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Abstract 
The modern development in cloud technologies has turned the idea of cloud 
gaming into sensible behaviour. The cloud gaming provides an interactive 
gaming application, which remotely processed in a cloud system, and it 
streamed the scenes as video series to play through network. Therefore, cloud 
gaming is a capable approach, which quickly increases the cloud computing 
platform. Obtaining enhanced user experience in cloud gaming structure is 
not insignificant task because user anticipates less response delay and high 
quality videos. To achieve this, cloud providers need to be able to accurately 
predict irregular player workloads in order to schedule the necessary resources. 
In this paper, an effective technique, named as Fractional Rider Deep Long 
Short Term Memory (LSTM) network is developed for workload prediction in 
cloud gaming. The workload of each resource is computed based on developed 
Fractional Rider Deep LSTM network. Moreover, resource allocation is per-
formed by fractional Rider-based Harmony Search Algorithm (Rider-based 
HSA). This Fractional Rider-based HSA is developed by combining Fraction-
al calculus (FC), Rider optimization algorithm (ROA) and Harmony search 
algorithm (HSA). Moreover, the developed Fractional Rider Deep LSTM is 
developed by integrating FC and Rider Deep LSTM. In addition, the mul-
ti-objective parameters, namely gaming experience loss QE, Mean Opinion 
Score (MOS), Fairness, energy, network parameters, and predictive load are 
considered for efficient resource allocation and workload prediction. Addi-
tionally, the developed workload prediction model achieved better perfor-
mance using various parameters, like fairness, MOS, QE, energy and delay. 
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Hence, the developed Fractional Rider Deep LSTM model showed enhanced 
results with maximum fairness, MOS, QE of 0.999, 0.921, 0.999 and less 
energy and delay of 0.322 and 0.456. 
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1. Introduction 

Cloud computing is a developing computing architecture, and it provides vari-
ous computing resources as general utilities for end user through Internet. 
Cloud computing allows on-demand access to a shared set of resources, such as 
services, servers, storage space and networks [1]. However, today, cloud tech-
nology is expanding its services, called Everything-as-a-Service (XaaS). Cloud 
gaming enables a game content on non-specialized devices, like mobile phones, 
tablets, smart televisions and so on. The cloud gaming provides on-demand man-
ner interactive gaming application, which is remotely processed in cloud and pic-
tures are streamed as video series to play by Internet [2] [3]. The entire processing 
operations associated with game scene frames are performed on server Virtual 
Machines (VMs) in cloud gaming. 

Virtualisation is the main feature of cloud computing technology, allowing the 
physical data center to be distributed as dynamic virtual resources. The process 
of resource allocation is an important part of the cloud data center. This process 
can save energy consumption, reduce computing costs, and enhance resource 
utilization efficiency. In resource allocation, the game is performed at cloud 
server or client side based on the present resources in network and client. Be-
sides, the cloud computing system handles the games computational operation 
using cognitive capacities. The massive development of cloud computing is re-
source allocation, which reduces the operating price and improves the resource 
consumption. Generally, virtualization approach attains the flexibility, and it in-
cludes hardware virtualization, such as Central processing Unit (CPU), storage, 
network and memory [4] [5]. Normally, response delay includes playout delay, 
processing delay and network delay. Typically, playout delay is considered insig-
nificant, and it does not have an important factor in player’s game experience [6] 
[7]. A huge amount of games are delivered by service providers and simulated in 
numerous instances at various data-centers in cloud, and it is geographically 
distributed for reducing network delay. Likewise, processing delay relies on ac-
cessible processing power in cloud server. Processing power is identified by 
server resources, like CPU, Graphics processing Unit (GPU), storage and work-
load of game sessions, which run on cloud server. Meanwhile, virtualization sys-
tem is employed for decreasing cost of cloud service providers [8] [9]. 

Dynamic allocation of resources can be done in two ways, such as a reactive 
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approach and a proactive approach [10]. As part of a reactive approach, cloud 
users can set thresholds for resource underutilization and overuse. When the 
workload reaches the threshold value, the automatic resizing process takes the 
action based on the current state of resources, such as removing virtual ma-
chines from cloud services for an underutilized state or adding from virtual ma-
chines to cloud services for a state of overuse. The main disadvantage of this 
process is that the automatic resizing process has difficulty performing the re-
sizing operations in the event of sudden fluctuations in the workload. A proac-
tive approach allows resizing operations to be carried out in advance [11]. Cloud 
resource management forecasts the future workload of each cloud service and 
allocates the resources to their cloud services based on the expected value. 

Currently, there are many techniques and methods applied to the prediction 
of the workload of computer systems, such as the e-learning ensemble approach 
[12], ARIMAR (Auto Regressive and Moving Average) models [13], Recurrent 
Neural Networks (RNN) [14], Long and Short Memory Networks (LSTM) [15]. 
However, deciding on the exact amount of resources with proactive approaches 
during the execution time of cloud services is a difficult and not insignificant 
task. Due to irregular access, cloud services are subject to fluctuations in work-
load. This can lead to over- or under-utilization of resources. In a state of 
over-provisioning, more resources will be allocated to applications in the cloud 
than necessary. According to service level agreements (SLAs), this is a benefit for 
cloud users, but for providers, it is an unnecessary cost that results in high ener-
gy consumption. In the state of under-provisioning, fewer resources will be allo-
cated to cloud applications than are needed, leading to SLA violations, lower 
QoE, and ultimately loss of consumers and revenue. An effective and proactive 
approach must therefore accurately predict the future resources needed to 
achieve QoE. The most important measure of system workload prediction mod-
els is accuracy, which is measured by the difference between predicted and actual 
results [16]. In general, the closer the predicted value is to the actual value, the 
better the model. 

In recent days, Artificial Intelligence (AI) technologies are introduced for 
computing amount of resources consumed through clients. In addition, the 
techniques, termed as GAugur, which identifies whether a co-located game as-
sembles quality of service needs with pre-determined error rate [2]. Specially, 
Evolutionary computation (EC) approaches, such as Genetic Techniques (GA) is 
devised to enhance resource utilization and reduce energy consumption. The 
customized GA with fuzzy multi objective computation is developed for VM in 
[17]. Meta-heuristic-based approaches are also introduced by offering near 
optimal solution in sufficient period using particle Swarm Optimization (PSO), 
Ant Colony Optimization (ACO), GA etc. [18] [19]. Moreover, meta-heuristic 
method, termed Grey Wolf optimizer (GWO) is developed, which is inspired by 
grey wolves [20]. However, integration performance of cloud computing is mainly 
based on matching rank between system representation and meta-heuristic model 
[21].     
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In order to deal with the issues mentioned above, this paper proposes the de-
velopment of a new method for workload prediction method by developed 
algorithm using spark architecture in cloud gaming. 

Motivation 

The cloud gaming provides interactive gaming application, which is remotely 
processed in cloud and pictures are streamed as video series to play by internet. 
The main challenge is the interactive and real time behaviour of multiplayer 
cloud gaming produces a response delay in end user quality of experience [7] 
[22] [23]. The adaptive optimization system for cognitive resource allocation is 
challenging one, due to load of requested resources and real time service in 
gaming [7]. Also, the energy consumption is an important challenge in the cloud 
gaming. These challenges in the existing workload prediction and resource allo-
cation are considered as a motivation, a new method named Fractional Rid-
er-based HSA is developed in this work. In the proposed method, to solve these 
problems, the workload prediction and resource allocation are carried out using 
the developed Fractional Rider Deep LSTM. Also, the multi-objective parame-
ters, such as energy, gaming experience loss, fairness, MOS, network parameters, 
and predictive load are considered for computing the optimal solution in cloud 
gaming. 

The major purpose of this research is to developed a new method for work-
load prediction method by developed algorithm using spark architecture in 
cloud gaming. In this research, workload of each resource is computed by de-
veloped Fractional Rider Deep LSTM architecture. The developed Fractional 
Rider Deep LSTM system is the integration of FC [24] and Rider Deep LSTM 
[25]. Here, resource allocation process is performed based on Fractional Rid-
er-based HSA, which is the combination of HSA [26] and ROA [27] and frac-
tional calculus. Furthermore, fairness, MOS, network parameters, gaming expe-
rience loss, energy and predictive error is considered in multi-objective method 
for efficient resource allocation.    

The major contribution of this research is enlisted below: 
 Developed Fractional Rider Deep LSTM for effective workload prediction: 

An efficient technique is devised using Fractional Rider Deep LSTM for 
workload prediction in cloud gaming. The developed Fractional Rider Deep 
LSTM is the combination of FC and Deep Rider LSTM network. Moreover, 
multi-objective parameters, namely energy, gaming experience loss, fairness, 
MOS, network parameters, and predictive load are considered for computing 
the optimal solution in cloud gaming. 

The remaining parts of the paper are listed as follows: Section 2 illustrates the 
existing approaches of resource allocation and workload prediction in cloud 
gaming and Section 3 presents the system model of cloud computing system. 
Section 4 explains the developed Fractional Rider Deep LSTM for workload pre-
diction and resource allocation system. The results of developed Fractional Rider 
Deep LSTM are portrayed in Section 5 and Section 6 concludes the paper.  
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2. Literature Survey 

In this section, existing workload prediction and resource allocation are ex-
plained with their disadvantages. Yiwen Han et al. [9] developed a distributed 
technique for optimizing VM position in mobile cloud gaming. Here, mobile 
cloud gaming system was employed with resource optimization, and NP-hard is 
used for identifying optimal solutions to overcome this optimization problem. 
Moreover, potential game theory was introduced for determining the Nash 
Equilibrium in multi-player competition game. This technique obtained en-
hanced performance than other scales and policies with increasing number of 
players. However, this approach did not consider the multidimensional parame-
ters in cloud gaming for better optimization. To overcome this problem, the 
multi-objective method is estimated to find optimal solution in the proposed 
method. Hossein Ebrahimi Dinaki et al. [7] introduced two effective techniques 
for graphics processing unit-based server selection in cloud gaming. This ap-
proach is a developed version of PSO and GA, named boosted PSO and boosted 
GA. Additionally, service providers and players experience profits were consi-
dered for enhancing the quality of experience. This approach obtained better ef-
fectiveness in terms of player’s quality of energy, and capacity wastage. Even 
though, this model not considered extra network parameters, and quality me-
trics for obtaining better inclusive solution. This problem is overcome by using 
several parameters, such as network definition factor, energy, gaming experience 
loss, fairness, predictive load, load and MOS in the proposed method. Damian 
Fernández-Cerero et al. [28] devised a GAME-SCORE simulation model in 
cloud gaming platform. This developed model performed various scheduling 
method based on Stackelberg game. In this system, two major players, named as 
energy efficient agent and scheduler were included to analyse the effectiveness. 
This model achieved light balance among make span and less energy consump-
tion, but this method not explored extra sophisticated energy rules for better 
performance. In the proposed method, the total energy relating to the execution 
of application includes energy dissipation on both mobile server and device. 
Seyed Javad Seyed Aboutorabi and Mohammad Hossein Rezvani [2] modelled 
Bees technique to tackle players frame rate allocation problem in cloud gaming. 
This approach effectively enhanced cloud providers and reduced server side ex-
penditure. Moreover, this technique is robustness in terms of frame quality, run 
time, bandwidth loss, and acceptance ratio, although processing power of this 
method was the main challenge. In the proposed method, the processing power 
is identified by server resources, like CPU, GPU and RAM.  

Mohammad Sadegh Aslanpour et al. [29] presented learning automata-based 
resource provisioning technique for extremely multiplayer online games in 
cloud system. Here, an autonomic system was introduced for dynamic prerequi-
site of VM in cloud-based gaming system. Moreover, Auto Regressive Integrated 
Moving Average (ARIMA) prediction technique was employed with workload 
fluctuations for obtaining enhanced prediction accuracy. Furthermore, learning 
automata-based technique was employed as decision maker for identifying the 
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suitable auto-scaling decision in planning stage. This system easily reduces the 
response time and cost, even though this method failed to examine the effect of 
resource auto-scaling and optimization. To overcome this problem, the devel-
oped Fractional Rider Deep LSTM predicts the load based on distributed re-
source allocation in cloud gaming by spark architecture. Yusen Li et al. [30] de-
veloped machine learning-based performance technique for resource allocation 
in cloud gaming. In this method machine learning approach was devised for 
capturing difficult relationship between performance interference. In addition, 
efficient techniques were devised for resource allocation circumstances in cloud 
gaming. This approach enhanced the resource utilization, even though the per-
formance of this algorithm is not analysed through more server for better per-
formance. In the proposed method, the total energy relating to the execution of 
application includes energy dissipation on both mobile server and device. Mos-
tafa Ghobaei-Arani et al. [31] introduced autonomous resource provisioning 
approach for multiplayer online games in cloud structure. At first, load predic-
tion service predicts game entity distribution based on Adaptive Neuro Fuzzy 
Interference System (ANFIS) from historical trace data. Moreover, fuzzy deci-
sion tree technique was employed for estimating appropriate amount of re-
sources based on predicted workload and user Service Level Agreements (SLA). 
Anyhow, this technique extremely increases the delay. In the proposed method, 
delay is one of the parameters used for the fitness calculation for optimal solu-
tion. Anand Bhojan et al. [32] devised new software architecture, termed Clou-
dyGame in cloud game system. Besides, accepted game engine was considered 
on resource usage in game cloud. After that, synergy and dynamic asset stream-
ing among shared game instance and asset streaming were combined for high 
resolution. This model achieved high resolution and minimum content set, but 
this method failed to reduce the computational complexity. In the proposed 
method, the FC is used to reduce the overall computational time. 

3. System Model 

Cloud gaming allows the user with short processing capacity to play qualitative 
games using high quality link connection. The games can be played without in-
stalling or downloading other game software’s. Moreover, the game service pro-
vider utilized a distributed data center for presenting their services to users. The 
user request is transmitted to particular storage space and VM is allocated to ex-
ecute every user requests after receiving a request by cloud gaming architecture. 
Thus, VM utilizes a streaming encoded game to a user. In addition, a cloud 
model allocated the resources to user task for specific period such that the tasks 
get finished before the deadline. The resource allocator provides synchronization 
between cloud service provider and user. Furthermore, VM resource utilizes vari-
ous configurations with storage, memory and power. The minute degradation 
creates the cloud infrastructure ineffective, because of resource allocation ele-
ment poses a total control of cloud functions. Thus, resource allocation repre-
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sentation is more important for cloud gaming infrastructure. The tasks are 
processed manually and the system senses an overloaded condition, while VM 
load position is in common circumstances. Additionally, the resource allocation 
is developed for allocating tasks from overloaded VMs to under-loaded VMs. 
The network demonstration for allocating a resource in cloud is displayed in 
Figure 1.     

4. Proposed Method for Workload Prediction  

This section presents the developed Fractional Rider Deep LSTM for workload 
prediction in cloud gaming. Here, the developed Fractional Rider Deep LSTM is 
developed for work load prediction based distributed resource allocation in 
cloud gaming based on spark architecture. In this method, the resource alloca-
tion is performed using Fractional Rider HSA model. Moreover, the work load 
of each resource allocation is predicted by developed Fractional Rider Deep 
LSTM. The developed Fractional Rider Deep LSTM is developed by combining 
FC model and Rider Deep LSTM network. Moreover, gaming experience loss, 
MOS, fairness, energy and network parameters, predictive load is included into 
multi-objective model for effective resource allocation. The schematic diagram 
of developed Fractional Rider Deep LSTM for workload prediction is portrayed 
in Figure 2.    

The major intention of the developed approach is to find the optimal re-
sources in workload prediction and resource allocation to all games demanded 
by user. Let us assume a cloud structure with gth PMs, and it is expressed as 

{ }1 2, , , , , ;1r gF F F F F r g= ≤ ≤  , and all PM includes dissimilar VMs. Let us 
consider VMs available in rth PM, which is represented by,  
 

 
Figure 1. Network model of cloud computing.     
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Figure 2. Block diagram of proposed Fractional Rider deep LSTM for workload predic-
tion.  
 

{ }1 2, , , , , ;1i jP P P P P i j= ≤ ≤  , in which j denotes the total VMs in rth PM. 
The requested game by each user is allocated to VM in round robin fashion, 
which is specified as, { }1 2, , , , ,e fR R R R R=   . Here, f signified the distributed 
total games to VM. The user has capability to play games, and it is represented as, 

{ }1 2, , , , ,e fD D D D D=   . The video resolution is essential measure, when 
moderating cloud gaming quality. Moreover, the bit rate of each frame is indi-
cated as, in cloud gaming, 3-dimensional video game is provided in distant data 
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centers, and game screen depicted to users in real time by internet connectivity. 
{ }1 2, , , , ,e fE E E E E=   . The video frame rate for each game is depicted as
{ }1 2, , , , ,e fK K K K K=   . The QoE of played game through uses history are 

illustrated as { }1 2, , , , ,h h h h h
w xY Y Y Y Y=   .    

Every selected VM to distribute the resource is configured by various parame-
ters, such as memory, bandwidth, Million Instructions Per Second (MIPS) and 
processors, and it is formulated by, 

{ }, , , , , ,, , , ,r i r i r i r i r i r iP B Y Z H T=                       (1) 

where, ,r iB  represent the processors of ith VM in rth PM, ,r iH  denotes band-
width in ith VM in rth PM, ,r iY  is memory of ith VM in rth PM, ,r iZ  signifies the 
MIPS of ith VM in rth PM and ,r iK  is frequency scaling of ith VM in rth PM. In 
addition, the parameters, like , , , , ,, , , ,r i r i r i r i r iB Y Z H T  has the value ranging from 
1 to constant value o. 

Furthermore, resource units of each game are illustrated as, 

{ }1 2, , , , ,e fT T T T T=                           (2) 

where, user preference level lies among 0 and 1, where 1 indicates more prefe-
rence and 0 denotes not preference.   

4.1. Multi Objective Model 

The multi-objective method is estimated to find optimal solution using solution 
set. The multi objective function produced for developed Fractional Rider Deep 
LSTM is using several parameters, like network definition factor, energy, gaming 
experience loss, fairness, predictive load, load and MOS, and it is formulated as, 

( )1p m f yG L L L MOS E N E= + + + + + + −                (3) 

where, Ey denotes energy, N is the network definition factor, MOS indicates 
mean opinion score, Lm specifies gaming experience loss, Ef refers fairness, L 
signifies load and Lp is a predictive load. The load of VM equation is represented 
as, 

( )
( ),

1

1
max

n p x a g f
r i

e p x a g f

V V V V V A
L

NV V V V V n=

+ + + + ∗
= ∗

+ + + + ∗
∑              (4) 

where, n specified the number of games, N is normalizing factor, Vp denotes 
number of processing elements in ith VM, Vx indicates the memory units in ith 
VM, Va is a bandwidth component in ith VM, Vg represents the MIPS element in 
ith VM and Vf specifies the frequency component in ith VM.  

1; if game is run by VM
0; otherwise

th the iA


= 


                 (5) 

The load of PM equation is formulated by, 

,
1

f

r r i
i

L L
=

= ∑                              (6) 
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The MOS equation [33] equation is expressed as, 

( )
1

1 j

i i i i
i

MOS E B K B
j =

= ∗ + ∗∑                       (7) 

where, Ei denotes the game bit rate run in ith VM, Ki indicates video frame rate of 
game running in ith VM and Bi is a resource parameters. Here, the resource pa-
rameter is because of QoS is formulated by, 

( )
1
5 max , , , ,

p x a g f
i

p x a g f

V V V V V
B

V V V V V

 + + + +
 =
 
 

                    (8) 

By integrating Frame Per Second and resolution, experience of gaming E [34] 
of the player is formulated, and it is the target of each player, which is expressed 
as,  

1 2 3E D Q Pα α α= − −                         (9) 

where, D denotes delay, Q signifies experienced Frames Per Second (FPS), P in-
dicates gaming video quality and 1 2 3, ,α α α  represents constant parameters.  

Clone delay between user e may present, because VM with games is created 
and ruined dynamically, which indicates that the delay in initializing service. 
The writing speed in hard disk is represented as Kw through storing games in 
repository. If a player selects a game using file size ti, then the delay [34] is for-
mulated using initialization period of Hth VM, 

1
j i

ii
w

t
D H

K=
= +∑                          (10) 

where, ti indicates file size of game in ith VM and Hi is an initialization period of 
VM.  

Moreover, Frame Per Seconde (FPS) practiced by gaming users is a key expe-
rience measure. The users follow a gaming with key experience metric, like FPS 
for dealing with cloud environment. FPS is exposed with Random Access Mem-
ory (RAM) GPU and CPU considers the physical server. In cloud gaming, FPS 
[34] is formulated by, 

2

1

1
3

1

11
5

j

j
i

i i i
i

Q
e B Bσ

σ

β σ=

=

=
 

+ + + 
 

∑
∑

                  (11) 

where, 1σ , 2σ  and 3σ  is a approximation parameter. Additionally, game video 
quality [34] is expressed as, 

2
1

0
1

log 1
j

i
j

i
i

i

cP
p

d cP

σ

σ=

=

  
  
  = +
  +    

∑
∑

                   (12) 

where, , ,d cσ  and 0σ  is constant value and iP  represents the video resolu-
tion of game in ith VM.  

The fairness is formulated as, 
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( )1 1

1 k l h
f i jE Y Z

k l = =
= ∗

× ∑ ∑                     (13) 

where, Z is a user preference level. The network definition factor is expressed as, 

( )1 1
2

N L O= + −                          (14) 

where, L is a bandwidth and O indicates delay. The bandwidth is estimated by, 

1 1

1 g j

ri
r i

L y
a b = =

=
× ∑∑                         (15) 

The delay parameter is calculated by, 

1O Dα= ∗                             (16) 

where, 1α  defines the constant parameter.  
The total energy [35] is expressed as, 

( ) ( )
1 1

f f

tot static
y z

W W y W z
= =

= +∑ ∑                    (17) 

The total energy relating to execution of Iy application includes energy dissi-
pation on both mobile server and device, which is illustrated as, 

( ) , ,
y

tot loc y server zW y W W= +                      (18) 

where, z  indicates to server index in which application is mapped. Let us as-
sume the server follows a time out management of power policies such that, low 
power mode is maintained after the particular time of idle. The static energy 
consumption of yth server, while it is idle formulated as, 

( ) .ststic ststic zW z X X= ∗                       (19) 

where, X be the time out threshold and ,ststic zX  indicates static power server z 
in idle time.   

4.2. Proposed Fractional Rider Deep LSTM for Workload  
Prediction  

This section explains about the proposed Fractional Rider Deep LSTM model for 
workload prediction. The FC [24] is utilized for solving integral equation and de-
rivative equation issues. The differential equations and fractional order integral are 
resolved through Laplace transforms. The fractional calculus procedure is ex-
plained as follows: initial step identifies Laplace transform of equation. The 
second stage is utilized to solve transform of undefined function, and the last 
step uses inverse Laplace transform to identify the best solution. Here, fractional 
calculus is used to accelerate computational performance of developed model. 
This approach needs minimum amount of period to process, thus computational 
period is reduced. On the other hand, Rider Deep LSTM [25] has four layers, 
namely input layer, one LSTM layer, fully connected layer and regression output 
layer. In LSTM, each neuron of hidden layer is, termed as memory cell, which 
involves self connected recurrent edge. The Rider Deep LSTM enhances the real 
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time fault prediction. Therefore, FC and Rider Deep LSTM are integrated for 
better performance.    

Based on Rider Deep LSTM, the update rule of overtaker is expressed as, 

1 1
rider G V
d d dSφ φ φ− − = + ∗                       (20) 

1 1
rider G V
d d dSφ φ φ− −− = ∗                       (21) 

From FC, 

1
rider G V
d dS Sλ φ φ−  = ∗                        (22) 

Here, 1d d+ = , 

( ) ( )( )1 2 3 4 1
1 1 11 1 2
2 6 24

rider rider rider rider rider G V
d d d d t dSφ λφ λφ λ φ λ λ φ φ− − − − −− − − − − − − = ∗  (23) 

( ) ( )( ) ( )1 2 3 4 1
1 1 11 1 2
2 6 24

rider rider rider rider rider G V
d d d d d dSφ λφ λφ λ φ λ λ λ φ φ− − − − −= + + − + − − + ∗ (24) 

where, λ  random number, which ranges from [ ]0,1 , 1
G
dS −  is a directional 

indicator of 1dφ −  and Vφ  indicates the leading rider.  

4.3. Spark-Based Work Load Prediction and Resource Allocation  
Using Fractional Rider-Harmony Search Algorithm  

This section presents the Fractional Rider-HSA for allocating the resources. The 
Fractional Rider-HSA is the combination of ROA [27], FC [24], and HSA [26]. 
The combination of, ROA, FC and HSA adjust the correlated parameters for ob-
taining global optimal solution. 

Solution Encoding 
Solution encoding is an expression of solutions to identify optimal solution and 
control the optimization problems. This solution encoding is portrayed in Fig-
ure 3.  

The steps of Fractional Rider-HSA are explained below: 
Step-1: Initialization: The initialization of Fractional Rider HSA technique is 

given below, 

( ){ }, ; 1 , 1p pC C u v u I v J= ≤ ≤ ≤ ≤                 (25) 

where, I indicates total riders, ( ),pC u v  denotes the position of uth rider in vth 
dimension and J is a total dimension.  

Step-2: Fitness function identification: The fitness function estimation is very 
essential for obtaining the best solution. Therefore, fitness function for every solu-
tion is described in multi-objective model. The optimal solution is determined at 
final iteration as each solution for obtaining best solution. Moreover,  
 

 
Figure 3. Solution encoding. 
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the fitness function is computed based on Equation (3) in multi-objective model 
section.    

Step-3: Determine the updated Location: The optimal solutions are identi-
fied using the Fraction Rider HSA, and the updated equation is illustrated as, 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )

( ) ( )( ) ( ) ( )
( )

1 1 2

3

1 1, 1 , , 1 ,
2 6

1 1 2 ,
24

, 1 0,1

1

p p p p

p

p

C u v C u v C u v C u v

C u v

C v v rand S v

v

λ λ λ

λ λ λ

α γ φ φ

αφ

+ − −

−

= − + + −

+ − −

 ∗ − ± ⋅ ∗ +
−

    (26) 

where, S specifies arbitrary distance bandwidth and ( )0,1rand  is a random 
number and it lies from [0, 1].  

Step-4: Evaluating feasibility: The feasibility is estimated using the fitness 
value, if a new value is better than previous one, then update the previous solu-
tion with new solution. 

Step-5: Termination: The above processes are continual until the best solu-
tion is achieved for resource allocation process. 

5. Results and Discussion 

The result of proposed Fractional Rider Deep LSTM approach is illustrated in 
this section. The performance of developed technique is evaluated by various 
parameters, namely energy, MOS, delay, fairness, QE and error.  

5.1. Experimental Setup 

The developed Fractional Rider LSTM technique is executed in PYTHON with 
PC contains Windows 10 OS, 4GB RAM, and Intel i3 core processor. 

5.2. Performance Metrics 

The performance metrics considered for analysis of existing cloud gaming tech-
niques are fairness, MOS, QE, energy and delay. The detailed explanation of 
these metrics is illustrated in Section 5. 

5.3. Performance Analysis 

This section illustrates about the performance analysis of developed Fractional 
Rider Deep LSTM technique based on predictive error with different hidden 
layer. The performance analysis of developed Fractional Rider Deep LSTM with 
predictive error is depicted in Figure 4. Figure 4(a) portrays the performance 
analysis of developed Fractional Rider Deep LSTM using predictive error with 
different hidden layer for 200 game size. The developed Fractional Rider Deep 
LSTM based on predictive error with hidden layer 5 is 0.167, 10 is 0.136, 15 is 
0.133 and 20 is 0.075 for 50th iteration. Similarly, the performance analysis of 
developed Fractional Rider Deep LSTM based on predictive error with various 
hidden layers for game size 300 is showed in Figure 4(b). In 50th iteration, the  
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(a) 

 
(b) 

Figure 4. Performance analysis of developed Fractional Rider LSTM based on predictive 
error with different hidden layer. 
 
developed Fractional Rider Deep LSTM using predictive error with hidden layer 
5, 10, 15, 20 is 0.213, 0.203, 0.164 and 0.148.   

5.4. Comparative Methods 

The developed Fractional Rider Deep LSTM technique is analyzed with compar-
ative approaches, like Potential game based optimization algorithm, Proactive 
resource allocation algorithm [36], QoE-aware resource allocation algorithm 
[33], Rider-HSA method [34] and Fractional Rider-HSA technique for compu-
ting the performance.  

5.5. Comparative Analysis 

The comparative analysis of developed Fractional Rider Deep LSTM technique 
with existing systems are performed based on several parameters, like fairness, 
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MOS, QE, energy and delay by varying amount of iterations.  
1) Analysis with game size 200 
The comparative analysis of developed Fractional Rider Deep LSTM using 

fairness, MOS, QE, energy and delay with game size 200 is illustrated in Figure 
5. Figure 5(a) shows the analysis of developed Fractional rider Deep LSTM 
model based on fairness by varying the number of iteration. The fairness value of 
existing workload prediction techniques, such as Potential game-based optimi-
zation algorithm is 0.300, Proactive resource allocation is 0.522, QoE-aware re-
source allocation technique is 0.532, Rider-HSA is 0.535, Fractional Rider-HSA 
is 0.792, whereas developed Fractional Rider Deep LSTM is 0.816 for 40th num-
ber of iterations. The comparative analysis of developed Fractional Rider Deep 
LSTM based on MOS by changing the number of iteration is displayed in Figure 
5(b). When the number of iterations is 40, MOS value attained by Potential 
game-based optimization approach is 0.807, Proactive resource allocation model 
is 0.814, QoE-aware resource allocation algorithm is 0.828, Rider-HSA is 0.839,  
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 5. Analysis of developed Fractional Deep LSTM for game size 200 based on (a) 
fairness, (b) MOS, (c) QE, (d) Energy, (e) Delay. 
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Fractional Rider-HSA is 0.885 and developed Fractional Rider Deep LSTM tech-
nique is 0.907.  

Figure 5(c) portrays the analysis of developed Fractional rider Deep LSTM 
technique using QE by varying iteration. For 40th iteration, QE value obtained by 
developed model is 0.997, while the existing techniques, such as Potential game 
based optimization technique, Proactive resource allocation, QoE-aware resource 
allocation scheme, Rider-HSA and Fractional Rider-HSA has 0.950, 0.978, 0.980, 
0.990 and 0.995. The analysis of developed Fractional Rider Deep LSTM using 
energy by varying the iteration is indicated in Figure 5(d). When, number of 
iteration is 40, energy obtained by Potential game-based optimization approach 
is 0.367, Proactive resource allocation model is 0.363, QoE-aware resource allo-
cation algorithm is 0.302, Rider-HSA is 0.301, Fractional Rider-HSA is 0.296 and 
developed Fractional Rider Deep LSTM approach is 0.241. Likewise, Figure 5(e) 
shows the comparative analysis of developed Fractional rider Deep LSTM based 
on delay parameter by varying the iteration number. The delay obtained by ex-
isting techniques, such as Potential game-based optimization algorithm is 0.292, 
Proactive resource allocation is 0.236, QoE-aware resource allocation technique 
is 0.233, Rider-HSA is 0.233, Fractional Rider-HSA is 0.232 and developed Frac-
tional Rider Deep LSTM is 0.209 for 40th number of iteration.  

2) Analysis with game size 300 
The comparative analysis of developed Fractional Rider Deep LSTM using 

fairness, MOS, QE, energy and delay with game size 300 is represented in Figure 
6. Figure 6(a) displays the analysis of developed work prediction technique 
based on fairness by changing the number of iteration. For 40th iteration, the 
fairness obtained by developed model is 0.997, while the existing techniques, 
such as Potential game-based optimization technique, Proactive resource alloca-
tion, QoE-aware resource allocation scheme, Rider-HSA and Fractional Rid-
er-HSA has 0.506, 0.964, 0.976, 0.987 and 0.988. The comparative analysis of de-
veloped Fractional Rider Deep LSTM using MOS by varying the number of ite-
ration is presented in Figure 6(b). The MOS value of existing techniques, like 
Potential game-based optimization algorithm is 0.773, Proactive resource alloca-
tion is 0.798, QoE-aware resource allocation technique is 0.822, Rider-HSA is 
0.852, Fractional Rider-HSA is 0.893, whereas developed Fractional Rider Deep 
LSTM method is 0.915 for 40th number of iteration.  

Figure 6(c) shows the comparative analysis of developed Fractional rider 
Deep LSTM based on QE parameter by chancing the iteration number. When, 
number of iteration is 40, the QE value obtained by Potential game-based opti-
mization approach is 0.937, Proactive resource allocation model is 0.935, 
QoE-aware resource allocation algorithm is 0.975, Rider-HSA is 0.986, Fraction-
al Rider-HSA is 0.988 and developed Fractional Rider Deep LSTM technique is 
0.998. Similarly, the analysis of developed Fractional rider Deep LSTM using 
energy by varying the iteration number is indicated in Figure 6(d). The energy 
of existing techniques, such as Potential game-based optimization algorithm is 
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0.396, Proactive resource allocation is 0.336, QoE-aware resource allocation 
technique is 0.329, Rider-HSA is 0.295, Fractional Rider-HSA is 0.268, when de-
veloped Fractional rider Deep LSTM is 0.202 for 40th number of iterations. In 
addition, Figure 6(e) portrays the analysis of developed Fractional rider Deep 
LSTM technique using delay by varying iteration number. When number of ite-
ration is 40, the delay obtained by Potential game-based optimization approach 
is 0.630, Proactive resource allocation model is 0.463, QoE-aware resource allo-
cation algorithm is 0.461, Rider-HSA is 0.459, Fractional Rider-HSA is 0.459 and 
developed Fractional Rider Deep LSTM method is 0.457.      

5.6. Comparative Discussion 

Table 1 represents the analysis of work load prediction approaches using fair-
ness, MOS, QE, energy and delay parameters with game size 200 and 300. Here, 
the maximum fairness, MOS, QE and minimum energy and delay are considered 
as the best performance. From the table, the maximum fairness, MOS and QE is  
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 6. Analysis of developed Fractional Deep LSTM for game size 300 based on (a) 
fairness, (b) MOS, (c) QE, (d) Energy, (e) Delay. 
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Table 1. Comparative discussion. 

Game 
size 

Metrics 

Potential 
game-based 
optimization 

algorithm 

Proactive 
resource 

allocation 
algorithm 

QoE-aware 
resource 

allocation 
algorithm 

Rider-HSA 
Fractional 
Rider-HSA 

Proposed 
Fractional 
Rider Deep 

LSTM 

200 

Fairness 0.400 0.537 0.545 0.547 0.820 0.834 

MOS 0.799 0.824 0.837 0.848 0.896 0.918 

QE 0.951 0.987 0.985 0.995 0.997 0.999 

Energy 0.474 0.394 0.385 0.343 0.310 0.270 

Delay 0.288 0.229 0.228 0.227 0.226 0.193 

300 

Fairness 0.538 0.977 0.989 0.994 0.997 0.999 

MOS 0.787 0.799 0.830 0.873 0.883 0.921 

QE 0.952 0.965 0.987 0.996 0.998 0.999 

Energy 0.465 0.371 0.363 0.357 0.354 0.322 

Delay 0.556 0.486 0.461 0.461 0.460 0.456 

 
obtained when the game size is 300 and minimum energy and delay are occurred 
when the game size is 200. In the proposed method, the multi objective function 
produced using several parameters, such as network definition factor, energy, 
gaming experience loss, fairness, predictive load, load and MOS. Also, the Rider 
Deep LSTM enhances the real time fault prediction. Moreover, workload of 
every resource is estimated and the workload is predicted using the developed 
Fractional Rider Deep LSTM network. Thus, from the below comparative dis-
cussion table it is well known, that the developed Fractional Rider Deep LSTM 
approach achieved maximum fairness, MOS, QE and less delay and energy.   

6. Conclusion 

This paper presents an effective workload prediction method based on developed 
Fractional Rider Deep LSTM network. Here, workload prediction-based distri-
buted resource allocation system is developed in cloud gaming. Initially, workload 
of every resource is estimated using developed Fractional Rider Deep LSTM 
network. After that, resource allocation is performed based on fractional Rid-
er-based HSA. Here, the Fractional Rider-based HSA is the combination of HSA, 
ROA and FC model. Once resource allocation is completed, workload is pre-
dicted using the developed Fractional Rider Deep LSTM network. The developed 
Fractional Rider Deep LSTM network is developed by integrating FC scheme 
and Rider Deep LSTM network method. Meanwhile, multi-objective parameters, 
such as MOS, fairness, predictive load, gaming experience loss, network para-
meter and energy are considered for efficient workload prediction. Along with 
this, the metrics, such as fairness, MOS, QE, energy and delay are considered for 
evaluating the performance of the developed method. Moreover, the developed 
workload prediction technique obtained maximum fairness of 0.999, MOS of 
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0.921, QE of 0.999 and minimal energy of 0.322 and delay of 0.456 for game size 
300.   

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Vafamehr, A. and Khodayar, M.E. (2018) Energy Aware Cloud Computing. The 

Electricity Journal, 31, 40-49. https://doi.org/10.1016/j.tej.2018.01.009 

[2] Aboutorabi, S. and Rezvani, M.H. (2020) An Optimized Meta-Heuristic Bees Algo-
rithm for Players’ Frame Rate Allocation Problem in Cloud Gaming Environments. 
The Computer Games Journal, 9, 281-304.  
https://doi.org/10.1007/s40869-020-00106-4 

[3] Gopal, D.G. and Kaushik, S. (2017) Emerging Technologies and Applications for 
Cloud-Based Gaming: Review on Cloud Gaming Architectures. In: Emerging 
Technologies and Applications for Cloud-Based Gaming, IGI Global, Hershey, 
67-87. https://doi.org/10.4018/978-1-5225-0546-4.ch003 

[4] Mishra, M., Das, A., Kulkarni, P. and Sahoo, A. (2012) Dynamic Resource Man-
agement Using Virtual Machine Migrations. IEEE Communications Magazine, 50, 
34-40. https://doi.org/10.1109/MCOM.2012.6295709 

[5] Wei, W., Fan, X.L., Song, H.B., Fan, X.M. and Yang, J.C. (2018) Imperfect Informa-
tion Dynamic Stackelberg Game Based Resource Allocation Using Hidden Markov 
for Cloud Computing. IEEE Transactions on Services Computing, 11, 78-89.  
https://doi.org/10.1109/TSC.2016.2528246 

[6] Chen, K.T., Chang, Y.C., Tseng, P.H., Huang, C.Y. and Lei, C.L. (2011) Measuring 
the Latency of Cloud Gaming Systems. Proceedings of the 19th ACM International 
Conference on Multimedia, Scottsdale, 28 November-1 December 2011, 1269-1272.  
https://doi.org/10.1145/2072298.2071991 

[7] Dinaki, H.E., Shirmohammadi, S. and Hashemi, M.R. (2020) Boosted Metaheuristic 
Algorithms for QoE-Aware Server Selection in Multiplayer Cloud Gaming. IEEE 
Access, 8, 60468-60483. https://doi.org/10.1109/ACCESS.2020.2983080 

[8] Mastelic, T., Oleksiak, A., Claussen, H., Brandic, I., Pierson, J.M. and Vasilakos, A.V. 
(2014) Cloud Computing: Survey on Energy Efficiency. ACM Computing Surveys, 47, 
1-36. https://doi.org/10.1145/2656204 

[9] Han, Y.W., Guo, D.Y., Cai, W., Wang, X.F. and Leung, C.M. (2020) Virtual Ma-
chine Placement Optimization in Mobile Cloud Gaming through QoE-Oriented 
Resource Competition. IEEE Transactions on Cloud Computing.  
https://doi.org/10.1109/TCC.2020.3002023 

[10] Amiri, M. and Mohammad-Khanli, L. (2017) Survey on Prediction Models of Ap-
plications for Resources Provisioning in Cloud. Journal of Network and Computer 
Applications, 82, 93-113. https://doi.org/10.1016/j.jnca.2017.01.016 

[11] Kumar, K.D. and Umamaheswari, E. (2018) Prediction Methods for Effective Re-
source Provisioning in Cloud Computing: A Survey. Multiagent and Grid Systems, 
14, 283-305. https://doi.org/10.3233/MGS-180292 

[12] Singh, N. and Rao, S. (2012) Online Ensemble Learning Approach for Server 
Workload Prediction in Large Datacenters. The Eleventh International Conference 

https://doi.org/10.4236/eng.2021.133011
https://doi.org/10.1016/j.tej.2018.01.009
https://doi.org/10.1007/s40869-020-00106-4
https://doi.org/10.4018/978-1-5225-0546-4.ch003
https://doi.org/10.1109/MCOM.2012.6295709
https://doi.org/10.1109/TSC.2016.2528246
https://doi.org/10.1145/2072298.2071991
https://doi.org/10.1109/ACCESS.2020.2983080
https://doi.org/10.1145/2656204
https://doi.org/10.1109/TCC.2020.3002023
https://doi.org/10.1016/j.jnca.2017.01.016
https://doi.org/10.3233/MGS-180292


K. K. Désiré et al. 
 

 

DOI: 10.4236/eng.2021.133011 156 Engineering 
 

on Machine Learning and Applications (ICMLA 2012), Boca Raton, 12-15 Decem-
ber 2012, 68-71. https://doi.org/10.1109/ICMLA.2012.213 

[13] Van Der Voort, M., Dougherty, M. and Watson, S. (1996) Combining Kohonen 
Maps with ARIMA Time Series Models to Forecast Traffic Flow. Transportation 
Research Part C: Emerging Technologies, 4, 307-318.  
https://doi.org/10.1016/S0968-090X(97)82903-8 

[14] Zhang, W., Li, B., Zhao, D., Gong, F. and Lu, Q. (2016) Workload Prediction for 
Cloud Cluster Using a Recurrent Neural Network. International Conference on 
Identification, Information and Knowledge in the Internet of Things (IIKI), Beijing, 
20-21 October 2016, 104-109. https://doi.org/10.1109/IIKI.2016.39 

[15] Gupta, S. and Dinesh, D.A. (2017) Resource Usage Prediction of Cloud Workloads 
Using Deep Bidirectional Long Short Term Memory Networks. 2017 IEEE Interna-
tional Conference on Advanced Networks and Telecommunications Systems (ANTS), 
Bhubaneswar, 17-20 December 2017, 1-6.  
https://doi.org/10.1109/ANTS.2017.8384098 

[16] Amiri, M., Mohammad-Khanli, L. and Mirandola, R. (2018) An Online Learning 
Model Based on Episode Mining for Workload Prediction in Cloud. Future Genera-
tion Computer Systems, 87, 83-101. https://doi.org/10.1016/j.future.2018.04.044 

[17] Liu, X.-F., Zhan, Z.-H., Deng, J.D., Li, Y., Gu, T.L. and Zhang, J. (2018) An Energy 
Efficient Ant Colony System for Virtual Machine Placement in Cloud Computing. 
IEEE Transactions on Evolutionary Computation, 22, 113-128.  
https://doi.org/10.1109/TEVC.2016.2623803 

[18] Devagnanam, J. and Elango, N.M. (2020) Optimal Resource Allocation of Cluster 
using Hybrid Grey Wolf and Cuckoo Search Algorithm in Cloud Computing. Jour-
nal of Networking and Communication Systems, 3, 31-40.  
https://doi.org/10.46253/jnacs.v3i1.a4 

[19] Netaji, V.K. and Bhole, G.P. (2020) Optimal Container Resource Allocation Using 
Hybrid SA-MFO Algorithm in Cloud Architecture. Multimedia Research, 3, 11-20.  
https://doi.org/10.46253/j.mr.v3i1.a2 

[20] Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in 
Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 

[21] Wang, G., Deb, S. and Coelho, L.S. (2015) Elephant Herding Optimization. Pro-
ceedings of 3rd International Symposium on Computational and Business Intelli-
gence (ISCBI), Bali, 7-9 December 2015, 1-5. https://doi.org/10.1109/ISCBI.2015.8 

[22] Amiri, M., Osman, H.A., Shirmohammadi, S. and Abdallah, M. (2016) Toward De-
lay-Efficient Game-Aware Data Centers for Cloud Gaming. ACM Transactions on 
Multimedia Computing, Communications, and Applications (TOMM), 12, 1-9.  
https://doi.org/10.1145/2983639 

[23] Amiri, M., Sobhani, A., Al Osman, H. and Shirmohammadi, S. (2017) SDN-Enabled 
Game-Aware Routing for Cloud Gaming Datacenter Network. IEEE Access, 5, 
18633-18645. https://doi.org/10.1109/ACCESS.2017.2752643 

[24] Bhaladhare, P.R. and Jinwala, D.C. (2014) A Clustering Approach for the l-Diversity 
Model in Privacy Preserving Data Mining Using Fractional Calculus-Bacterial Fo-
raging Optimization Algorithm. Advances in Computer Engineering, 2014, Article 
ID: 396529. https://doi.org/10.1155/2014/396529 

[25] Binu, D. and Kariyappa, B.S. (2020) Rider Deep LSTM Network for Hybrid Dis-
tance Score-Based Fault Prediction in Analog Circuits. IEEE Transactions on In-
dustrial Electronics. 

[26] Chakraborty, P., Roy, G.G., Das, S., Jain, D. and Abraham, A. (2009) An Improved 

https://doi.org/10.4236/eng.2021.133011
https://doi.org/10.1109/ICMLA.2012.213
https://doi.org/10.1016/S0968-090X(97)82903-8
https://doi.org/10.1109/IIKI.2016.39
https://doi.org/10.1109/ANTS.2017.8384098
https://doi.org/10.1016/j.future.2018.04.044
https://doi.org/10.1109/TEVC.2016.2623803
https://doi.org/10.46253/jnacs.v3i1.a4
https://doi.org/10.46253/j.mr.v3i1.a2
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1109/ISCBI.2015.8
https://doi.org/10.1145/2983639
https://doi.org/10.1109/ACCESS.2017.2752643
https://doi.org/10.1155/2014/396529


K. K. Désiré et al. 
 

 

DOI: 10.4236/eng.2021.133011 157 Engineering 
 

Harmony Search Algorithm with Differential Mutation Operator. Fundamenta In-
formaticae, 95, 401-426. https://doi.org/10.3233/FI-2009-157 

[27] Binu, D. and Kariyappa, B.S. (2018) RideNN: A New Rider Optimization Algo-
rithm-Based Neural Network for Fault Diagnosis in Analog Circuits. IEEE Transac-
tions on Instrumentation and Measurement, 68, 2-26.  
https://doi.org/10.1109/TIM.2018.2836058 

[28] Fernández-Cerero, D., Jakóbikb, A., Fernández-Montesa, A. and Kołodziejb, J. 
(2019) GAME-SCORE: Game-Based Energy-Aware Cloud Scheduler and Simulator 
for Computational Clouds. Simulation Modelling Practice and Theory, 93, 3-20.  
https://doi.org/10.1016/j.simpat.2018.09.001 

[29] Aslanpour, M.S., Ghobaei-Arani, M., Heydari, M. and Mahmoudi, N. (2019) 
LARPA: A Learning Automata-Based Resource Provisioning Approach for Mas-
sively Multiplayer Online Games in Cloud Environments. International Journal of 
Communication Systems, 32, e4090. https://doi.org/10.1002/dac.4090 

[30] Li, Y.S., Zhao, C.J., Tang, X.Y., Cai, W.T., Liu, X.G., Wang, G. and Gong, X.L. 
(2020) Towards Minimizing Resource Usage with QoS Guarantee in Cloud Gaming. 
IEEE Transactions on Parallel and Distributed Systems, 32, 426-440.  
https://doi.org/10.1109/TPDS.2020.3024068 

[31] Ghobaei-Arani, M., Khorsand, R. and Ramezanpour, M. (2019) An Autonomous 
Resource Provisioning Framework for Massively Multiplayer Online Games in 
Cloud Environment. Journal of Network and Computer Applications, 142, 76-97.  
https://doi.org/10.1016/j.jnca.2019.06.002 

[32] Bhojan, A., Ng, S.P., Ng, J. and Ooi, W.T. (2020) CloudyGame: Enabling Cloud 
Gaming on the Edge with Dynamic Asset Streaming and Shared Game Instances. 
Multimedia Tools and Applications, 43, 32503-32523.  
https://doi.org/10.1007/s11042-020-09612-z 

[33] Slivar, I., Skorin-Kapov, L. and Suznjevic, M. (2019) QoE-Aware Resource Alloca-
tion for Multiple Cloud Gaming Users Sharing a Bottleneck Link. Proceedings of 
22nd Conference on Innovation in Clouds, Internet and Networks and Workshops 
(ICIN), Paris, 19-21 February 2019, 118-123.  
https://doi.org/10.1109/ICIN.2019.8685890 

[34] Guo, D.Y., Han, Y.W., Cai, W., Wang, X.F. and Victor, C.M. (2019) QoE-Oriented 
Resource Optimization for Mobile Cloud Gaming: A Potential Game Approach. 
ICC 2019 IEEE International Conference on Communications (ICC), Shanghai, 
20-24 May 2019, 1-6. 

[35] Ge, Y., Zhang, Y.K., Qiu, Q.R. and Lu, Y.-H. (2012) A Game Theoretic Resource 
Allocation for Overall Energy Minimization in Mobile Cloud Computing System. 
Proceedings of 2012 ACM/IEEE International Symposium on Low Power Electron-
ics and Design, Redondo Beach, 30 July-1 August 2012, 279-284. 

[36] Haouari, F., Baccour, E., Erbad, A., Mohamed, A. and Guizani, M. (2019) 
QoE-Aware Resource Allocation for Crowdsourced Live Streaming: A Machine 
Learning Approach. International Conference on Communications (ICC), Shang-
hai, 20-24 May 2019, 1-6. https://doi.org/10.1109/ICC.2019.8761591 

 
 

https://doi.org/10.4236/eng.2021.133011
https://doi.org/10.3233/FI-2009-157
https://doi.org/10.1109/TIM.2018.2836058
https://doi.org/10.1016/j.simpat.2018.09.001
https://doi.org/10.1002/dac.4090
https://doi.org/10.1109/TPDS.2020.3024068
https://doi.org/10.1016/j.jnca.2019.06.002
https://doi.org/10.1007/s11042-020-09612-z
https://doi.org/10.1109/ICIN.2019.8685890
https://doi.org/10.1109/ICC.2019.8761591

	Fractional Rider Deep Long Short Term Memory Network for Workload Prediction-Based Distributed Resource Allocation Using Spark in Cloud Gaming
	Abstract
	Keywords
	1. Introduction
	Motivation

	2. Literature Survey
	3. System Model
	4. Proposed Method for Workload Prediction 
	4.1. Multi Objective Model
	4.2. Proposed Fractional Rider Deep LSTM for Workload Prediction 
	4.3. Spark-Based Work Load Prediction and Resource Allocation Using Fractional Rider-Harmony Search Algorithm 
	Solution Encoding


	5. Results and Discussion
	5.1. Experimental Setup
	5.2. Performance Metrics
	5.3. Performance Analysis
	5.4. Comparative Methods
	5.5. Comparative Analysis
	5.6. Comparative Discussion

	6. Conclusion
	Conflicts of Interest
	References

