. Conclusion 

In set-valued discrete dynamical systems, this paper studies the chaoticity in the 
sense of Furstenberg families. Some sufficient conditions of ( )1 2,  -sensitive, 
 -sensitive,  -transitive,  -accessible,  -weakly mixing,  -m-sensitive, 
infinitely sensitive, or syndetically transitive are obtained. Based on the conclu-
sions of this paper, there are some further research in set-valued discrete dy-
namical systems which are worthy of studying. For example, Li-Yorke chaos, 
Devaney chaos, positive entropy chaos, and others. 
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