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Abstract 
Quantitative analysis of digital images requires detection and segmentation of 
the borders of the object of interest. Accurate segmentation is required for 
volume determination, 3D rendering, radiation therapy, and surgery plan-
ning. In medical images, segmentation has traditionally been done by human 
experts. Substantial computational and storage requirements become espe-
cially acute when object orientation and scale have to be considered. There-
fore, automated or semi-automated segmentation techniques are essential if 
these software applications are ever to gain widespread clinical use. Many 
methods have been proposed to detect and segment 2D shapes, most of which 
involve template matching. Advanced segmentation techniques called Snakes 
or active contours have been used, considering deformable models or tem-
plates. The main purpose of this work is to apply segmentation techniques for 
the definition of 3D organs (anatomical structures) when big data information 
has been stored and must be organized by the doctors for medical diagnosis. 
The processes would be implemented in the CT images from patients with 
COVID-19. 
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1. Introduction 

Segmentation is the process that separates an image into its different parts based 
on the image characteristics (properties) or the region of interest (organ of in-
terest) that doctors have been considered. Due to the large amount of data that 
medical images include it is appropriate, a big data analysis to be considered. For 
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that reason advance segmentation techniques could be useful to overcome the 
problem with the data handling.  

Segmentation techniques (manual, semi-automatic or automatic) are used in 
medicine to reproduce the 3D shape structure of the organ (or tumor) that doc-
tor is needed to consider. Many times due to the complexity of the image or 
shape structure it is not easy to justify the boundaries of the organ manually [1]. 

In cases where the organs have been moved (due to the body position) or the 
tumor have been spread inside the body effecting close organs the shape of the 
region of interest must be segmented very careful due to the importance of the 
doctor examination. In this case more reflex segmentation techniques must be 
introduced where they take advantage of the image properties and the elasticity 
of the potions. These techniques are based on the deformable template defined 
as active contours or snakes.   

The active contour models or Snakes are introduced by a 2D contour model 
[2] [3] or 3D shape model, in which an initial approximation to the image points 
or volume voxels are considered and elasticity modeling is taking place by 
movement of simulated forces (external force). An internal model of the curve is 
moved considering the neighborhood structure of the images regions (homo-
geneity). After a starting position is given, the active contour transforms itself to 
an appropriate contour shape by adapting the external force and internal tension 
[4] [5] [6]. Snake models are a class of energy minimizing spline curves or sur-
faces. These models are very important in a number of inverse visual problems 
such as the segmentation and reconstruction of objects from images in mathe-
matical ill-posed problems. 

2. Main Focus of the Chapter 
Segmentation Techniques 

Segmentation is the process where an image is divided in parts with main goal to 
justify the particular structure of the region of interest. The technique is used in 
case a particular organ or a wide area of organs has to be indentified so the 
structure of them in 2D or 3D shape analysis must be represented. In this case 
the doctors are interested for the shape of the organs, the position inside the 
body and the anomalies of them. In 2D structure the presentation of the organ 
could be a contour model and in 3D structure could be a voxel structure [1]. 

Mathematically a segmentation is defined as follows [7] [8] [9]: Let I be the set 
of all image pixels, then by applying segmentation we obtain different unique 
non-overlapping regions { }1 2, , , nS S S  which, when combined, form I:  

1,

n

i
i n

S I
=

=


, where i jS S O=  with: Si is a connected region 1,2, ,i n=  ,  

( ) TRUEiP S =  for 1,2, ,i n=  , ( ) FALSEi jP S S =  for i j≠ , P(Si) is a 
logical predicate defined over points in set Si. Bi are the boundaries in sub-regions 
{ }1 2, , , nS S S . So the criteria for image segmentation are given in the following 
state: 
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A shape is a connection of points. Planar shapes, represented in terms of a 

connected set 2S R⊂  can be mapped by a generic transformation T into its im-
age Q = T(S); example Q = area(S) (Figure 1). 

Representation of a shape can be defined as 3D coordinates of the points on 
its surface, expressed as ( ) ( ) ( ){ }, ,x n y n z n , where 0,1, , 1n N= −  with N the 
number of points in the surface. In terms of images, a shape could be presented 
as a 2D region of interest defining a contour model as ( ) ( ){ },x n y n , where 

0,1, , 1n N= −  with N the number of points in the contour (Figure 2) 
Based on the 2D contours preparation, a 3D shape of the organ of interested is 

presented where a surface is defined. A surface is mathematically defined as a 
2-Manifold M embedded in R3, where every ball B centered in any point p be-
longing to the surface, and with a radius r tending to zero, intersects M in a re-
gion that is isomorphic to a plane disc [11] [12] [13] (Figure 3). 

Considering the Figure 4 it is clear that 2D parallel combined cross-sections 
illustrate the 3D shape of the organ. During the segmentation analysis abnormal 
regions has been appeared into different levels where some of them has been 
overlapping defining contour orientation models. For that reason a 2D shape 
matching approach must be introduced. A set of contours Si and Si+1 are calcu-
lated to justify the correct contour model.  

With the contour orientation calculation, a trees Tk,i (k-th tree in i-th level) 
and trees Tm,i+1 (m-th tree in (i + 1)-th level) is calculated and a forest Fi and Fi+1 
is defined (Figure 5) 

Sets of regions (solid and non-solid) of a level are matched against similar 
ones on the adjacent level, forming mapping groups mg. The set of all the map-
ping groups, denoted as MG contains all the mapping groups created for two 
consecutive levels. In our example the mapping groups for the two levels are {(A, 
B)} vs {(1, 2), (3, 4)}. 

After the orientation of the contours an interpolation procedure must be es-
tablished when parallel cross-sections contours are used. Based on the interpola-
tion procedure a 3D shape of the organ can be illustrated and surface model can  
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Figure 1. Shape model. 

 

 
Figure 2. Contour model [8] [10]. 

 

 
Figure 3. Parallel levels from a simple object [14]. 
 

 
Figure 4. Contour orientations in different levels. 
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Figure 5. Contour calculation in different levels. 
 
be calculated. Interpolation procedures are used in case when anomalies of the 
contours between different levels are large. The approach that is proposed is 
based on [15] [16] [17] considering a radial basis interpolates function to gener-
ate implicit surfaces.  

3. Solutions and Recommendations  

For the 3D surface interpolation the contours between different slices are ap-
peared to be abnormal. Meaning the in the plane of slice i, the surface created 
between slice pairs i − 1 and i will usually not agree in surface normal with the 
surface created between slices I and i + 1. To avoid discontinuities in surface 
normal, we must use information that involves more than just two slices at a 
given time. The contour interpolation result between parallel contours (using 10 
contours producing initial 600 triangles) is illustrated in Figure 6. 

The most of the times using segmentation techniques a serious problem is the 
shape of the organ for the 3D reconstruction. When there are not a lot of a ano-
malies (convex shape) traditional segmentation techniques like boundary track-
ing or region growing could be used effectively to reconstruct the organ of inter-
est. In case that there are a few anomalies (concave shape) in this case new seg-
mentation techniques must be considered [18] [19] [20]. [21] reported a method 
based on an adaptation of 3D deformable surface models to the boundaries of 
the anatomic structures of interest. 

Active contours or snakes are part of deformable models. The idea behind 
these models is to represent the contours as parts of elasticity and rigidity. The 
general concept of active contours is autonomous adaptation of the shape and 
location of objects finding the important contour points to reconstruct the im-
age. After initialization, by a starting contour, the process performs a fitting 
process based on the elasticity of the contour lines. If the model is represented by 
a parametric curve in 2D ( ) ( ) ( )( ),v s x s y s= . For each point in the neighbor-
hood of vi an energy function is calculated  

( ) ( )i int i ext iE aE v E vβ= +                       (1) 

where Eint is the energy function dependent on the shape of the contour and Eext  
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(a)                        (b) 

Figure 6. Reconstruction of kidney surface from parallel contours. In (a) manual seg-
mented contours (b) the implicit surface interpolation algorithm [8] [10].  
 
is the energy function dependent on the image properties. Based on [2] a genera-
lized active contour model is proposed based on  

( ) ( ) ( )( ) ( )
1 1

0 0

dr int r image r ext rE E v E v E v E v r= = + +∫ ∫            (2) 

where Eint is the internal energy of the model and characterizes the smoothness 
of the curve, Eimage is the image energy and characterizes of the curve and Eext is 
the external energy model and characterizes the user interaction into the model. 
The corresponding proposed models for the above energy functions are given 
bellow [2] [4]: 

● For internal energy: ( ) ( ) ( )
22 2

1 2 2int r
v vE v a r a r
r r
∂ ∂

= +
∂ ∂

, where the first de-

rivative represents the elasticity of the spline and the second derivative 
represents the bending of the contour.  

● For image energy: ( ) ( ) ( ) ( )1 2 3image r line r edge r curve rE v E v E v E vβ β β= + + , where 

( ) ( )line r rE v I v= , brightness of the image, ( ) ( ) 2
edge r rE v I v= − ∇  stepping 

of the image and ( ) ( )
( )

vv r
curve r

w r

I v
E v

I v
= , corners of the regions 

● For the external energy: ( ) ( )2

1 iexter r r iE v v xγ= −  where depending of the 
sign of γ, the curve is either attracted or repelled from the user defined point.   
Figure 7 illustrates the original CT image example with patient diagnoses 

with COVID-19. The region with uncertain diagnose is given in the square 
shape. The second image illustrates the resulting sub region and the third image 
illustrates a binary image based on the region gowning algorithm [21].   

The two algorithms that was considered for analysis is based on [2] and a 
modification based on the [22] [23]. Results for the process are given in Figure 8. 
The segmented regions with uncertain diagnose are given based on the final con-
tours. Part of the analysis has been implemented based on [24]. 
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Figure 7. Examples of the original CT patient images with COVID-19. From left to right: 
Original image, sub region of interest, binary image using region growing algorithm.  
 

 
Figure 8. Example of the snake algorithm applied to CT images of COVID-19 segmenta-
tion. From left to right: Segmented image based on [2]; Segmented image based on [22] 
[23]. 
 

From Figure 8 is clear that the regions with the medical problems are indenti-
fied clearly in the applied method considering active contours analysis. Especial-
ly the small regions in the original image are presented quit clearly in the repro-
ductive results.  

Considering the algorithms, the converges for the final solution is achieved 
with 100 iteration for [2] and 117 iterations for [22]; calculation time 0.654 sec 
for [2] and 0.670 sec for [22]. As similarity measure is considered the Dice crite-
rion with form  

( )2
Dice

A B
A B

=
+


                       (3) 

where A and B are the segmented region from method 1 and the segmented re-
gion from method 2. If A B≈  then Dice → 1. If A B=  then Dice = 1 (same 
segmentation contour results). In our comparison the Dice measure is 0.907 
meaning that both methods give us approximate similar results.  

4. Future Research Directions  

Further direction of this work could be the improvement of segmentation tech-
niques especially for the 3D shape models. In this case a new volumetric model 
must be considered based on the anomalies of the surface reconstruct of the or-
gan. An approach could be an introduction of stochastic models based on the 
homogeneity of the neighborhood structure.  
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Until now for 2D models a Markov chain techniques has been introduced 
considering the local characteristics of the image leading us to Markov Random 
Fields modeling (homogeneous or inhomogeneous). For the 3D models an ap-
propriate model could be introduced based on the local characteristics of the 
voxels and a 3d-Markov Random Fields model could be used reforming the neigh-
borhood structure model (from 2D to 3D) [25] [26] [27] 

Estimation of the model parameters could be done by proposing deterministic 
(maximum likelihood procedures) or stochastic (Monte Carlo Markov Chains 
procedures) to overcome possible problems with the stability of the estimation 
[25] [26] [27] [28] 

5. Conclusions  

Quantitative analysis of medical images requires detection and segmentation of 
the borders of the object of interest. Medical images segmentation techniques are 
part of big data analysis and for that reason different approaches must be consi-
dered due to the structure of the organ that the doctors needs to examine.  

In medical images, segmentation has traditionally been done by human ex-
perts. Substantial computational and storage requirements become especially 
acute when object orientation and scale have to be considered. Considering the 
shape model of the organ many times it is difficult for the doctors to segment by 
hand the appropriate regions. For that reason advances segmentation techniques 
could be proposed to overcome this particular problem.  

Many methods have been proposed to detect and segment 2D shapes, the 
most of which is template matching. Advanced segmentation techniques called 
snakes or active contours have been used, considering deformable models or tem-
plates. These techniques are based on the properties of the image (brightness, 
sharpness, and boundaries) for the final reconstruction of the shape contour. To 
problem with the anomalies between different cross-section contours models 
under parallel positions could be solved by proposing a radial basis function 
model where an interpolation method is proposed to manage the overlapping 
between the mapping groups. 
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