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Abstract 

The calculations made by Euler for the orbital parameters for the Comet of 
1742 are revisited. These calculations were published in Latin in E58—Deter- 
minatio orbitae cometae qui mense Martio huius anni 1742 potissimum fuit 
observatus (Determination of the orbit of the comet which was clearly ob-
served in the month of March of 1742). The present work begins by giving 
some background on comets before addressing the main topic itself, which 
consists on the calculation of the orbital parameters for the assumed parabolic 
and elliptical orbit made by Euler for the Comet, making use of three obser-
vations. Because of the extent of the work, characterized by rather lengthy 
and repetitive calculations, only the parabolic orbit case is considered here. 
More specifically, the work addresses the calculations for the standard parame-
ters: longitude of the ascending node, inclination of the orbit, argument of the 
perihelion, the perihelion distance, which, together with the time that the 
comet is at the perihelion, make five unknowns that fully characterize the pa-
rabolic orbit of a comet.  
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1. Introduction 

Figure 1 shows the orbit of Halley’s Comet and its predicted location in 2024 
relative to the orbits of the planets. Blue is above the plane of the ecliptic and 
green is below. Almost the entire Halley orbit is below the plane of the ecliptic. 
Further, Halley revolves around its orbit in retrograde motion (the opposite 
sense from planet revolution). In the preceding view, the planets revolve coun-
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ter-clockwise and Halley revolves clockwise. Figure 2 shows the same thing, but 
from a top view.  

Figure 3 shows the solar system view from the plane of the ecliptic. This is an 
imaginary plane used as the reference plane for the solar system. Most planets in 
our solar system orbit the Sun on or near this plane. The Earth’s rotational axis 
is inclined at almost 23.5 degrees with respect to the perpendicular of the ecliptic 
plane. This inclination is what produces the seasons on the Earth. 

Figure 4 shows the ecliptic coordinate system with the reference direction in 
the vernal equinox ( ϒ ). The coordinates are celestial (or ecliptic) longitude (λ) 
and celestial (or ecliptic) latitude (β). 
 

 
Figure 1. Halley’s comet in 2024. Source:  
http://www.pas.rochester.edu/~blackman/ast104/halley.html. 

 

 

Figure 2. Halley’s comet in 2024—top view. Source:  
http://www.pas.rochester.edu/~blackman/ast104/halley.html. 

 

 

Figure 3. Solar system view from the Ecliptic plane. Source:  
http://www.pas.rochester.edu/~blackman/ast104/halley.html. 
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Figure 4. The ecliptic coordinate system. 
 

The celestial latitude (β) of a star, etc., is its angular distance (from 0˚ to 90˚) 
north (counted positive) or south (counted negative) of the ecliptic; it is meas-
ured along the great circle through the body and the poles of the ecliptic. The 
celestial longitude (λ) of a body is its angular distance (from 0˚ to 360˚) from the 
vernal equinox, measured eastward along the ecliptic to the intersection of the 
body’s circle of longitude; it is measured in the same direction as the Sun’s ap-
parent annual motion. Although observations are taken from the Earth’s surface 
the coordinates should strictly be geocentric and, tabulated as such, are univer-
sally applicable. A slight correction is therefore applied to convert surface (to-
pocentric) observations to geocentric values.  

Figure 5 shows the trajectory of Comet Y4 ATLAS. Discovered by the ATLAS 
(Asteroid Terrestrial-impact Last Alert System) survey on the evening of De-
cember 28th, 2019, Comet Y4 ATLAS was the last comet discovery of 2019. 
Though it was only at magnitude +19.6 at the time of discovery1, the orbit of Y4 
ATLAS is intriguing, bringing it in just 0.262 AU (39.2 million kilometers or 
24.4 million miles) from the Sun in late May 2020. That’s interior to Mercury at 
perihelion, at 0.307 AU from the Sun. This comet also grabbed observer’s atten-
tion in January 2020 when it jumped 5 magnitudes to +12, or 100-fold in 
brightness. 

Figure 6 shows a comet in a parabolic orbit and the associated orbital elements. 
Together with T, the time that the comet is at the perihelion, the longitude of the 
ascending node (Ω), the inclination of the orbit (i), the argument of the perihelion 
(ω), and the perihelion distance (a), make five unknowns that fully characterize 
the parabolic orbit of a comet. As regards to i, if one stands at the ascending 

 

 

1The visual brightness of comets is measured by the visual magnitude scale. It can sometimes be re-
ferred to as the “apparent” magnitude scale as it is always based on an object’s brightness as viewed 
from the Earth. This is the same scale that is used for all astronomical objects from asteroids and 
meteors to planets, moons, galaxies and spacecraft. There are a few peculiar characteristics of the 
visual magnitude scale. The first thing that may seem a little odd for a scale is that the lower the 
number, the brighter the object is. Compared to many other measuring scales, this seems backward. 
The second characteristic is that each increase in integer represents an increase in brightness of 2.5 
times. For example, an object of magnitude 5 is two and a half times the brightness of an object of 
magnitude 6. Source: http://www.cometwatch.co.uk/comet-info/the-magnitude-scale/. 
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Figure 5. The orbit of Comet C/2019 Y4 ATLAS, shown near perihelion, with indications 
of the ecliptic geocentric longitude (λ) and the ecliptic geocentric latitude (β). Credit: 
NASA/JPL. Adapted from:  
https://www.universetoday.com/145036/comet-y4-atlas-in-outburst-first-good-comet-for
-2020/. 
 

 

Figure 6. Comet in a parabolic orbit and associated orbital elements. 
 
node and looking towards the Sun, it is reckoned upward from the plane of the 
ecliptic, towards the left, in the same way as angles are ordinarily reckoned. It 
may be anything from 0˚ to 180˚. If it is between 0˚ and 90˚, it shows that the 
comet is moving around the Sun in the same direction as the Earth and other 
planets, or that its motion is direct; if between 90˚ and 180˚, the comet moves in 
the opposite direction, or retrograde. 

Now let r be the distance of a comet from the Sun, and v its velocity. It can be 

shown the if 2v h
r

> , the comet is moving in a hyperbola; if 2v h
r

= , its 

path is a parabola; and if 2v h
r

< , it travels in an ellipse. Here h is Gauss’ gra-
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vitational constant, which is equal to 0.01720209895. 
Therefore, it appears that of an infinite number of velocities a comet might 

have, only one would cause it to move in a parabola, and so, the chances are in-
finity to one that no comet moves in that curve. It is, moreover, known from 
observation that of all comets whose orbits have been computed, not more than 
three of four appeared to be hyperbolas, and those were not certainly so, there is 
strong reason to believe that all comets are moving in ellipses. However, in the 
cases of all but a few their orbits are so nearly parabolas that their performances 
can be very well predicted by assuming a parabola as the true curve, and in the 
cases of a newly discovered comet, this always done (Truman, 1912). This is one 
of the reasons why we are only concerned here with Euler’s parabolic case.  

2. Brief History of Comets Orbital Calculations 

Orbit determination has a long history, beginning with the prehistoric discovery 
of the planets and subsequent attempts to predict their motions. Johannes Kep-
ler used Tycho Brahe’s careful observations of Mars to deduce the elliptical 
shape of its orbit and its orientation in space, deriving his three laws of planetary 
motion in the process. The mathematical methods for orbit determination ori-
ginated with the publication in 1687 of the first edition of Newton’s Principia, 
which gave a geometrical method for finding the orbit of a body following a pa-
rabolic path from three observations. Newton’s method was considered difficult 
to apply in practice, but it was used, with minor adaptations, by Edmund Halley 
to establish the orbits of various comets, including that which bears his name. 
The first analytical method based on three observations, that did not make use of 
geometrical considerations was presented by Euler in Theoria motuum planeta-
rum et cometarum (Euler, 1744), and applied to the investigations of the comets 
of 1680 and 1744. This work was in turn generalized to elliptical and hyperbolic 
orbits by Lambert in 1761-1777. 

In the years that followed, other leading mathematicians and astronomers 
devoted themselves to the problem. In 1774, Boscovich developed a method that 
also made use of three observations, published under the title De orbitus com-
etarum determinandis (Boscovich, 1774). In 1780, Laplace (1784) gave an en-
tirely new approach to the problem. In contrast to others previously methods, 
requiring three observations relatively close to each other, Laplace’s method 
could make use of observations separated by about 30 to 40 degrees of each oth-
er. The precision of the method improves if, indeed, it uses a more extensive set 
of observations, but, sometimes it is unsatisfactory when only three observations 
are available. Orbit determination by three observations was also employed in 
1782 by the Portuguese astronomer José Monteiro da Rocha, in a method which 
is essentially the same as the method proposed by Olbers and published under 
von Zach’s sponsorship two years before, in 1797 (Figueiredo & Fernandes, 
2020). 

Another milestone in orbit determination was Carl Friedrich Gauss’ assistance 
in the “recovery” of the dwarf planet Ceres in 1801. Gauss’s method was able to 
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use just three observations (in the form of celestial coordinates) to find the six 
orbital elements that completely describe an orbit. 

The problem of comet’s orbit determination was a recurrent one along the 
years that followed, such that the theory of orbit determination has been devel-
oped to the point where today it is applied in GPS receivers as well as the track-
ing and cataloguing of newly observed minor planets. 

3. Euler's Geometrical Calculations of the Parabolic Orbit for 
the Comet of 1742 (Euler, 1743) 

The geometrical method, based on three observations, was used by Euler for the 
investigation of the comet of 1742 (Euler, 1743). As we shall see, crucial to the 
developments, is the determination of the comet’s distance to the Earth at the 
moment of the second observation, which Euler obtained by trial and error. 

The mathematical formulation for the calculation of the orbital parameters is 
essentially in plane geometry, which, for a phenomenon that occurs in space, is 
rather difficult to follow from sketches of the space geometry projected in the 
plane of the paper. As pointed out earlier, the geometrical method is difficult to 
apply in practice. Moreover, Euler’s calculations are rather cumbersome by 
transforming the original operations into logarithmic operations, in which all 
minute details are presented. By considering different conic sections for the or-
bit, such as parabolas, ellipses and hyperboles, the calculations turned out very 
repetitive and tedious. This is another reason why only the parabolic orbit case 
will be considered here for the comet of 1742. 

Only the paragraphs directly concerned with the parabolic case will be re-
viewed, and even so, they were abridged to what is real necessary to logically 
follow Euler’s calculations. The paragraphs sub-headings in what follows are 
those that appear in the original publication.  

Euler begins by praising Newton’s theory on the motion of planets, and by 
commenting comets’ observations and the theory of comets. Then follows a dis-
cussion on the modeling of comets’ orbits from observations, by means of conics 
with the Sun at the focus, and by applying the principle of equal areas in equal 
times. He then asserts the objective of the investigation of developing a proce-
dure to find the classical parameters that characterizes the orbit of a comet from 
three observations, with a final goal of checking his method by comparison of 
the calculated geocentric longitude and latitude of the Comet with a fourth ob-
servation.  

In §. 6, 7, and 8 Euler develops the expression for the calculation of the true 
anomaly of the comet in a parabolic orbit2 as 

31
3

nt t
N

+ =  

 

 

2The same developments appear in another publication by Euler namely E840—De motu cometarum 
in orbitis parabolicis, solem in foco habentibus. A translation of this manuscript can be found at: 
https://scholarlycommons.pacific.edu/euler-works/840/. 
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where 1tan
2

t = ν , ν is the anomaly, n is the number of days that it takes for the 

comet to go from the perihelion P to M, 
384651.5

a aN = , and a is the perihe-

lion-Sun distance PS. In Figure 7, ˆPSMν = . 
Euler then provides a table at the end of the manuscript that allows the direct 

determination of ν from tabulated values of the polynomial 31
3

t t+ , obtained 
from the ratio 

n
N

. 
The paragraphs that follow, relate to the calculation of the parameters that 

fully characterize the parabolic orbit of the Comet of 1742. 
§. XXIII. 
Besides the observations on Mar. 3d, 15h, 10', let be chosen two other observa-

tions held before and after the conjunction3, which are not too close and not too 
far apart from each other. If they are chosen very close to one another, the aber-
ration error4 may be sensible: if however, they were chosen rather far apart, they 
bring forth the hindrance of curvature. From these considerations, the three se-
quence of the Comet’s position shown in Table 1 are seen most suitable for this 
purpose. 

The time elapsed out between the first and the second observation is 3d, 8h, 21' 
= 3.34791 days, which is set = m. Indeed, the time elapsed out between the 
second and the third observation is 2d, 23h, 5' = 2.96180 days, which is set = n, 
and hence, the time elapsed out between the first and the last observation = m + 
n = 6.30971 days. 
 

 

Figure 7. Geometrical elements used by Euler for the calculation of the comet’s anomaly 
ˆPSMν = . Adapted from Figure 1 (Euler, 1743). 

 

 

3In astronomy, a conjunction occurs when any two astronomical objects (such as comets, asteroids, 
moons, planets, and stars) appear to be close together in the sky, as observed from Earth. If two ob-
jects have the same ecliptic longitude, they are considered to be in conjunction with one another. 
The conjunction under consideration here is that of the Comet and the Sun as seen from the Earth. 
4A small periodical change of position in the stars and other heavenly bodies, due to the combined 
effect of the motion of light and the motion of the observer. 
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Table 1. Observations made by the astronomer Delisle5 for the comet of 17426. 

Time 
Comet’s [Geocentric] 

Longitude7 
Comet’s [Geocentric] 

Latitude 
Solar 

Longitude8 
Earth-Sun 
Distance9 

Feb. 28d, 6h, 49’ 10S, 9˚, 3' 70˚, 30' 11S, 21˚, 4', 33'' 99,482.70 

10Mar. 3d, 15h, 10’ 11S, 24˚, 24', 26’’ 79˚, 31' 11S, 24˚, 24', 26'' 99,576.55 

Mar. 6d, 14h, 15’ 1S, 12˚, 44' 77˚, 37' 11S, 27˚, 20', 48'' 99,660.46 

 
§. XXIV. 
Figure 8 now represents the plane of the ecliptic, in which the Sun occupies 

the position S, and the three locations of the Earth are indicated by A, B and C 
according to these three observations, and once guided by the straight lines AS, 
BS, CS, these segments will have the following dimensions: 

99482.70AS =  

99576.55BS =  

99660.46CS =  

and 

angle 3 ,19 ',53''ASB =   

angle 2 ,56 ', 22 ''BSC =   

angle 6 ,16 ',15''ASC =  .11 

Now that the segment BS shows the distance of the Comet to the Sun in the 
intermediate observation, may be drawn the lines Aα, and Cγ which designate 
the Comet’s distances to the Earth in the first and last observation, whose posi-
tions are to be determined such that  

42 ,1a gle 'n SAα =  , 45ang ,20 ',53''le AmB =   

45 ,2e 'l 4ang SCγ =  , 48ang ,20 ', 22 ''le CnB =   

seconds were disregarded in the location of the Comet, because these observations 
are not exact beyond minutes. Then, consequently, the segments Aα & Cγ  

 

 

5Joseph Nicholas Delisle (1688-1768), French astronomer who graduated and later taught mathe-
matics and astronomy at the College de France. From 1710 to 1715, he set up an observatory on the 
Palais de Luxembourg. In 1725 he went to St. Petersburg, where he stayed for 21 years. He was a 
member of the Imperial Academy of Sciences as well as director of the St. Petersburg Observatory. 
6These observations were personally communicated to Euler by Delisle who took them in the St. Pe-
tersburg Observatory. Coincidentally, 1742 is the year of the death of the British astronomer Ed-
mund Halley. 
71 Signe (1s) => 30˚. From antiquity through the 18th century, ecliptic longitude was commonly 
measured using twelve zodiacal signs, each of 30˚ longitude, a practice that continues in modern as-
trology. The signs approximately corresponded to the constellations crossed by the ecliptic. 
8Solar longitude (the ecliptic longitude of the Sun) in effect describes the position of the earth in its 
orbit, being zero at the moment of the vernal equinox. Solar longitude calculator  
https://kikimoreau.shinyapps.io/SollongCalc/. 
9Roughly, the distance from Earth to the Sun is equal to about 150 million kilometers (93 million 
miles), which is called Astronomical Unit (AU).  
10This is the conjunction time, which was not actually observed, but was estimated by Euler instead. 
11These results come from the angular differences in the solar longitude for the different observations 
shown in Table 1. 
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Figure 8. Triangles involved in the calculations considered in §. XXIV. Adapted from 
Figure 3 (Euler, 1743). 
 
intercepts the segment BS in the points m & n, which should be firstly defined 
from the following formulas, which result from the resolution of the triangles12 

sin sin93603.40; 8126.40
sin sin

AS SA AS ASBSm Am
AmB AmB

⋅ ∝ ⋅
= = = =  

sin sin94982.25; 6840.66
sin sin

CS SC CS BSCSn Cn
CnB CnB

⋅ γ ⋅
= = = =  

99576.55 93603.40 5973.15Bm BS Sm= − = − =  

99576.55 94982.25 4594.30Bn BS Sn= − = − =  

§. XXV. 
If we now set apc as the portion of the Comet’s orbit described during the in-

terval of the assumed observations, then a will be its position in the first observa-
tion, from which the perpendicular aα is dropped onto the ecliptic plane, defin-
ing the segment Aα on this plane; and the same with c, which is the position of 
the Comet in the third observation, then, defining the segment Cγ on the eclip-
tic; and also p is the location in the intermediate observation, with the perpen-
dicular pπ falling onto the point π on the line BS. On account that the areas de-
scribed around the Sun are proportional to the times, then the ratio of area aSp 
to the area pSc is equal to the ratio of m to n: and if this ratio holds for the Com-
et’s orbit projected onto the plane of the ecliptic απγ, then, also the ratio of the 
area αSπ to the area γSπ is as m to n. Moreover, it is also clear that the ratio of 
the sectors αSπ and γSπ come near to approach the ratio of the triangles αSβ & 
βSγ, such that the error is certainly imperceptible: since the ratio between these 

 

 

12These expressions come from the application of The Law of Sines to the triangles indicated in Fig-
ure 8. 
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areas is almost the same, then because the angles αSβ and βSγ, as the following 
will show, are rather small to such an extent for the curvature not to upset in any 
way this convenience. Then, since the ratio of the triangles αSβ and βSγ will be 
as m to n, also : :m nαβ βγ = , an thus, the ratio of the segments of the cords αγ 
will be known by means of factors of SB: whence, if the point β in the line BS 
becomes known, through which the cord αγ transits, at the same time, the posi-
tion of the cord or angle Bβγ can be defined. So, let us set the angle Bβγ = ϕ , 
then, in the triangle αmβ, the angle m AmBα β =  & m AmBβ = ϕ−α ; in the 
triangle βnγ, indeed the angle n CnBβ γ = , & 180n BnCβ γ = −ϕ− . Then, it 
follows that13 

( ) ( )
sin sinand

sin sin
m AmB n BnC

AmB BnC
β ⋅ β ⋅

β = βγ =
ϕ+

α
ϕ−

 

since we have that : :m nαβ βγ = , and because  
( )sin sin cos cos sinAmB AmB AmBϕ− = ϕ − ϕ  &  
( )sin sin cos cos sinBnC BnC BnCϕ+ = ϕ + ϕ , by dividing both denominators by 

cosϕ , gives 

tan cot 1 tan cot 1
n m m n

AmB BnC
⋅β ⋅β

=
ϕ⋅ − ϕ⋅ +

 

or 

1
tan

cot cot

m n
n m

m n AmB BnC
n m

β
⋅ +
βϕ =

β
⋅ −
β

 

thus, from the knowledge of the point β, the position of the cord αγ becomes 
known, and further, from the given latitudes, the points a and c in the Comet’s 
orbit. 

§. XXVI. 
Therefore, this matter has been reduced to the question of defining the point β 

on the line Bβ, such that the solution of the problem lies just on one unknown. 
Yet, it is not fit, as is usually done in other circumstances, to employ some cha-
racter to this unknown, and to determine it by an equation, because of the too 
complicated expressions to which we would have arrive. Then, it will be em-
ployed some tentative values for Bβ, indeed ruling out the false ones, such that 
the most problematic undefined letters are avoided in the trigonometric calcula-
tion (Figure 9). 

Let then be assumed some arbitrary values for the interval Bβ, and for what-
ever convenience the angle Bϕ = βγ  will be defined, and two of the Comet’s 
position a and c will be held, as well as their distances to the Sun AS, CS, and they 
will be able to assign both the angle aSc and the cord ac. Then, from the develop-
ments of the preceding sections, having been established that the Comet’s orbit is a 
parabola or an ellipse, no matter how oblong, let be theoretically  

 

 

13These expressions come from the application of The Law of Sines to the triangles indicated in Fig-
ure 9, which are drawn on the ecliptic plane. 
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Figure 9. Triangles involved in the calculations considered in §. XXVI. Adapted from 
Figure 3 (Euler, 1743). 
 
found the time that the Comet should had taken to travel the distance ac, and 
how this time compares with the observed time of 6.30971 days, and this will be 
the evidence that the true value for Bβ has been assumed, if however, it disa-
grees, the approximate true value is found from the comparison of two addition-
al hypothesis for Bβ. Let then be set again two values for Bβ itself, not too much 
different from the one that was found, such that neither of them are not too 
much in disagreement with the reality, for the approximate true value of Bβ to 
be found.  

§. XXVII. 
Therefore, two values 8000 and 9000 will be attributed to Bβ itself, since I al-

ready know from other rather crude attempts that the true value lies between 
these limits; and I will first determine the angle Bϕ = βγ .  

From §. XXV. We know that 

1
1

tan
cot cot

m n
n m

m n AmB BnC
n m

−

β ⋅ + β ϕ =
β ⋅ − β 

 

where 

3.34791 1.130
2.96180

m
n
= =  

for 

8000Bβ =  
8000 5973.15 2026.85

7112 '22 ''
8000 4594.30 3405.70

m B Bm
n B Bn

β = β− = − =
⇒ ϕ =β = β− = − =

  

for 

9000Bβ =  
9000 4594.30 3026.85

74 27 '29 ''
9000 5973.15 4405.70

n B Bn
m B Bm

β = β− = − =
⇒ ϕ =β = β− = − =

  
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Finally 
for 

8000Bβ =  

45 20 53
25 51'29

48 20 22

180 6

'

0 27 16

''
''

' ''

' ''

m AmB
A m AmB
n CnB

C n

α β = =
 ∝ β = ∝ β = ϕ− =
β γ = =
 γβ = −ϕ−β γ =











 

for 

9000Bβ =  

45 20 53

29 6 '36

48 20 22

180 5

' ''

''

' ''

'8 12 9 ''

m AmB
A m AmB
n CnB

C n

α β = =


∝ β = ∝ β = ϕ− =

β γ = =
 γβ = −ϕ−β γ =







 

 

§. XXVIII. 
Now, in the triangles αmβ, βnγ all angles and the sides βm and βn are given, 

and the remaining sides will be defined by the following formulas 
3305.98 for 8000sin
4426.15 for 9000sin

Bm m
BA

α β =β ⋅ β
β = =  β =αβ

α


 

4399.44 for 8000sin
5994.33 for 9000sin

Bnm
BA
β =β ⋅ ϕ

= =  β =
α

αβ 
 

2924.70 for 8000sin
3827.71 for 9000sin

Bn n
BC
β =β ⋅ β γ

βγ = =  β =γβ 
 

3706.04 for 8000sin
4994.15 for 9000sin

Bnn
BC
β =β ⋅ ϕ

γ = =  β =γβ 
 

Having been found αm and γn, then 

12525.84 for 8000
14120.73 for 9000

10546.70 for 8000
11834.81 for 9000

B
A Am m

B

B
C Cn n

B

β =
= + =  β =

β =
γ = + γ =  β =

α α



 

§. XXIX. 
Now, from the latitudes that has been observed, the segments aα and cγ will 

be obtained from tan .a A latα = ∝ ⋅  and tan .c C latγ = γ ⋅  (Figure 10). Indeed, 
the latitude in the first observation = 70˚, 30', and the latitude in the third ob-
servation = 77˚, 37'. Then, 

35371.88 for 8000
tan 70 ,30

39875.71 for 9000
'

B
a A

B
β =

= ⋅ =  β =
α α


  

and 

48035.68 for 8000
tan 77 ,37

53902.47 for 9000
'

B
c C

B
β =

γ = γ ⋅  β =
=  

Additionally, having been found aα and cγ, may be guided the segment aK 
parallel to αγ, then 
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Figure 10. Triangle involved in the calculations considered in §. XXIX. Adapted from 
Figure 3 (Euler, 1743). 
 

6230.68 for 8000
8298.86 for 9000

B
aK

B
β =

= β+βγ =  β =
α


 

and 

12663.80 for 8000
14026.76 for 9000

B
cK c a

B
β =

= γ −  β =
α =


 

then, since tan cKcak
ak

= , the angle cak is found; and out of this angle, we have 
additionally that the cord 

14113.58 for 8000
16297.89 for 9000sin

BcKac
BcaK
β =

= =  β =
 

§. XXX. 
May be guided the segments Sα and Sγ, and in the disclosed cord αγ may be 

guided the normal SQ: then, in the right triangle βSQ the side S SB Bβ = − β , 
which together with the given angle will result in sinSQ S= β ϕ , cosQ Sβ = β ϕ   

(Figure 11). Hence, Q Qα = β−αβ  and Q Qγ = β +βγ : and also tanQS S Q
Q

= α
α

 

and tanQS S Q
Q

= γ
γ

, and once these angles are known, then, 
sin

QSS
S Q

α
α

=  

and 
sin

QSS
S Q

γ =
γ

. 

§. XXXI. 
Once Sα and Sγ are known, and since the perpendiculars aα and cγ are given, 

then tan aaS
S
α

α =
α

 and tan ccS
S
γ

γ =
γ

, producing the heliocentric longitudes  

aSα and cSγ, and then, the Comet’s distances to the Sun are found out from the 
following formulas: 
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Figure 11. Triangles involved in the calculations considered in §. XXX. Adapted from 
Figure 3 (Euler, 1743). 
 

97228.33 for 8000
97974.17 for 9000sin

BaSa
BaS
β =α

=
=α


=  β

 

104282.54 for 8000
106360.48 for 9000sin

BcSc
BcS
β =γ

= =  β =γ 
 

§. XXXII. 
Having been now found the two Comet’s distances to the Sun Sa and Sc, along 

with the cord ac, it will be possible to define the time required by the Comet to 
complete this distance under the hypothesis that the Comet’s orbit is either pa-
rabolic or elliptic: indeed, first, if the Comet’s orbit is established as a parabola, 
then set ,Sa f Sc g= =  and ac k= , the time through ac will be  

3 2 3 2

2 2
3

f g k f g k

m

+ + + −   −   
   =  days14, knowing that 384651.5m = , which is 

a constant that depends only on the Earth-Sun distance (Figure 12).  
This expression gives 5.82218 days for 8000Bβ = , and 6.70979 days for 

9000Bβ = . The actual time that the Comet took to travel to the arc ac was 
found to be equal to 6.30971 days. In §. XXXIII, Euler found by interpolation 
that the value for Bβ should be around 8514. Later, in §. XXXVIII, Euler refined 
the value for Bβ to 8471.61.  

§. XLII. 
In this paragraph, Euler calculates the Comet’s distances to the Earth in the 1st 

and 3rd observations from (Figure 13) 

 

 

14This expression was developed twice by Euler, in §. XIII, and in §. XIV. It was also independently 
developed by I. H. Lambert in Insigniores Orbitae Cometarvm Proprietates (Most Remarkable 
Properties of Comets’ Orbits), 1761, and became later known as The Euler-Lambert Equation for 
Parabolic Motion. 
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Figure 12. Geometrical elements used by Euler for the calculation of the time that it takes 
for the comet to travel the arc ac. Adapted from Figure 2 (Euler, 1743). 
 

 

Figure 13. Triangles involved in the calculations considered in §. XLII. Adapted from 
Figure 3 (Euler, 1743). 
 

39777.5
sin .

aAa
lat

=
α

=  

and 

52134.6
sin .

cCc
lat
γ

= =  

and from these, a new value for 15245,34ac = . 
§. XLIII. 
When the cord ac is extended out, it meets the prolonged segment γα in N, 

and the point N will be simultaneously in the orbit of the Comet and in the ec-
liptic; and if the segment SN is drawn, then this segment will belong to the nodal 
line15. Since the angle aN caKα = , then tana caK

N
α

=
α

, and therefore,  

 

 

15This happens because the nodal line is the interception of both planes, the ecliptic plane and the 
plane of the orbit, and then, since the cord ac belongs to the plane of the orbit, it necessarily inter-
cepts the plane of the ecliptic in the nodal line.  
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tan
aN
caK

α =
α

. Moreover, once the normal SQ is drawn from S to αγ, the  

segments Sα and Sγ will be defined, and the angles BSα and BSγ are given, the 
heliocentric longitude of the Comet will be obtained in the 1st and 3rd observa-
tion. The results are as follows: 

 
tan

aN
caK

α =
α

. 

 Since cosQ Sβ = β⋅ ϕ , then, Q Qα = β −αβ  and Q Qγ = β +βγ . 

 Since sinSQ S= β⋅ ϕ , then, 1tanˆ ' ''75 20 48SQS Q
Q

−α
α

= =  ,  

1ˆ tan 70 59 48' ''SQS Q
Q

−γ = =
γ

 . 

 ˆ ˆˆ 2 , 22',1ˆ 2''S Q Q S S QSα α αβ = − β = −ϕ =  . 
 Heliocentric longitude of the Comet in the 1st observation = longitude of B + 

Ŝα β  = 5S, 24˚, 24', 26'' + 2˚, 22', 12'' = 5S, 26˚, 46', 38''. 
 ˆ ˆ 1 ,58' 4 'ˆ 'ˆ , 8Q QS SS Sβ γ = β −β γ = ϕ− γ =  . 
 Heliocentric longitude of the Comet in the 3rd observation = longitude of B - 

Ŝβ γ  = 5S, 24˚, 24', 26'' - 1˚, 58', 48'' = 5S, 22˚, 25', 38''. 
 Heliocentric latitude of the Comet in the 1st observation = 1tan a

S
− α

α
 = 22˚, 

36', 29''. 
 Sun-Comet distance in the 1st observation 97537.59

sin
aSa
aS
α
α

= = . 
 Heliocentric latitude of the Comet in the 3rd observation = 1tan c

S
− γ

γ
 = 28˚, 

55', 44''. 
 Sun-Comet distance in the 3rd observation 105270.13

sin
cSc
cS
γ

= =
γ

. 
§. XLIV. 
Having been found these lines, then QN Q N= α −α . Hence,  

tan QNQSN
QS

= ; therefore, 90 φ 15 ,18', 4ˆ ˆ ˆ ˆ 1''N Q Q N Q NS S S Sβ = β − = − − =  , 
thus the position of the nodal line becomes known, and also the heliocentric 
longitude of the ascending node N as  

S Slongitude of 15 ,18', 41'' 5 , 24 ,24', 26'' 6 ,9 , 43',7ˆ ''N SN B= β + = + =   .  T h e n , 
from α, the perpendicular αR to SN is drawn, giving sinR S SRα α= α , knowing 
that ˆ ˆˆR Q NS S QSα α= −  and cosSR S SRα= α ; and once aR is drawn, which is 
normal to 𝑆𝑆𝑆𝑆 , then it will be found out that tan aaR

R
α

α
α

= ; the angle  
1ˆ tan 61 ,43', 44''aaR

R
−α =

α
α

=   will be the inclination of the Comet’s orbit in re-

lation to the ecliptic. Hence, indeed, 
sin

aaR
aR

=
α
α

 and sin aRaSN
Sa

= , and the  

angle 1sin 25 ,52', 49''ˆ aRa N
Sa

S −= =   will be the heliocentric distance of the 
Comet to the node in the first observation. Finally, then, the angle ˆaSc  will be 
found from 

2 2 2

cos
2

Sa Sc acaSc
Sa Sc

+ −
=

⋅ ⋅
, and hence, the Comet’s heliocentric dis-

tance to the node in the third observation  

12 cos
2 2

25 ,52', 49'' 7 , 26',3'' 33 ,18',

ˆ ˆ

'

ˆ

52 '

Sa Sc ac Sa Sc aS S S ca N a c a N
Sa Sc

− + + + −   = + = + ⋅ ⋅   ⋅ ⋅   

= + =  

. 
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§. XLV. 
Having been now found both Comet-Sun distances Sa f= ; Sc g= , togeth-

er with the cord ac k=  or the angle ˆaSc q= , it will be possible to define the 
parabolic and the elliptical orbit of the Comet. So, be considered the angle 

ˆPSa = ν , and if it is set cosB g q f= −  and 
1
g fC −

=
−α

, then,  

( )( ) ( )( )1sin
2 2

k B k C k B k C
k

+ + − − −
ν = , where for the parabola 0α =  

and for the ellipse 
1
50

α = . Thus, having been found the angle ν, then  

( )1
cos

2 2
ffPS a

−α
= = + ν

−α −α
.16 For the parabolic orbit, the numerical value  

found by Euler for the perihelion distance is 75210.10PS a= = , and for the 
anomaly 57 ,10',ˆ 5''aSp = ν =  . Then, by subtracting, from this angle, the angle 

25 ,52', 49''Ŝa N =  , the distance of the perihelion to the node was found as 
31 ,17',16''ω =  .  

§. XLVI. 
Having been found the orbit of the Comet, it remains to be defined the time in 

which the Comet transits by the perihelion, which will be found out, if we de-
termine the time that it will take for the Comet to move from the perihelion P to 
the position a. Be set 1tan tan

2
ˆaSP t= ν = , then the time that it takes for the  

Comet to arrive at a from P, expressed in days 31
384651.5 3

a a t t = + 
 

, and by 

putting 
384651.5

a a N= , and 31
3

T t= + , gives the time for going through  

Pa NT= . These give 0.598773T = , 53.623N = , d h32.10771 32 ,2 ,35'NT = = . 
Yet, the Comet is seen at a in Feb. 28d, 6h, 49', therefore, the Comet had been at 
the perihelion on Jan. 27d, 4h, 14'. 

§. XLVII. 
In this paragraph, Euler gives the calculated parabolic orbital parameters to be 

applied to the calculations that follow in the next paragraphs. 
 Distance from the perihelion to the Sun 75210.10a = . 
 Semi latus rectum 150420.20b = . 
 Date in January that the Comet transits by the perihelion: 27d, 4h, 14'. 
 Distance of the perihelion to the node = 31˚, 17', 16''. 
 Heliocentric longitude of the ascending node = 6S, 9˚, 43', 7''. 
 Inclination of the Comet’s orbit = 61˚, 43', 44''. 

§. XLVIII. 
Let us calculate for the parabolic orbit case, and for the time of the last obser-

vation on March 17d, 7h, 50', for which the observed longitude of the Comet was 
2S, 18˚, 52', with a northern latitude = 63˚, 13’. Indeed, for this time the Earth’s 
position17 was drawn = 6S, 7˚, 57', 30'' and the Earth-Sun distance = 99970.05. 

 

 

16This expression was developed in §. XV. 
17This is actually the longitude of the Earth as seen from the Sun. 
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For these conditions, and following the procedures of the previous paragraphs 
Euler obtained the following: true anomaly ν = 74˚, 56', 29''; Comet’s distance to 
the node = 43˚, 39’, 13’’.  

§. XLIX. 
Be considered in the spherical triangle ☊cγ shown in Figure 14, the ecliptic 

side ☊γ, and the orbit of the Comet ☊c, then the angle c☊γ will be the inclina-
tion in relation to the ecliptic.  

Then, by assuming that c☊ is the distance from the Comet to the node, hence, 
c, indeed, will be the position of the Comet in its orbit; whence if the normal cγ 
to ☊γ is drawn, then the arc cγ will be the heliocentric longitude of the Comet, 
and if ☊γ is subtracted from the longitude of the node, the result will give the 
heliocentric longitude of the Comet. Indeed, from the nature of [right] spherical 
triangles, we have that sincγ = sinc☊∙sinc☊γ, and tan☊γ = cosc☊γ∙tanc☊.18 
From these relations, the following numerical results were found by Euler: He-
liocentric Latitude of the Comet cγ = 43˚, 39', 13''; Heliocentric Longitude of the 
Comet 5S, 15˚, 24', 3''. 

§. L. 
Then, in Figure 15 let the Sun be set at S and T be the position of the Earth, 

then, outside the plane of the ecliptic, emerges the Comet at c, whence in the ec-
liptic, falls the perpendicular cγ, and Sγ can be drawn, being the angle γˆcS  the 
heliocentric latitude of the Comet. Then, sinc Sc cSγ = γ , and cosS Sc cSγ = γ . 
Now, from γ, be drawn the perpendicular γp to ST, then, from the given angle 

ˆTSγ , which is certainly the difference between the heliocentric longitudes of the 
Earth and the Comet sinp S STγ = γ γ  and cosSp S ST= γ γ , with Tp ST Sp= − . 
From these, it is found out that tan pST

pT
γ

γ = , which is the angle that when 
added to the longitude of the Sun, gives the geocentric longitude of the Comet 
(Figure 16). 

Besides, we have that 
sin

pT
ST
γ

γ =
γ

; and tan ccT
T
γ

γ =
γ

; will be the geocentric 

latitude of the Comet, and, finally, 
sin

c Tc
cT
γ

=
γ

 is the distance from the Comet 

to the Earth. 
 

 

Figure 14. Spherical triangle ☊cγ for the calculation of the heliocentric longitude of the 
Comet in the last observation. Adapted from Figure 4 (Euler, 1743). 

 

 

18These relations come from the application of Napier’s rules for this right spherical triangle. 
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Figure 15. Auxiliary figure provided by Euler to determine the geocentric latitude and 
longitude of the comet.19 Adapted from Figure 5 (Euler, 1743). 
 

 

Figure 16. Geocentric longitude of the comet. 
 

From these expressions, Euler calculates Sˆ 2 ,11 ,8', 21''ST γ =  , which when 
added to the longitude of the Sun = 7˚, 57', 30''  

( )S6 ,7 ,57',30'' 180 7 ,57',30'' mod360Sun λ = + = 


  
, gives 2S, 19˚, 5', 51'' for the 

geocentric longitude of the Comet. For the geocentric latitude of the Comet, Eu-
ler obtains 62˚, 6', 10''.  

In §. LI, Euler compares the observed geocentric longitude of the Comet of 2S, 
18˚, 52' with the calculated value of 2S, 19˚, 5', 51'', saying that they do not too 

 

 

19The ecliptical longitude λ (lambda) is the position along the ecliptic, relative to the vernal equinox 
(so relative to the stars). If you look at the Sun from the Earth, then you’re looking in exactly the 
opposite direction than if you look at the Earth from the Sun, so those directions are 180˚ apart. 
Hence, the ecliptic longitude of the Sun, as seen from the Earth, is equal to λSun = λEarth + 180˚. The 
value of λSun determines when the (astronomical) seasons begin: when λSun = 0, then spring begins in 
the northern hemisphere, and autumn in the southern hemisphere. Each next multiple of 90˚ brings 
the start of the next season. 
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much disagree, whereas the observed geocentric latitude of 63˚, 13' much disa-
grees with the calculated value of 62˚, 6', 10'', and concludes that this disagree-
ment can be attributed to error in the observation.  

4. Conclusion 

Euler’s calculations for investigating the parabolic orbit for the Comet of 1742 
were revisited. Besides the true anomaly, Euler succeeded in finding the classical 
orbital parameters from three observations of the Comet taken from the Earth: 
longitude of the ascending node, the inclination of the orbit, the argument of the 
perihelion, and the perihelion distance, which fully characterized the orbit of 
that Comet. By the end of the manuscript, Euler uses his method to compute the 
geocentric longitude and latitude of the Comet in the last observation, and 
compared them with the measurements. The geocentric longitude agreed quite 
well, however, the geocentric latitude showed some deviation, which Euler at-
tributed to an error in the observation. 
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