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Abstract 
Generalized Least Squares (least squares with prior information) requires the 
correct assignment of two prior covariance matrices: one associated with the 
uncertainty of measurements; the other with the uncertainty of prior infor-
mation. These assignments often are very subjective, especially when correla-
tions among data or among prior information are believed to occur. How-
ever, in cases in which the general form of these matrices can be anticipated 
up to a set of poorly-known parameters, the data and prior information may 
be used to better-determine (or “tune”) the parameters in a manner that is 
faithful to the underlying Bayesian foundation of GLS. We identify an objec-
tive function, the minimization of which leads to the best-estimate of the pa-
rameters and provide explicit and computationally-efficient formula for cal-
culating the derivatives needed to implement the minimization with a gra-
dient descent method. Furthermore, the problem is organized so that the mi-
nimization need be performed only over the space of covariance parameters, 
and not over the combined space of model and covariance parameters. We 
show that the use of trade-off curves to select the relative weight given to ob-
servations and prior information is not a form of tuning, because it does not, 
in general maximize the posterior probability of the model parameters, and 
can lead to a different weighting than the procedure described here. We also 
provide several examples that demonstrate the viability, and discuss both the 
advantages and limitations of the method. 
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1. Introduction 

Generalized Least Squares (GLS, also called least-squared with prior information) 
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is a tool for statistical inference [1]-[6] that is widely used in geotomography 
[7]-[12] and geophysical inversion [13] [14], as well as other areas of the physi-
cal sciences and engineering. One of the attractive features of GLS that makes it 
especially useful in the imaging of multidimensional fields (for example, density, 
velocity, viscosity) is its ability to implement, in a natural and versatile way, 
prior information of the behavior of the field. Widely-used types of prior infor-
mation include the field being smooth, as quantified by its low-order derivatives 
[15], having a specified power spectral density or autocovariance [7] [15], and 
satisfying a specified partial differential equation (such as the geostrophic flow 
equation [16] or the diffusion equation [4]). The word “regularization” some-
times is used to describe the effect of prior information on the solution process 
[17]. 

We review the Generalized Least Squares (GLS) method here, following the 
notation in [6], in order to provide context and to establish nomenclature. In 
GLS, observations (or data) and prior information (or inferences) are combined 
to arrive at a best-estimate of initially-unknown model parameters (which might, 
for example, represent a field sampled on a regular grid). The data are assumed 
to satisfy the linear equation =Gm d , where N∈d   is a vector of data,  

M∈m   is a vector of model parameters, and G  is a known “kernel” matrix 
associated with the data. Prior information is assumed to satisfy a linear equa-
tion =Hm h , where K∈h   is a vector of prior values and H  is a kernel 
matrix associated with the prior information. GLS problems are assumed to be 
over-determined, with N K M+ > . For observed data obsd , known prior in-
formation prih  and a specified model m , the prediction error is obs≡ −e d Gm  
and prior information error is pri≡ −h Hm� . These errors are assumed to be 
Normally-distributed with zero mean and prior covariance dC  and hC , re-
spectively. Then, the normalized errors 1 2

d
−≡e C e�  and 1 2

h
−≡ C�� �  are inde-

pendent and identically-distributed Normal random variables with zero mean 
and unit variance. Bayes theorem can be used to show that the best estimate 

estm  of the solution is the one that minimizes the generalized error E LΦ ≡ + , 
with TE ≡ e e� �  and TL ≡ � �� �  [1] [2] [5]. The solution can be expressed in a va-
riety of equivalent forms, among which is the widely-used version [6]:  

( )1 T 1 T 1 T 1 T 1withest obs pri
d h d h

− − − − −= + ≡ +m Z G C d H C h Z G C G H C H     (1) 

The assumption of linear kernels G  and H  is a very restrictive one. In the 
well-studied nonlinear generalization [1] [6], the products Gm  and Hm  are 
replaced with vector functions ( )g m  and ( )h m . Then, a common solution 
method is to linearize the data and prior information equations around a trial 
solution ( )0m : 

( ) ( )

( )
( )

( ) ( )

( )
( )

0

0

0 0

0 0

with and

with and

obsi
ij

j

prii
ij

j

g
G

m

h
H

m

∂
∆ = ∆ ≡ ∆ ≡ −

∂

∂
∆ = ∆ ≡ ∆ ≡ −

∂

m

m

G m d d d g m

H m h h h h m

       (2) 
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and ( )0∆ = −m m m . The solution is then found by iterative application of (1) 
applied to (2); that is, by the Gauss-Newton’s method [3]. Alternatively, a gra-
dient-descent method [18] can be used that employs: 

( )
( ) ( )( ) ( ) ( )( )0
0 T 0 0 T 01 12 2obs pri

d h
− −∇ Φ = − − − −m m G C d Gm H C h Hm      (3) 

The latter approach is preferred for very large M, since the convergence rate of 
gradient descent is independent of its dimension [18], whereas the effort re-
quired to solve the M × M system (1) by a direct method scales as M3 [19]. 

We now discuss issues related to the covariance matrices that appear in GLS. 
The data covariance dC  quantifies the uncertainty of the observations and the 
information covariance hC  quantifies the uncertainty of the prior information. 
Prior knowledge of the inherent accuracy of the measurement technique is 
needed to assign dC , and prior knowledge of the physically-plausible solutions, 
perhaps stemming from and understanding of the underlying physics, is needed 
to assign hC . These assignments are often very subjective, especially when cor-
relations are believed to occur (that is, dC  and hC  have non-zero off-diagonal 
elements). For example, one geotomographic study [7] reconstructs a two-di- 
mensional field using a hC  that represents autocovariance of the field and that 
is dependent upon a scale length q. The value of q is chosen on the basis of broad 
physical arguments that, while plausible, leaves considerable room for subjectiv-
ity. 

The matrices dC  and hC  together contain ( ) ( )1 11 1
2 2

N N K K+ + +  elements, 

many more than the ( )N K+  constraints imposed by the data d  and prior 
information h .Consequently, insufficient information is available to uniquely 
solve for all the elements of dC  and hC . However, it sometimes may be possi-
ble to parameterize ( )dC q  and/or ( )hC q  in terms of J∈q  , and ask whether 
an initial estimate of q  can be improved. As long as ( ) ( )M J N K+ < + , ade-
quate information may be available to determine a best estimate estq . We refer 
to the process of determining estq  as “tuning”, since in typical practice it re-
quires that the covariances be close to their true values. 

As an example of a parametrized covariance, we consider the case where the 
model parameters represent a sampled version of a continuous function ( )m x , 
where x∈  is an independent variable; that is, ( )n nm m x= , with nx n x≡ ∆  
and x∆  the sampling interval. The prior information that ( )m x  is approx-
imately oscillatory with wavenumber q can be modeled by: 

[ ] ( )2and 0 and cospri
h h n mnm

q x xσ= = = −H I h C             (4) 

In this case, hC  approximates the autocovariance of ( )m x , which is as-
sumed to be stationary. The goal of tuning is to provides a best-estimate estq , as 
well of best estimated estm  of the model parameters. This problem is further 
developed in Example 4, below. 

Although the GLS formulation is widely used in geotomography and geo-
physical imaging, the tuning of variance is typically implemented in a very li-
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mited fashion, through the use of trade-off curves [7]-[12]. In this procedure, a 
scalar parameter q controls the relative size of dC  and hC , that is,  

( ) ( )0
h hq q=C C , where ( )0

hC  is specified [20]. The GLS problem is then solved 
for a suite of qs, the functions ( )E q  and ( )L q  are tabulated and the resulting 
trade-off curve ( )E L  is used to identify a solution ( )0qm  that has acceptably 
low E and L (for example, Figure 1 of [20]). As we will show below, this ad hoc 
procedure is not a consistent extension of GLS, because it results in a different q 
than the one implied by Bayes’ principle. A more consistent approach is to apply 
Bayes theorem directly to estimate both the model parameters m  and the co-
variance parameters q . Such an approach has been implemented in the context 
of ordinary least squares [21] and the Markov chain Monte Carlo (MCMC) in-
version method [22] (which is a computationally-intensive alternative to GLS). 
An important and novel result of this paper is a computationally-efficient pro-
cedure for tuning GLS in a Bayes-consistent manner. 

2. Bayesian Extenion of GLS 

The general process of using Bayes’ theorem to construct a posterior probability 
density function (p.d.f.) that depends on unknown parameters and of estimating 
those parameters though the maximization of probability is very well unders-
tood [23]. In the current case, the p.d.f. has M model parameters and J cova-
riance parameters, so the maximization process (implemented, say, with a gra-
dient ascent method) must search an ( )M J+ -dimensional space. Our main 
purpose here is to show that the process can be organized in a way that makes 
use of the GLS solution (1) and thus reduce the dimensionality of the searched 
space to J. 

The GLS solution (1) yields the m  that minimizes the generalized error  
( )Φ m , or equivalently, the m  that maximizes the Normal posterior probabil-

ity density function (p.d.f.) ( )| ,obs prip m d h : 

( )
( ) ( ) ( )
arg max | ,

with | , | |

est obs pri

obs pri obs pri

p

p p p

=

∝
m

m m d h

m d h d m h m
             (5) 

Here, Bayes theorem [23] is used to related the Normal posterior p.d.f.  

( )| ,obs prip m d h  to the Normal likelihood ( )|obsp d m  and the Normal prior  

( )|prip h m . When poorly known parameters q  are added to the problem, they 
must be treated as additional random variables [22]. Writing ( ) ( ) T

,d h ≡  q q q , 
with ( )dq  appearing in the likelihood and ( )hq  appear in the prior, we have: 

( ) ( )
( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
, ,

, arg max , | ,

with , | , | , | ,

d h

est est obs pri

d h d hobs pri obs pri

p

p p p p p

=

∝

m q q

m q m q d h

m q d h d m q h m q q q
 (6) 

Here, we have assumed that q  and m  are not correlated with one another. 
The maximization with respect to the two variables can be performed as a se-
quence of two single-variable maximizations: 
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( ) ( ) ( )0 0 0: arg max , | , at fixedobs prip
m

m q m q d h q             (7a) 

( )( )
0

0 0: arg max , | ,est obs prip
q

q m q q d h                  (7b) 

( )est est=m m q                            (7c) 

In the special case of the uniform prior ( )( ) ( )( ) constantd hp p ∝q q , the max-
imization in (7a) is the GPR solution at fixed 0q . For the Normal p.d.f.: 

( )( )
( ) ( ) ( ) ( )

0 0

1 11
2 22

, | ,

1 12 det det exp
2 2

obs pri

N K
d k

p

E L− −− +   = π − −  
  

m q q d h

C C
          (8) 

the maximization (7b) is equivalent to the minimization of an objective function 
( )Ψ q , defined as: 

( ) ( ) ( ) ( )12 ln ln 2 ln det ln det
2 d hp N K E L Ψ ≡ − + + π = + + +  

C C     (9) 

The quantity ( )ln det dC  is best computed by finding the Choleski decompo-
sition T

d =C DD , the algorithm [24] for which is implemented in many soft-
ware environments, including MATLAB® and PYTHON/linalg. Then,  
( ) ( )ln det 2 lnd nnn D= ∑C  (and similarly for ( )ln det hC ).The nonlinear opti-

mization problem of minimizing ( )Ψ q  can be implemented using a gradient 
descent method, provided that the derivative mq∂Ψ ∂  can be calculated [18]. 
In the next section, we derive analytic formula for this and related derivatives. 

3. Solution Method and Formula for Derivatives 

The process of simultaneously estimating the covariance parameters estq  and 
model parameters estm  consists of six steps. First, the analytic form of the co-
variance matrices ( )dC q  and ( )hC q  are specified, and their derivatives  

d mq∂ ∂C  and h mq∂ ∂C  are computed analytically. Second, an initial estimate 
( )0q  is identified. Third, the covariance matrices ( )( )0

dC q  and ( )( )0
hC q  are 

inserted into (1), yielding model parameters ( )( )0m q . Fourth, using formulas 
developed below, the value of the derivative mq∂Ψ ∂  is calculated at ( )0q . Fifth, 
a gradient descent method employing mq∂Ψ ∂  is used to iteratively perturb  ( )0q  towards the minimum of Ψ  at estq  (and in process, repeating steps three 
through five many times). Sixth, the estimated model parameters are computed 
as ( )est est=m m q . This process is depicted in Figure 1. 

Our derivation of mq∂Ψ ∂  uses three matrix derivatives, 1 q−∂ ∂M ,  
1 2 q−∂ ∂M  and ( )ln det q∂ ∂M  that may be unfamiliar to some readers, so we 

derive them here for completeness. Let ( )qM  be asquare, invertible, differen-
tiable matrix. Differentiating 1− =M M I  yields  

[ ]1 1
m mq q− − ∂ ∂ + ∂ ∂ = M M M M 0 , which can be rearranged into ([25], their 

(36)): 
1

1 1

m mq q

−
− − ∂ ∂

= −  ∂ ∂ 

M MM M                       (10) 
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Figure 1. Schematic depiction of solution process. (a) The GLS solution estm  (red curve) 
is considered a function of the covariance parameters q  and its derivative est

nq∂ ∂m  

(blue line) at a point ( )0q  is computed by analytic differentiation of GLS equation (1); 
(b) The objective function Ψ (colors) is considered a function of q . The results of (a) are 

used to compute its gradient q∇ Ψ  at the point ( )0q . The gradient descent method is 

used to iteratively perturb this point anti-parallel to the gradient until it reaches the 
minimum minΨ  of the objective function, resulting in the best-estimate estq . This value 

is then used to determine a best-estimate of the model parameters estm , as depicted in 
(a). 
 

Similarly, differentiating 1 2 1 2 1− − −=M M M  and applying (10), yields the Sylve- 
ster equation:  

1 2 1 2 1
1 2 1 2 1 1

m m m mq q q q

− − −
− − − − ∂ ∂ ∂ ∂

+ = = −  ∂ ∂ ∂ ∂ 

M M M MM M M M       (11) 

We have not been able to determine a source for this equation, but in all like-
lihood, it has been derived previously. In practice, (11) is not significantly harder 
to compute than (10), because efficient algorithms for solving Sylvester equa-
tions [26] and for computing a symmetric (principal) square root [27], are 
widely available and implemented in many software environments, including 
MATLAB® and PYTHON/linalg. The derivative of ( )ln det dC  is derived start-
ing with Jacobi’s formula [12]: 

( ) ( ) ( ) ( )1 1det
tr adj tr det det tr

q q q q
− −∂      ∂ ∂ ∂

= = =     ∂ ∂ ∂ ∂     

M M M MM M M M M (12) 

where ( )adj .  is the adjugate and ( )tr .  is the trace, applying Laplace’s identify 
[28] ( ) ( ) 1adj detd d d

−=C C C  and the rule ( ) ( )tr trc c=M M  (where c is a sca-
lar and M  is a matrix) [29]. Finally, the determinant is moved to the left-hand 
side and the well-known relationship ( ) ( )1ln f q f f q−∂ ∂ = ∂ ∂ , for a differen-
tiable function ( )f q , is applied, yielding ([25], their (38)): 

( )
( )

( ) 1ln det det1 tr
detq q q

−∂ ∂  ∂
= =  ∂ ∂ ∂ 

M M MM
M

          (13) 

We begin the main derivation by considering the case in which data variance 
( )dC q  depends on a parameter vector q , and the information variance hC  is 

constant. The derivative of the GLS solution can be found by applying the chain 
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rule applied to (1): 
11 1

T 1 1 T T 1

1
1 T

1 1
T 1 1with and

est
obs obs prid

d h
m m m m

obs estd

m m

d d d
d d

m m m m

q q q q

q q

q q q q

−− −
− − −

−
−

− −
− −

∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂

 ∂ ∂
= − 

∂ ∂ 
∂ ∂ ∂∂

= = −
∂ ∂ ∂ ∂

Cm Z ZG C d Z G d H C h

C ZZ G d m

C C CZ G G C C

    (14) 

Note that we have used (10). The derivative of the normalized prediction error 
is ( )1 2 obs est

d
−≡ −C d Gme�  and total error TE ≡ e e� �  are:  

( )
1 2

1 2 T

1 2 1 2
1 2 1 2 1 1

and 2

with

est
obs estd

d
m m m m m

h h h
h h h h

m m m

E
q q q q q

q q q

−
−

− −
− − − −

∂∂ ∂ ∂ ∂
= − + − =

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ = −

∂ ∂ ∂

CmC G d Gm

C C C
C C C

e ee

C

� �
�

     (15) 

Here, the Sylvester equation arises from (11). An alternate way of differen-
tiating E that does not require solving a Sylvester equation is: 

( )
T 1

T 1 T 1 T T 1
est est

d
d d d

m m m m m

E
q q q q q

−
− − −  ∂∂ ∂ ∂ ∂

= = − + − ∂ ∂ ∂ ∂ ∂ 

Cm me C e G C e e e e C G    (16) 

The derivative of the normalized error in prior information  

( )1 2 est
h
−= −C h Hm��  and total error TL ≡ � �� �  are: 

1 2 Tand 2
est

h
m m m m

L
q q q q

−∂ ∂ ∂ ∂
= − =

∂ ∂ ∂ ∂
mC H

� �
�� �
�              (17) 

Finally, since ( ) ( )ln det ln detd h E LΨ = + + +C C , we have: 

( ) 1ln det
trd d

d
m m m m m m m

E L E L
q q q q q q q

−∂  ∂∂Ψ ∂ ∂ ∂ ∂
= + + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

C C
C       (18) 

Note that we have applied (13). 
Finally, we consider the case in which the information variance ( )hC q  de-

pends on parameters q , and dC  is constant. Since the data and prior informa-
tion play completely symmetric roles in (1), the derivatives can be obtained by 
interchanging the roles of dC  and hC , G  and H , obsd  and prih , e�  and 
��  and E and L, in the equations above, yielding: 

1
1 T

1 1
T 1 1with and

est
pri esth

m m m

h h h
h h

m m m m

q q q

q q q q

−
−

− −
− −

 ∂∂ ∂
= − 

∂ ∂ ∂ 
∂ ∂ ∂∂

= = −
∂ ∂ ∂ ∂

Cm ZZ H h m

C C CZ H H C C
 

1 2 Tand 2
est

d
m m m m

E
q q q q

−∂ ∂ ∂ ∂
= − =

∂ ∂ ∂ ∂
e eemC G
� �

�  

( )
1 2

1 2
est

pri esth
h

m m mq q q

−
− ∂∂ ∂

= − + −
∂ ∂ ∂

CmC H h Hm
��
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T 1
T T 1 T T 12

est est
h

h h
m m m m m

L
q q q q q

−
− −  ∂∂ ∂ ∂ ∂

= = − + − ∂ ∂ ∂ ∂ ∂ 

Cm mH C C H
�

� �
� � � � �  

1 2 1 2
1 2 1 2 1 1h h h

h h h h
m m mq q q

− −
− − − −∂ ∂ ∂

+ = −
∂ ∂ ∂
C C C

C C C C  

( ) 1ln det
trh h

h
m mq q

−∂  ∂
=  ∂ ∂ 

C C
C  

1tr h
h

m m m m

E L
q q q q

− ∂∂Ψ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

C
C                  (19) 

These formulas have been checked numerically. 

4. Examples with Discussion 

In the first example, we examine the simplistic case in which the parameter q 
represents an overall scaling of variance; that is ( ) ( )0

d dq q=C C  and  
( ) ( )0

h hq q=C C , with specified ( )0
dC  and ( )0

hC . The solution estm  is indepen-
dent of q, as can be verified by substitution into (1). The parameter q can then be 
found by direct minimization of (9), which simplifies to: 

( )( ) ( )( )0 0 1 1
0 0ln det ln detN K

d kq q q E q L− −Ψ = + + +C C           (20) 

Here, we have used the rule ( ) ( )det detNq q=M M  [25], valid for any  
N N×  matrix M , and have defined ( )0 1E E q≡ =  and ( )0 1L L q≡ = . The 
minimum occurs when:  

( ) ( )1 2 0 0
0 00 or

E L
N K q E L q q

q N K
− − +∂Ψ

= = + − + =
∂ +

         (21) 

This is a generalization of the well-known maximum likelihood estimate of 
the sample variance [30]. As long as ( )0 0E L+  exists, the minimization in (21) 
is well-behaved and the overall scaling q is uniquely determined. 

In the second example, we examine another simplistic case in which a para-
meter q represents the relative weighting of variance; that is ( )1

d q q− =C I  and 
( ) ( )1 1h q q− = −C I .We consider the problem of estimating the mean 1m  of data 

given observations =d 1  and prior information =h 0  (where 0  and 1  are 
vectors of zeros and ones, respectively), when N K= , 1M =  and = =G H 1 . 
Applying (1), we find that estm q= . Then, the objective function is  

( ) ( )( ) ( )ln ln 1 1NNq q Nq qΨ = + − + −  and its derivative is  
( ) ( )11 1 1q N q q q q−− ∂Ψ ∂ = − + − + − −  . The solution to 0q∂Ψ ∂ =  is  

1 2estq = , as can be verified by direct substitution. Thus, the solution splits the 
difference between the observations and the prior values, and yields prior va-
riances dC  and hC  that are equal. While simplistic, this problem illustrates 
that, at least in some cases, GLS is capable of uniquely determining the relative 
sizes of dC  and hC . Because trade-off curves, as defined in the Introduction, 
are based on the behavior of E and L, and not the complete objective function Ψ, 
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the weighting parameter 0q  estimated from them in general will be different 
from estq .Consequently, the trade-off curve procedure is not consistent with the 
Bayesian framework upon which GLS rests. 

Our third example demonstrates the tuning of data covariance ( )dC q . In 
many cases, observational error increases during the course of an experiment, 
due to degradation of equipment or to worsening environmental conditions. 
The example demonstrates that the method is capable of accurately quantifying 
the fractional rate of increase p of the variance 

ndσ , which is assumed to vary 
with position nx . In our simulation, we consider 201N =  synthetic data, even-
ly-spaced on the interval 0 1ix≤ ≤ , which scatter around the curve  

1 2
1 2i id m m x= +  (Figure 2). The covariance of the data is modeled as  

[ ] 2
nd d mnmn

σ δ=C , where ( ) ( )( )21 1 2 1
nd nq xσ = + −  and mnδ  is the Kronecker del-

ta; that is, the data are uncorrelated and their variance increases linearly with x. 
The derivative of the covariance is ( )[ ] ( ) ( )21 2 1d n mnmn

q x δ∂ ∂ = −C . We have 
included prior information with =H I  and 0pri =h , which implements the 
notion that the model parameters are small. The corresponding covariance is 
chosen to be large, ( )21000h =C I , indicating that this information is weak. The 
goal is to tune the rate of increase of variance and to arrive at a best-esti- mate of 
the two model parameters. The starting value is taken to be 0 0q = , which cor-
responds to uniform variance. It is successively improved by a gradient descent 
method that minimizes Ψ, yielding an estimated value 0.709estq ≈ .This esti-
mate differs from the true value 0.700trueq =  by about 1%. The estimated solu-
tion estm  differs from ( )0q =m  by a few tenths of a percent, which may be 
significant in some applications. 
 

 

Figure 2. Example of tuning ( )d qC . (a) Plot of synthetic data (red dots) and predicted 

data (green curve); (b) The starting value 0 0q =  corresponds to uniform variance (black 

curve). The estimate estq  corresponds to increasing variance (green curve); (c) Genera-
lized error ( )qΦ  (black curve). The starting value 0q  (black circle) is successively im-

proved (red circles) by a gradient descent method, yielding an estimate estq  (green cir-
cle); (d) The gradient q∂Φ ∂ , computed using the formulas developed in the text; (e) 
The first model parameter ( )1m q , highlighting the initial value (black circle) and esti-

mated value (green circle) (f) Same as (e), except for the second model parameter ( )2m q . 
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The fourth example demonstrates tuning of information covariance ( )hC q . 
In many instances, one may need to “reconstruct” or “interpolate” a function on 
the basis of unevenly and sparsely sampled data. In this case, prior information 
on the autocovariance of the function can enable a smooth interpolation. Fur-
thermore, it can enforce a covariance structure that may be required, say, by the 
underlying physics of the problem. In our example, we suppose that the function 
is known to be oscillatory on physical grounds, but that the wavenumber of 
those oscillations is known only imprecisely. The goal is to tune prior knowledge 
of wavenumber to arrive at a best-estimate of the reconstructed function. In our 
simulation, a total of 101M =  model parameters jm  are uniformly spaced on 
the interval 0 100x≤ ≤  and representing a sampled version of a continuous, 
sinusoidal function ( )m x  with wavenumber 0.1571truep =  (Figure 3). Synthe- 
tic data obs

id  with uncorrelated error with variance ( )22 0.01dσ =  are available 
for 40N =  randomly-chosen points ( )j ix , where the index function ( )j i  aligns 
in x observations to model parameters. The data kernel is ( ),ij i j iG δ= . The prior 
information is given in (4), with autocovariance [ ] ( )2 cosh h n mnm

q x xσ= −C  and  

( )22 10hσ = . The derivative is ( )[ ] ( )2 sinh h n m n mnm
q x x q x xσ∂ ∂ = − − −C . An  

initial guess 0 0.95 truep p=  is improved using a gradient descent method, yield-
ing an estimated value of 0.1571estp =  that differs from truep  by less than 0.01%. 
The reconstructed function is smooth and sinusoidal and the fit to the data is 
much improved. 

Examples three and four were implemented in MATLAB® and executed in <5s 
on a notebook computer. They confirm the flexibility, speed and effectiveness of 
the method. An ability to tune prior information on autocovariance may be of 
special utility in seismic exploration applications, where three-dimensional 
waveform datasets are routinely interpolated. 

A limitation of this overall “parametric” approach is that the solution is de-
pendent on the choice of parameterization, which must be guided by prior 
knowledge of the general properties of the covariance matrices in particular 
problem being solved. In Example 3, we were able to recognize (say, by visually  
 

 

Figure 3. Example of tuning ( )h qC . Sparsely-sampled synthetic data obs
id  (red dots) 

are oscillatory. (a) A regularly-sampled version est
jm  is created by imposing the oscilla-

tory covariance [ ] ( )2 cosh h n mnm
q x xσ= −C . With the starting value 0 0.9500 trueq q= , the 

reconstruction poorly fits the data (black curve). Tuning leads to a better fit (green curve 
with dots), as well as a precise estimate of wavenumber 0 0.9999 trueq q≈ ; (b) Decrease in 

nΨ  with iteration number 𝑛𝑛 during the gradient descent process. 
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examining the data plotted in Figure 2(a)) that observational error increases with 
x and chose [ ] ( )( )2

11d d n mnmn
q x xσ δ= + −C  that matched this scenario. If, in-

stead, the degree of correlation between successive data increased with x, this 
pattern might be less expected, more difficult to detect, and require a different  

parameterization—say, ( ) ( )2 1exp
2d d n m n mnm

q q x x x xσ  = − + −     
C . 

Not every parameterization of dC  (or hC ) is necessarily well-behaved. To 
avoid poor behavior, the parameterization must be chosen so its determinant 
does not have zeros at values of estq  that will prevent the steepest descent process 
from converging to the global minimum. That this choice can be problematical 
is illustrated by the simple Toeplitz version of dC  (with 10N = , 9J = ): 

1 2 3 9

1 1 2 8

2 1 1 7

3 2 1 6

9 8 7 6

1

1
1

1

1

d

q q q q
q q q q
q q q q
q q q q

q q q q

 
 
 
 

=  
 
 
 
  

C

�
�
�
�

� � � � � �
�

                 (22) 

with 1iq < . This form is useful for quantifying correlations within a stationary 
sequence of data [31]. Yet as is illustrated in Figure 4, the J  volume is crossed 
 

 

Figure 4. The function ( )det 0d =C q  for the case given by (22). (a) The ( )1 2,q q  sur-

face for 3 0.95q = −  and the other qs randomly assigned; (b) Same as (a), but with 

3 0.00q = ; (c) Same as (a), but with 3 0.95q = ; (d) Perspective view of the surfaces in the 

1 2 3, ,q q q  volume. The positions of the three slices in (a), (b) and (c) are noted on the 3q
-axis (green arrows). A question posed in the text is whether, given an arbitrary point 

( )0q  and the global minimum of the objective function, say at estq  (and with both 
points satisfying det 0d >C ), a steepest-descent path necessarily exists between them. 
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by many det 0d =C  surfaces that correspond to surfaces of singular objective 
function Ψ. Their presence suggests that the steepest descent path between a 
starting value ( )0q  and the global minimum at estq  may be very convoluted (if, 
indeed, such a path exists) unless ( )0q  is very close to estq . 

5. Conclusion 

Generalized Least Squares requires the assignment of two prior covariance ma-
trices, the prior covariance of the data and the prior covariance of the prior in-
formation. Making these assignments is often a very subjective process. However, 
in cases in which the forms of these matrices can be anticipated up to a set of 
poorly-known parameters, information contained within the data and prior in-
formation can be used to improve knowledge of them—a process we call “tun-
ing”. Tuning can be achieved by minimizing an objective function that depends 
on both the generalized error and determinants of the covariance matrices to ar-
rive at a best estimate of the parameters. Analytic and computationally-tractable 
formulas are derived for the derivative needed to implement the minimization 
via a gradient descent method. Furthermore, the problem is organized so that 
the minimization need be performed only over the space of covariance parame-
ters, and not over the typically-much-larger space of model and covariance pa-
rameters. Although some care needs to be exercised as the covariance matrices 
are parametrized, the minimization is tractable and can lead to better estimates 
of the model parameters. An important outcome is this study is the recognition 
that the use of trade-off curves to determine relative weighting of covariance—a 
practice ubiquitous in the geophysical imaging—is not consistent with the un-
derlying Bayesian framework of Generalized Least Squares. The strategy outlined 
here provides a consistent solution. 

Acknowledgements 

The author thanks Roger Creel for helpful discussion. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Tarantola, A. and Valette, B. (1982) Generalized Non-Linear Inverse Problems Solved 

Using the Least Squares Criterion. Reviews of Geophysics and Space Physics, 20, 
219-232. https://doi.org/10.1029/RG020i002p00219 

[2] Tarantola, A. and Valette, B. (1982) Inverse Problems = Quest for Information. 
Journal of Geophysics, 50, 159-170. https://n2t.net/ark:/88439/y048722  

[3] Menke, W. (2018) Geophysical Data Analysis: Discrete Inverse Theory. 4th Edition, 
Elsevier, 350 p. 

[4] Menke, W. and Menke, J. (2016) Environmental Data Analysis with MATLAB. 2nd 
Edition, Elsevier, 3342 p. https://doi.org/10.1016/B978-0-12-804488-9.00001-X 

https://doi.org/10.4236/am.2021.123011
https://doi.org/10.1029/RG020i002p00219
https://n2t.net/ark:/88439/y048722
https://doi.org/10.1016/B978-0-12-804488-9.00001-X


W. Menke 
 

 

DOI: 10.4236/am.2021.123011 169 Applied Mathematics 
 

[5] Tarantola, A. (2005) Inverse Problem Theory and Methods for Model Parameter 
Estimation. SIAM: Society for Industrial and Applied Mathematics, 342 p.  
https://doi.org/10.1137/1.9780898717921 

[6] Menke, W. (2014) Review of the Generalized Least Squares Method. Surveys in 
Geophysics, 36, 1-25. https://doi.org/10.1007/s10712-014-9303-1 

[7] Abers, G. (1994) Three-Dimensional Inversion of Regional P and S Arrival Times in 
the East 723 Aleutians and Sources of Subduction Zone Gravity Highs. Journal of 
Geophysical Research, 99, 4395-4412. https://doi.org/10.1029/93JB03107 

[8] Schmandt, B. and Lin, F.-C. (2014) P and S Wave Tomography of the Mantle be-
neath the United States. Geophysical Research Letters, 41, 6342-6349.  
https://doi.org/10.1002/2014GL061231 

[9] Menke, W. (2005) Case Studies of Seismic Tomography and Earthquake Location in 
a Regional Context. Geophysical Monograph 157. American Geophysical Union, 
Washington DC. https://doi.org/10.1029/157GM02 

[10] Nettles, M., and Dziewonski, A.M. (2008) Radially Anisotropic Shear Velocity Struc-
ture of the Upper Mantle Globally and Beneath North America. Journal of Geo-
physical Research, 113, B02303. https://doi.org/10.1029/2006JB004819 

[11] Chen, W. and Ritzwoller, M.H. (2016) Crustal and Uppermost Mantle Structure 
Beneath the United States. Journal of Geophysical Research, 121, 4306-4342.  
https://doi.org/10.1002/2016JB012887 

[12] Humphreys, E.D., Dueker, K.G., Schutt, D.L. and Smith, R.B. (2000) Beneath Yel-
lowstone: Evaluating Plume and Nonplume Models Using Teleseismic Images of 
the Upper Mantle. GSA Today, 10, 1-7.  
https://www.geosociety.org/gsatoday/archive/10/12/  

[13] Gillet, N., Schaeffer, N. and Jault, D. (2011) Rationale and Geophysical Evidence for 
Quasi-Geostrophic Rapid Dynamics within the Earth’s Outer Core. Physics of the 
Earth and Planetary Interiors, 187, 380-390.  
https://doi.org/10.1016/j.pepi.2011.01.005 

[14] Zhao, S. (2013) Lithosphere Thickness and Mantle Viscosity Estimated from Joint 
Inversion of GPS and GRACE-Derived Radial Deformation and Gravity Rates in 
North America. Geophysical Journal International, 194, 1455-1472.  
https://doi.org/10.1093/gji/ggt212 

[15] Menke, W. and Eilon, Z. (2015) Relationship between Data Smoothing and the Re-
gularization of Inverse Problems. Pure and Applied Geophysics, 172, 2711-2726.  
https://doi.org/10.1007/s00024-015-1059-0 

[16] Voorhies, C.F. (1986) Steady Flows at the Top of Earth’s Core Derived from Geo-
magnetic Field Models. Journal of Geophysical Research, 91, 12444-12466.  
https://doi.org/10.1029/JB091iB12p12444 

[17] Yao, Z.S. and Roberts, R.G. (1999) A Practical Regularization for Seismic Tomo-
graphy. Geophysical Journal International, 138, 293-299.  
https://doi.org/10.1046/j.1365-246X.1999.00849.x 

[18] Snyman, J.A. and Wilke, D.N. (2018) Practical Mathematical Optimization—Basic 
Optimization Theory and Gradient-Based Algorithms. Springer Optimization and 
Its Applications, 2nd Edition, Springer, New York, 340 p.  

[19] Hidebrand, F.B. (1987) Introduction to Numerical Analysis. 2nd Edition, Dover 
Publications, New York. 

[20] Zaroli, C., Sambridge, M., Lévêque, J.-J., Debayle, E. and Nolet, G. (2013) An Objec-
tive Rationale for the Choice of Regularization Parameter with Application to Glob-

https://doi.org/10.4236/am.2021.123011
https://doi.org/10.1137/1.9780898717921
https://doi.org/10.1007/s10712-014-9303-1
https://doi.org/10.1029/93JB03107
https://doi.org/10.1002/2014GL061231
https://doi.org/10.1029/157GM02
https://doi.org/10.1029/2006JB004819
https://doi.org/10.1002/2016JB012887
https://www.geosociety.org/gsatoday/archive/10/12/
https://doi.org/10.1016/j.pepi.2011.01.005
https://doi.org/10.1093/gji/ggt212
https://doi.org/10.1007/s00024-015-1059-0
https://doi.org/10.1029/JB091iB12p12444
https://doi.org/10.1046/j.1365-246X.1999.00849.x


W. Menke 
 

 

DOI: 10.4236/am.2021.123011 170 Applied Mathematics 
 

al Multiple-Frequency S-Wave Tomography. Solid Earth, 4, 357-371.  
https://doi.org/10.5194/se-4-357-2013 

[21] Malinverno, A. and Parker, R.L. (2006) Two Ways to Quantify Uncertainty in Geo-
physical Inverse Problems. Geophysics, 71, W15-W27.  
https://doi.org/10.1190/1.2194516 

[22] Malinverno, A. and Briggs, V.A. (2004) Expanded Uncertainty Quantification in 
Inverse Problems: Hierarchical Bayes and Empirical Bayes. Geophysics, 69, 877-1103.  
https://doi.org/10.1190/1.1778243 

[23] Box, G.E.P. and Tiao, G.C. (1992) Bayesian Inference in Statistical Analysis. Wiley, 
New York, 589 p. https://doi.org/10.1002/9781118033197 

[24] Schmidt, E. (1973) Cholesky Factorization and Matrix Inversion, National Oceanic 
and Atmospheric Administration Technical Report NOS-56. US Government Print-
ing Office, Washington DC.  
https://books.google.com/books?id=MiRHAQAAIAAJ  

[25] Petersen, K.B. and Pedersen, M.S. (2008) The Matrix Cookbook, 71 p.  
https://archive.org/details/imm3274  

[26] Bartels, R.H. and Stewart, G.W. (1972) Solution of the matrix equation AX + XB = 
C. Communications of the ACM, 15, 820-826.  
https://doi.org/10.1145/361573.361582 

[27] Higham, N.J. (1987) Computing Real Square Roots of a Real Matrix. Linear Algebra 
and its Applications, 88-89, 405-430. https://doi.org/10.1016/0024-3795(87)90118-2 

[28] Magnus, J.R. and Neudecker, H. (1999) Matrix Differential Calculus with Applica-
tions in Statistics and Econometrics, Revised Edition. John Wiley and Sons, New 
York, 424 p. 

[29] Gantmacher, F.R. (1960) The Theory of Matrices, Volume 1. Chelsea Publishing, 
New York, 374 p. 

[30] Fisher, R.A. (1925) Theory of Statistical Estimation. Mathematical Proceedings of 
the Cambridge Philosophical Society, 22, 700-725.  
https://doi.org/10.1017/S0305004100009580 

[31] Claerbout, J.F. (1985) Fundamentals of Geophysical Data Processing with Applica-
tions to Petroleum Prospecting. Blackwell Scientific Publishing, Oxford, UK, 267 p. 

 
 

https://doi.org/10.4236/am.2021.123011
https://doi.org/10.5194/se-4-357-2013
https://doi.org/10.1190/1.2194516
https://doi.org/10.1190/1.1778243
https://doi.org/10.1002/9781118033197
https://books.google.com/books?id=MiRHAQAAIAAJ
https://archive.org/details/imm3274
https://doi.org/10.1145/361573.361582
https://doi.org/10.1016/0024-3795(87)90118-2
https://doi.org/10.1017/S0305004100009580

	Tuning of Prior Covariance in Generalized Least Squares
	Abstract
	Keywords
	1. Introduction
	2. Bayesian Extenion of GLS
	3. Solution Method and Formula for Derivatives
	4. Examples with Discussion
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

