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Abstract 
In this paper, we present formulas that turn finite power series into series of 
shifted Chebyshev polynomials of the first kind. Thereafter, we derive formu-
las for coefficients of economized power series obtained by truncating the re-
sulting Chebyshev series. To illustrate the utility of our formulas, we apply 
them to the solution of first order ordinary differential equations via Taylor 
methods and to solving the Schrödinger equation (SE) for a spherically sym-
metric hyperbolic potential via the Fröbenius method. In each of the two ap-
plications, we show that the use of our formulas makes it possible to reduce 
the computing time, while preserving the accuracy of the results. 
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1. Introduction 

In this paper, we consider the formulas 
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( ) [ ]*

0 0

N k N k
k i

i i i
i i

c T x a x
− −

= =

=∑ ∑                        (2) 

where the ia  coefficients in the truncated power series intervening in the 

left-hand side of Equation (1) are known, 2N > , 
2
N k N≤ < , the ic  and  

[ ]k
ia  coefficients are to be determined. The shifted Chebyshev polynomials 
( )*

iT x  are defined in the interval [ ]0,1  by [1] [2]. 

( ) ( ) ( )* *
0 , 2 1 , 1,2 ,1 ,3,2 n nT x T x T x n= = − =               (3) 

where the first kind Chebyshev polynomials ( )nT x  are given by the recurrence 
relation 

( ) ( ) ( )1 12 , 1, 2,3, ,n n nT x xT x T x n+ −= − =                (4) 

with the starting values ( )0 1T x = , ( )1T x x= . 
Explicit expressions for the five first shifted Chebyshev polynomials are 
( )*

0 1 2T x = , ( )*
1 2 1T x x= − , ( )* 2

2 8 8 1T x x x= − + ,  
( )* 3 2

3 32 48 18 1T x x x x= − + − , and ( )* 4 3 2
4 128 256 160 32 1T x x x x x= − + − + . 

The power of a variable x appeared originally purely in algebraic problems [3]. 
With the development of calculus, the great importance of power expansions 
became evident, notably in analytical treatment of differential equations via the 
so-called power series method and the Fröbenius method (FM) [3]. 

The power series method is one of the most powerful analytical methods that 
physicists have for solving linear differential equations. It gives solutions in the 
form of a power series expansion about any desired point 0 ,x x x=  being the 
independent variable. The FM generalizes the power series one. It gives solutions 
in the form of a power series multiplied by a logarithm term 0ln x x−  or a 
fractional power ( )0

rx x−  [4]. It should be mentioned, however, that the pow-
er expansion suffers from slow convergence speed for points far from the origin 
of expansion. This means that for a desired level of accuracy, the points far from 
the origin will need substantially more terms than those close to the origin of 
expansion [5]. For computational purposes, however, it may be undesirable to 
require as many as N + 1 terms when N is large. Using series of orthogonal func-
tions such as Chebyshev polynomials to approximate solutions of differential 
equations could alleviate the problem of slow convergence via the so-called eco-
nomized power series. 

We have to emphasize that the economization technique for power series us-
ing Chebyshev polynomials is based on the minimax property [6] [7] [8] [9] [10] 
according to which Chebyshev approximations are associated with the approxi-
mations which minimize the maximum error. The algorithm for this economi-
zation technique is lengthy because it has many distinct phases [11] [12] [13]. 

Consequently, it is for considerable interest to find formulas that turn truncated 
power series of the form 0

N i
ii a x

=∑  into economized power series 0
n i

ii e x
=∑  of 
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a smaller degree n such that, in the range of interest, the absolute error intro-
duced by the replacement of the original power series by the economized one is 
less than some acceptable value E [11]: 

0 1
0 0

,
N n

j j
j j

j j
a x e x E x x x

= =

− < < <∑ ∑                   (5) 

where 0 1x = −  and 1 1x =  when first kind Chebyshev polynomials are used in 
the economization procedure, 0 0x =  and 1 1x =  in the case of shifted Cheby-
shev polynomials of the first kind. 

The main purpose of this paper is to find general formulas that directly trans-
form any Nth-degree truncated power series defined in the interval [ ]0,1  into 
an economized power series of a smaller degree n, using shifted Chebyshev po-
lynomials of the first kind. 

The rest of this paper is organized as follows. In Section 2, we establish formulas 
to transform any finite power series of a certain degree N into a series of first kind 
shifted Chebyshev polynomials and vice versa. Thereafter, we derive formulas for 
coefficients of truncated power series associated with the obtained Chebyshev  

series truncated to the 1N k− +  first terms, where 2N >  and 
2
N k N< < .  

In Section 3, we illustrate the utility of our formulas by means of two applica-
tions: first, we apply them to the solution of the Initial Value Problem (IVP) of 
the form 

( ) ( )( ) ( )d , , ,
d a
yy t f t y t a t b y a y
t

′ ≡ = ≤ ≤ =              (6) 

via Taylor methods [14] [15]; second, we apply our formulas to solving the 
Schrödinger equation (SE) for a spherically symmetric hyperbolic potential via 
the FM. In each of the two applications, we show that the use of our formulas 
makes it possible to reduce the computing time, while preserving the accuracy of 
the results. The conclusion is given in section 4. 

2. Relations between Finite Power Series and Chebyshev  
Series  

It is useful and convenient in various applications to be able to express power se-
ries explicitly in terms of power of Chebyshev polynomials, and vice versa. In 
this section, we concentrate on such expressions in the case of shifted Chebyshev 
polynomials of the first kind. 

2.1. Finite Power Series in Terms of Series of First Kind Shifted 
Chebyshev Polynomials  

We begin by relations between powers of x and shifted Chebyshev polynomials, 
which are useful to reduce the degree of a polynomial in the interval [ ]0,1 . We 
found it clarifying to use the formulas established by Ĺopez, Garcia and Caraveo 
[1]. These formulas can be summalized as [1] [16] 
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and 
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where: 

• ( )*
0

1
2

T x =  and thus ( )0 *
02x T x=  

• 
, 0

N
ij i j

S S
=

 =    is a ( ) ( )1 1N N+ × +  lower triangular matrix such that [1] 

1, 0,1,2, , , 0, ,ii ijS i N S j i= = = >                    (9) 

( )0 1,0 1,1

1, 1 1, 1, 1

2
, 1, , 1

2
i i i

ij i j i j i j

S S S
i j N

S S S S
− −

− − − − +

= +  = −
= + + 


             (10) 

( ) [ ]0 1,0 1,1 1, 1 1, 1, 12 , 2 , 1, 1N N N Nj N j N j N jS S S S S S S j N− − − − − − += + = + + ∈ −     (11) 

1P S −=                             (12) 

Since S is a lower triangular matrix with ones on the main diagonal, elements of 
the matrix P defined by Equation (12) can be computed recursively from [17] 

1
1, , 1, ,

i

jj ij ik kj
k j

P P S P i j N
−

=

= = − = +∑                  (13) 

From Equations (7) and (8), we obtain—after expressing the first four powers of 
x (resp. the first four ( )iT x  polynomials) in terms of ( )iT x  polynomials (resp. 
in terms of powers of x), and then generalizing the resulting formulas—the two 
following expressions: 

( )*

0

2 , 0,1, 2, ,
4

i
i

ij ji
j

x S T x i N
=

= =∑                   (14) 

and 

( )*

0

1 4 , 0,1,2, , .
2

i
j j

i ij
j

T x P x i N
=

= =∑                  (15) 
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Non-vanishing elements of the first nine lines of matrices S and P are given in 
the two following equations: 

1
2 1
6 4 1
20 15 6 1
70 56 28 8 1
252 210 120 45 10 1
924 792 495 220 66 12 1
3432 3003 2002 1001 364 91 14 1

12870 11440 8008 4368 1820 560 120 16 1

S

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
           

    (16) 

and 

1
2 1

2 4 1
2 9 6 1

2 16 20 8 1
2 25 50 35 10 1

2 36 105 112 54 12 1
2 49 196 294 210 77 14 1

2 64 336 672 660 352 104 16 1

P

 
 − 
 −
 
− − 
 − −
 =
− − − 
 − − − 
− − − − 
 − − − − 
           

     (17) 

It can be easily verified that 

, 1 , 12 , 1, 2, , ;i i i iS i P i N− −= = − =                    (18) 

( ) ( )2 2
, 2 , 21 ; 3 , 2,3, , .i i i iS i i i P i i i i N− −= + − = + − =            (19) 

In order to transform the finite power series 0
N i

ii a x
=∑  into the Chebyshev se-

ries of the form *
0

N
i ii c T

=∑ , we first replace each power of x by its expression in 
terms of first kind Chebyshev polynomials, using relations given in Equation 
(14). Then we collect all the coefficients with the same Chebyshev polynomial 

( )* ; 0,1, 2, ,iT x i N=  . We find, after some manipulations, that 

( )*

0 0

N N
i

i i i
i i

a x c T x
= =

=∑ ∑  

with 

2 , 0,1,2, , .
4

N
ji

i jj
j i

S
c a i N

=

= =∑                   (20) 

2.2. Finite Chebyshev Series in Terms of Power Series 

We consider here the problem of transforming the finite Chebyshev series 
( )*

0
N

i ii c T x
=∑  into a finite power series of the same degree, i.e., 0

N i
ii a x

=∑  To 
solve this problem, we begin by expressing each polynomial ( )* , 0,1, ,iT x i N=  , 
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in terms of powers of x, using relations given in Equation (15). Thereafter, we 
collect all the coeffcients with the same power of x. We obtain the following ex-
pression not found explicitely in the literature to the best of our knowledge. 

4 , 0,1,2, , .
2

i N

i ji j
j i

a P c i N
=

= =∑                     (21) 

2.3. Useful Formulas for Economization of Power Series on the  
Interval [0, 1]  

As stated earlier, the economization algorithm is lengthy because it has many 
distinct phases. More precisely, the economization of a power series, such as 

0
i

ii a x∞

=∑  has four basic steps which are as follows when the economization is 
based on the use of shifted Chebyshev polynomials of the first kind: 

Step 1 Truncate the given power series to obtain a polynomial 

( ) 0 1
N

N NP x a a x a x= + + +                     (22) 

of degree N. 
Step 2 Expand ( )NP x  in a Chebyshev series as follows: 

( ) ( ) ( ) ( )* * *
0 0 1 1N N NP x c T x c T x c T x= + + +               (23) 

making use of relations given in Equation (14). 
Step 3 Truncate this Chebyshev series to a smaller number of terms by re-

taining the first n terms, choosing n so that the maximum error given by 

( ) ( ) 1N n n NP x M x E c c+− ≤ + + +                (24) 

is acceptable, where ( )nM x  designs the resulting small Chebyshev series, i.e., 

( ) ( ) ( ) ( )* * *
0 0 1 1 ,n n nM x c T x c T x c T x= + + +              (25) 

whereas E represents the absolute error introduced by the replacement of 
( )NP x  with ( )nM x . 

Step 4 Replace ( )( )* 0,1, ,jT x j n=   by its polynomial form, which leads to 

( ) 0 1 ,n
N nP x e e x e x≈ + + +                    (26) 

using Equation (15). 
If necessary in step 1, i.e., when we have an interval [ ],a b  other than [ ]0,1 , 

make a transformation of independent variables so that the economization is va-
lid on that interval, by means of the expression 

x ay
b a
−

=
−

                          (27) 

In this case, it is necessary to change variable back to x after step 4, which makes 
the computing time more considerable. 

To reduce the duration of the economization procedure, it is convenient to 
have a general formula for the coefficients [ ] , 0,1, 2, ,k

ia i N k= − , defined by 

( ) [ ]*

0 0
, 1

N k N k
k i

i i i
i i

c T x a x k N
− −

= =

= < <∑ ∑                  (28) 
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where the superscript [k] means that the finite power series of degree N k−  
whose the [ ]k

ia  are coefficients is just the Chebyshev form of ( )NP x  (see equ-
ations (23)), truncated to the first 1N k− +  terms, i.e., the last k terms of the 
right hand side of Equation (23) are neglected. 

In the rest of this section, we concentrate on establishing a general formula for 
the [ ]k

ia  coefficients. For this purpose, we first derive expressions for the [ ]1
ia , 

[ ]2
ia  and [ ]3

ia  coefficients successively, in terms of the ia  coefficients, i.e., 
coefficients of the original Nth-degree truncated power series to be economized. 
Thereafter, we generalize these expressions to establish a formula for [ ]k

ia , 
0,1, ,i N k= − ; 1 k N< < . 

2.3.1. Case When Only the Last Term Is Neglected 
We start with the expression (1), where the ia  coefficients are known and the 

ic  coefficients are given by Equation (20). From Equation (1), we have 

( ) ( )
1 1

* *

0 0

N N
i N

i i N N i N
i i

c T x c T x a x a x
− −

= =

+ = +∑ ∑                (29) 

where 
22

4 4
NN

N N NN N

S
c a a= =                      (30) 

according to Equation (20) and to the fact that 1NNS = . Using Equation (15), 
we obtain 

( )
1

*

0

1 4 .
2

N
j j

N Nj
j

T x P x
−

=

= ∑                      (31) 

Combining equations (29), (30) and (31), we have: 

( )
1 1 1

*

0 0 0
4 4

4 4

N N N
i N N N j jN N

i i i N NN NjN N
i i j

a ac T x a x a x P x P x
− − −

= = =

= + − −∑ ∑ ∑       (32) 

1 1

0 0
4

4

N N
i j jN

i NjN
i j

a
a x P x

− −

= =

= −∑ ∑                         (33) 

since 1NNP = . This can be rewritten as 

( ) [ ]
1 1

1*

0 0

N N
i

i i i
i i

c T x a x
− −

= =

=∑ ∑                      (34) 

where 

[ ]1 4
, 0,1, 2, , 1.

4

i
Ni

i i NN

P
a a a i N= − = −                (35) 

2.3.2. Case When the Last Two Terms Are Neglected 
From Equation (34), we have 

( ) ( ) [ ] [ ]
2 2

1 1* * 1
1 1 1

0 0

N N
i N

i i N N i N
i i

c T x c T x a x a x
− −

−
− − −

= =

+ = +∑ ∑            (36) 

where 

, 1 1, 1 , 1
1 11

1
2 2

4 4 4

N
j N N N N N

N j N Nj N N
j N

S S S
c a a a− − − −

− −−
= −

 
= = + 

 
∑          (37) 
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and 

( )
2

* 1 1
1 1, 1, 1

0

1 4 4 .
2

N
j j N N

N N j N N
j

T x P x P x
−

− −
− − − −

=

 
= + 

 
∑             (38) 

Combination of Equations (36), (37) and (38) yields 

( ) [ ] [ ]
2 2

1 1 1, 1 , 1* 1
1 11

0 0

2
1, 1 , 11 1

1, 1 1 1,1
0

4 4

4 4 .
4 4

N N
N N N Ni N

i i i N N NN N
i i

N
N N N NN N j j

N N N N N jN N
j

S S
c T x a x a x a a

S S
P x a a P x

− −
− − −−

− −−
= =

−
− − −− −

− − − −−
=

 
= + − + 

 
 

× − + 
 

∑ ∑

∑
 (39) 

Collecting all coefficients of 1Nx −  and taking into account Equation (18) and 
the expression of [ ]1

1Na −  derived from (35), i.e., 

[ ]
1

1 , 1
1 1

4
,

4

N
N N

N N NN

P
a a a

−
−

− −= −                     (40) 

we find that the term of degree 1N −  in Equation (39) vanishes. Therefore, this 
equation can be rewritten as 

( ) [ ]
2 2

2*

0 0

N N
i

i i i
i i

c T x a x
− −

= =

=∑ ∑                       (41) 

with 

[ ]2 1, 1,
1 , 11

4 4 4
.

4 4 4

i i i
N i N i Ni

i i N N N NN NN N N

P P P
a a a S S a− −

− −−

 
= − − + 

  
        (42) 

2.3.3. Case When the Last Three Terms Are Neglected 
In this case, we start with Equation (42) which can be rewritten as follows: 

( ) ( ) [ ] [ ]
3 3

2 2* * 2
2 2 2

0 0

N N
i N

i i N N i N
i i

c T x c T x a x a x
− −

−
− − −

= =

+ = +∑ ∑             (43) 

where 

, 2
2

2
2

4

N
j N

N jj
j N

S
c a−

−
= −

= ∑                       (44) 

and 

( )
2

*
2 2,

0

1 4 .
2

N
j j

N N j
j

T x P x
−

− −
=

= ∑                     (45) 

Inserting the last two expressions into Equation (43), we get: 

( ) [ ] [ ]
3 3

2 2 2, 2 1, 2* 2
2 2 12 1

0 0

3
, 2 2 2

2, 2, 2
0

4 4

4 4
4

N N
N N N Ni N

i i i N N NN N
i i

N
N N j j N N

N N j N NN
j

S S
c T x a x a x a a

S
a P x P x

− −
− − − −−

− − −− −
= =

−
− − −

− − −
=


= + − +



 
+ + 

  

∑ ∑

∑
     (46) 

The term of degree 2N −  vanishes. This can be shown by inserting in the 
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above equation expressions of 2, 2N NS − − ; 1, 2N NS − − ; , 2N NS −  and [ ]2
2Na −  ob-

tained from Equations (9), (18), (19) and (42) respectively, not forgetting to 
replace the two matrix elements 1, 2N NP − −  and , 2N NP −  intervening in [ ]2

2Na −  
with their expressions derived from (18) and (19). Therefore, Equation (46) 
becomes 

( ) [ ]
3 3

3*

0 0

N N
i

i i i
i i

c T x a x
− −

= =

=∑ ∑                        (47) 

where 

[ ]3 2, 1, 1, 2 2,
2 12 1

, 2 2, , 1 1,

4 4 4
4 4

4 4 4
, 0, , 3.

4

i i i
N i N i N N N i

i i N NN N

i i i
N N N i N N N i Ni

NN

P P S P
a a a a

S P S P P
a i N

− − − − −
− −− −

− − − −

+
= − −

+ +
− = −

     (48) 

2.3.4. Generalization 
A careful analysis of Equations (35), (42) and (48) suggests the following general 
formula for the [ ]k

ia  coefficients: 

[ ]

1
, 0,1, , -

k
k

i i ji N k j
j

a a b a i N k− +
=

= − =∑                 (49) 

where 
1

, ,

0
4

4

j
N k j N k j q N k j q ii

ji N k j
q

S P
b

−
− + − + − − + −

− +
=

= ∑                   (50) 

To the best of our knowledge, this formula has not yet been reported in the lite-
rature. 

For 4k = , Equations (49) and (50) yield 

[ ]4 3, 2, 3 3, 2,
3 23 2

1, 3 3, 1, 2 2, 1,
11

, 3 3, , 2 2, , 1 1,

4
4 4

4
4

4 .
4

N i N N N i N ii
i i N NN N

N N N i N N N i N ii
NN

N N N i N N N i N N N i Nii
NN

P S P P
a a a a

S P S P P
a

S P S P S P P
a

− − − − −
− −− −

− − − − − − −
−−

− − − − − −

+ 
= − − 

 

+ + 
−  

 

+ + + 
−  

 

      (51) 

3. Applications 

To illustrate the utility of our formulas, we apply them to two problems via two 
distinct methods: 
• The Initial Value Problem (IVP) of the form 

( ) ( )( ) ( )d , , ,
d a
yy t f t y t a t b y a y
t

′ = = ≤ ≤ =               (52) 

via the Taylor method of a certain order, 
• the Boundary Value Problem (BVP) constituted by the SE for a spherically 

symmetric hyperbolic potential given by [18] 
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( ) ( ) ( ) ( )

( ) ] [

3
2

2 1
1

2

1

coth coth tanh

sech , 0,

i
i

i

K
j

j
j

V r C r C r C r

B r r

α α α

α

− −
=

=

= + +

+ ∈ +∞

∑

∑
         (53) 

and the boundary conditions ( )0 0ψ =  and ( ) 0ψ ∞ = , the method to be 
used being the FM. 

3.1. Application to Taylor Methods for Initial Value Problems 

We here consider the IVP of type (52) that possesses a unique solution on some 
specified interval. The object of Taylor methods is, in this situation, to obtain 
approximations to the solution of the IVP in question at N particular equally 
spaced points 

[ ] 0, 1, , , ,j
b at a jh j N N t a

h
− = + ∈ = =  

               (54) 

approximations to the numbers ( ) ( ) ( )1 2, , , Ny t y t y t , rather than to the curve 
of ( )y t . Taylor method of order n is, in the case of the IVP (52), defined by [14] 
[15] 

( ) ( )0 1, , , , 0,1, , 1n
a i i i iw y w w hT t w h i N+= = + = −          (55) 

where 

( ) ( ) ( ) ( ) ( ) ( )
1

1, , , , , ,
2

n
n n

i i i i i i i i
h hT t w h f t w f t w f t w

n

−
−′= + + +

！
      (56) 

iw  being the approximation of ( )i iy y t≡ . It is remarquable that Taylor me-
thods are explicit and that the explicit Euler’s method is Taylor’s method of or-
der one. Note that Equation (55) becomes 

( )
( )

1

0 1
1

, ,
!

nn
n

a i i i i
j

fw y w w t w h
n

−

+
=

= = +∑                (57) 

if ( ) ( ), ,n
i iT t w h  is replaced by its expression given by Equation (56). 

The existence of the truncated power series of h in Equation (57) immediately 
suggests that the economization process can be used to improve the accuracy 
and speed of Taylor’s methods. 

Table 1 contains the results produced by a fortran 90 code used to approx-
imate the solution of the IVP given by 

( ) ( )2 1, 0 0.5y t y t y′ = − + =                    (58) 

using Taylor methods of orders 14 and 20 with two different step sizes, i.e., 
0.2h =  and 0.9h = . The exact solution, which is [15] 

( ) ( )21 0.5ety t t= + −                       (59) 

is given in colunn 3, global errors for the fourteenth- and twentieth-orders Tay-
lor methods in colunns 4 and 5 respectively. 
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It is obvious that the accuracy of Taylor’s methods decreases with h and in-
creases with the order of the method. 

In Table 2, we show results obtained after applying the economization process 
to the twentieth-order Taylor method for the IVP (58). We consider the four-
teenth-degree economized power series only. 

 
Table 1. Results for IVP (58) using Taylor’s methods of orders 14 and 20 with step sizes 0.2 and 0.9. 

h it  iy  
i iw y−  

14N =  20N =  

0.2 

0.0 0.5000000000000000000000000000000000000000 0.0 0.0 

0.2 0.8292986209199150830394640026801629148462 1.26875901781491456 × 10−23 2.07119 × 10−35 

0.4 1.2140876511793648410875735235813888596784 3.09933152759944941 × 10−23 5.05952 × 10−35 

0.6 1.6489405998047455125623161659185677433089 5.67829811439411006 × 10−23 9.26957 × 10−35 

0.8 2.1272295357537661977102312343024616214732 9.24731863810221013 × 10−23 1.509584 × 10−34 

1.0 2.6408590857704773823198562643236687511213 1.411837561270498104 × 10−22 2.304763 × 10−34 

1.2 3.1799415386317262552346162851991778399632 2.069306749691896987 × 10−22 3.378052 × 10−34 

1.4 3.7324000165776627063879455523856898739162 2.948699800145329006 × 10−22 4.813622 × 10−34 

1.6 4.2834837878024425981728568217880178717935 4.116057221581538750 × 10−22 6.719282 × 10−34 

1.8 4.8151762677935269581344880234861373309194 5.655784098582873846 × 10−22 9.232818 × 10−34 

2.0 5.3054719505346748863847862697124960934098 7.675544775075057786 × 10−22 1.2529988 × 10−33 

2.2 5.7274932502829395367641114165556679851399 1.0312424714524411566 × 10−21 1.6834579 × 10−33 

2.4 6.0484118096791991738810301151660989957414 1.3740680715970056325 × 10−21 2.2431055 × 10−33 

2.6 6.2281309824991548011245873337079413776030 1.8181480769274424322 × 10−21 2.9680466 × 10−33 

2.8 6.2176766144514750642509919945374922181378 2.3915134663568473533 × 10−21 3.9040403 × 10−33 

0.9 

0.0 0.5000000000000000000000000000000000000000 0.0 0.0 

0.9 2.3801984444215251680999367181987646522891 8.339913295594717 × 10−14 1.116413 × 10−21 

1.8 4.8151762677935269581344880234861373309194 4.10257533772465599 × 10−13 5.491866 × 10−21 

2.7 6.2501341375635829440655034902658021096556 1.51360605966344928 × 10−12 2.0261716 × 10−20 

3.6 2.8608827781610061237026170504081713635556 4.96382689788547359 × 10−12 6.6447708 × 10−20 

4.5 −14.75856565026090677505772837278718042396 1.526130510160405894 × 10−11 2.0429374 × 10−19 

5.4 −69.74320810209354351254734005713950522379 4.504410420986339807 × 10−11 6.0297781 × 10−19 

6.3 −218.9959550629645165296943338665826849488 1.2925572199616312967 × 10−10 1.73026711 × 10−18 

7.2 −602.4753821972089148436757576493594419345 3.6333460109324551554 × 10−10 4.86373756 × 10−18 

8.1 −1564.424037641920666544064178264125187657 1.0053662796448713144 × 10−9 1.3458222046 × 10−17 

9.0 −3951.541963787692003854998344716379982506 2.7475578102963661256 × 10−9 3.6779872018 × 10−17 
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Table 2. Results for IVP (58) after applying the economization process to Taylor’s me-
thod of order 20 with k = 6 and step sizes 0.2 and 0.9. 

h it  iy  i iw y−  

0.2 

0.0 0.5000000000000000000000000000000000000000 0.0 

0.2 0.8292986209199150830394640026801629148462 −2.777268398886 × 10−22 

0.4 1.2140876511793648410875735235813888596784 −6.784326565101 × 10−22 

0.6 1.6489405998047455125623161659185677433089 −1.2429592768310 × 10−21 

0.8 2.1272295357537661977102312343024616214732 −2.0242051853363 × 10−21 

1.0 2.6408590857704773823198562643236687511213 −3.0904622455648 × 10−21 

1.2 3.1799415386317262552346162851991778399632 −4.5296389328673 × 10−21 

1.4 3.7324000165776627063879455523856898739162 −6.4545990670861 × 10−21 

1.6 4.2834837878024425981728568217880178717935 −9.0099029752651 × 10−21 

1.8 4.8151762677935269581344880234861373309194 −1.23803103878373 × 10−20 

2.0 5.3054719505346748863847862697124960934098 −1.68014947273151 × 10−20 

2.2 5.7274932502829395367641114165556679851399 −2.25735312012718 × 10−20 

2.4 6.0484118096791991738810301151660989957414 −3.00778617497978 × 10−20 

2.6 6.2281309824991548011245873337079413776030 −3.97986152424936 × 10−20 

2.8 6.2176766144514750642509919945374922181378 −5.23493798456861 × 10−20 

0.9 

0.0 0.5000000000000000000000000000000000000000 0.0 

0.9 2.3801984444215251680999367181987646522891 −4.380236415433 × 10−23 

1.8 4.8151762677935269581344880234861373309194 −2.1547286230004 × 10−22 

2.7 6.2501341375635829440655034902658021096556 −7.9496658372463 × 10−22 

3.6 2.8608827781610061237026170504081713635556 −2.60706971012654 × 10−21 

4.5 −14.75856565026090677505772837278718042396 −8.01544596253786 × 10−21 

5.4 −69.74320810209354351254734005713950522379 −2.365777899212222 × 10−20 

6.3 −218.9959550629645165296943338665826849488 −6.788687128076857 × 10−20 

7.2 −602.4753821972089148436757576493594419345 −1.9082829692444543 × 10−19 

8.1 −1564.424037641920666544064178264125187657 −5.2803210691366666 × 10−19 

9.0 −3951.541963787692003854998344716379982506 −1.44305490328401511 × 10−18 
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Comparing Table 1 and Table 2, we see that w and y in Table 1 are not so 
close as in Table 2 for the step size 0.9h = . 

3.2. Application to One-Particule Radial Schrödinger Equation via 
the Fröbenius Method 

The time-independent SE for a particule of mass M that moves in three 
dimemsional space under the effect of a spherically symmetric potential is given 
by 

( ) ( ) ( )
2

ψ ψ
2 r V r r E r

M
− ∆ + =  
                    (60) 

Taking ( ) ( ) ( )1ψ ,mr r r Yψ θ ϕ−=


  and considering potential (53), it is found 
that ( )rψ  must satisfy the radial SE 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2
2

2 12 2

3
2

1 1

d 1
coth coth

2 d 2

coth sech
K

i j
i j

i j

R
C R C R

M R MR

C R R R E R

ψ
α α

α β α ψ ψ

− −

= =

 +
− + + +




+ + =


∑ ∑

 



 

 

 bb

     (61) 

where 

] [, , 1, .R r α α= = ∈ +∞ b b b                    (62) 

To reduce Equation (61) into a differential equation solvable by means of the 
FM, we appeal to the following approximation for the centrifugal term 21 R  
[19] 

( ) ( )
2

2 2 2

1
sinh coshR R R

α
α α

 
≈ + 

  


 

s t
                 (63) 

where α , s  and t  are adjustable dimensionless parameters. Substituting 
this approximation into (61) and making the change of variable  

( )tanh Rξ α= −  , such that the domain 0 r< < ∞  maps to 1 0ξ− < < , we find: 

( ) ( ) ( )

( ) ( ) ( )

22
2 2 3 2

2 12 2 2

2
2 3 4 5 2 2

1 2 3
1

1d d 21 2 1
d 2d

1
1 0

2

K j

j
j

M C C
M

E C C C B
M

αψ ψξ ξ ξ ξ ξ
ξξ α

α
ξ ξ ξ ξ ξ ξ ψ ξ

− −

=

  +
− + − + − + +     

 + 
+ + + − + − − =     

∑

 



 



s

s
 (64) 

where the jB  coefficients are such that 

( ) 2

1 1

1
, , 2,3, , .

2 i iB B B B i K
M
α+

= + = =
 

 



t
              (65) 

If we make the substitution 1η ξ= +  in Equation (64), such that the domain 
1 0ξ− < <  maps to 0 1η< < , and then apply the FM to the resulting differen-

tial equation by writing 

( )
0

,n
n

n
aδψ η η η

∞

=

= ∑                         (66) 

we find that the recursion relation between successive coefficients is: 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
0 1

2
1

2
2 1

2
3 2

2 2
2

4 3 5 4 1
6

4 4 2 8 1 4

2 2 1 6 2 1 12 12

8 21 13 21 26 13

16 2 10 3 4 5 3 6

6 5 5 2 0

n

n

n

n

K

n n p n p
p

d n n a

d n n a

d n n a

d n n a

d n n a d a b a

ε δ δ δ

ε δ δ δ

ε δ δ δ

δ δ δ

δ δ δ

+

−

−

+

− − − +
=

 + + + + + + + 

 + − − + − + − 

 + + + − − − − + 

 + − + + − + − − 

 + + − − − − + + + =  ∑

   (67) 

where 

[ ]0 2 1 1 2 32 2 2 2

2 2,M ME d C C C C Cε
α α − −= = − + + + +

 

          (68) 

( ) 2

1 1 1 2 3 12 2

2 12 3 4 5
2

Md C C C C
M

α
β

α −

 +
= − + + + + − 

  

 



s
         (69) 

( ) 2

2 1 2 3 22 2

2 12 3 6 10
2

Md C C C
M

α
β

α

 +
= − − − − 

  

 



s
           (70) 

( ) ( )3 1 2 3 3 4 2 3 42 2 2 2

2 24 10 , 5M Md C C C d C Cβ β
α α

= + + + = − + +
 

      (71) 

( )5 3 52 2 2 2

2 2; , 6,7, , 2 2.j j
M Md C b j Kβ β
α α

= − = − = +

 

        (72) 

Here, id  refers to the coefficient of iη  in the expression between brackets which 
intervene in the left-hand side of Equation (64). 

It is worth noting that the jβ  quantities that appear in Equations (69)-(72) 
are defined as follows: 

1 1 2 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ; 2 ; 2 ; 3,4, , 2 ;j j j jB B B B B B j Kβ β β − −= = − + = − + =         (73) 

2 1 2 1 2 2 2 2
ˆ ˆ ˆ2 ;K K K K KB B Bβ β+ − += − =                   (74) 

where the ˆ
jB  quantities are calculated from the two following equations : 

( )
2 1

1 2 2 1
2 1

1

ˆ 1 2 ; 0, , 1;
2 1

p
j j p

p j
j p
j K

j
B B p K

p j

+
+ − −

+
= +
≤

 
= − = − + − 
∑ 


         (75) 

( )
2

2 2
2

ˆ 1 2 ; 1, 2, , .
2

p
j j p

p j
j p
j K

j
B B p K

p j
−

=
≤

 
= − = − 
∑ 


             (76) 

Let us mention in passing that the potential (53) has been studied in [18] us-
ing variables ξ  and η  given by ( )tanh rξ α=   and [ ]1 1,0η ξ= − ∈ − . 

Setting 1n = −  in the above recursion relation, we obtain the indicial equation 
( )2

0 04 0d aδ ε+ + =  which is solved by 1 0 2dδ ε= − − −  and 2 0 2dδ ε= − − . 
We can therefore conclude that the two solutions of the radial SE obtained as 
generalized series, one with 1δ δ=  and the other with 2δ δ= , are linearly in-
dependent. Clearly, only 0δ >  is acceptable for bound states since in this case 
( ) ( )0 0rψ ψ η= ∞ = = = . Such a solution to the SE contains only the series with 

2δ δ= , and in the following will be denoted by 
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( ) 2

0
, n

n
n

aδψ η ε η η
∞

=

= ∑                        (77) 

where the dependence on the energy eigenvalue is explicitly marked. For arbitrary 
ε , the wave function ( ),ψ η ε  obtained from (77) is not square integrable. If, for 
a particular value of ε , ( )0, 0ψ η ε= = , the wave function is square integrable. 
In other words, this condition determines the energies of the discrete spectrum. 
Substituting the calculated bound state energy into the recursion relation (67), 
the coefficients of the generalized series (77) can be successively determined in 
order to obtain the wave function as a sum of the series. 

We have to emphasize that in practice, the function ( ),ψ η ε  has to be 
approximated by truncating the series in Equation (77) at a suitably high order 
N, which requires high precision computing since some of the elements of ma-
trices S and P needed to compute the [ ]k

ia  coefficients (se relations (49) and (50)) 
are extremely big for high values of i. To deal with this situation, we appeal to a 
software package for arbitrary precision computation, named MPFUN2015 and 
developed by David H. Bailey [20]. In our calculations, the precision level is set 
to 500 digits and 0a  equals 10−9. The number of terms in the series (77) is 602, 
which means that N = 601. One has to add that the truncated series is a function 
of ε whose zeros correspond to bound state values of ε. If for two neighboring 
values of ε the wave function at 0η =  ( r →∞ ) takes values of different signs, 
we can deduce that one bound state reduced energy (ε) lies between these two 
values. The bound state reduced energy in question can be computed numeri-
cally by means of the dichotomy method [21] with an arbitrary chosen precision. 

Figure 1 shows bound state wave functions as function of r in the case of the 
so-called Manning-Rosen Potential (MRP) defined by [18] [22] [23] [24] [25] 

( ) ( )
( )

( )
( )

22 2

2 2 2 2

1 1 e e
2 e 1 2 1 ee 1 1 e

r b r b

r b r br b r b

A AV r
Mb Mb

− −

−−

   − −   = − = −
   − −− −      

 

a a a a
  (78) 

and which is a special case of the potential (53) since this one reduces to MRP by 
choosing 1K = , ( ) ( )2 2

2 1 8C Mb− = − a a , ( ) ( )2 2
1 1 4C A Mb− = − − +  a a , 

1 0C = , ( ) ( )2 2
2 1 1 2 8C B A Mb= = − +   a a  and ( )1 2bα = . 

Figure 2 shows the effective potential ( )eff ,V r   given by 

( ) ( ) ( )
2

eff 2

1
, ,

2
V r V r

Mr
+

= +
  

                    (79) 

where the dependence on   is explicitly marked, for the first four values of   
and given values of a , b and A. 

In our calculations, 1= , the value of a  is 0.75, that of 1/b is 0.025, 2A b=  
and the quantum number 8n ≤ . The parameter b  has been chosen such that 

0.0001α = , which implies that 0.9999999999999999864889=s  and  
0.3333422254140179276=t . We have seven bound states whose energies, ob-

tained by means of the FM, are: E21 = −0.12054171328 a.u., E31 = −0.04588384531 
a.u., E41 = −0.02081525239 a.u., E51 = −0.00981695557 a.u., E61 = −0.00437316621 
a.u., E71 = −0.00161118952 a.u. and E81 = −0.00034181936 a.u.  
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Figure 1. Wave functions as functions of r for 2p-8p states and for 0.75=a , 1 0.025b =  and 2A b= . These functions are 

normalized such that [ ] ( )0,1000max 1nr rψ∈ =


. Dashed line: Results obtained by the FM without economization. Solid line: Results 

of the FM with economization. The asterisk in brackets refers to the fact that the wave function has been obtained after applying 
the economization procedure to the FM. 
 

 

Figure 2. The effective potential ( )effV r  given by Equation (79) for the case eM m=  and parameters 0.75=a ; 1 0.025b = ; 

2A b= ; 0,1,2,3= . Atomic units are used, so that ( )effV r  is expressed in Hartree. 
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In order to show that our formulas can help to reduce the computation time, 
we consider the domain 0 1000r< <  and then compute the wave functions at 

0j stepr jr= +  for 0,1,2, ,j J=   where the step size 0.00 a.u.1stepr =  and J is 
the number of the mesh points minus 1. In our case, 100,000J = , which means 
that for each bound state, it is necessary to evaluate the sum of the first N + 1 
terms of the series intervening in the right-hand side of Equation (77) 100,001 
times. Using a (N-k) th-degree economized power series allows to reduce the 
number of terms in this (N + 1)-term truncated series, which saves us a little 
time during the computation of the sum. In our calculations, we have chosen 

200k = . We found that the total duration of the whole computation is 9287 
seconds (s) when the economization procedure is used to calculate the wave 
function and 11,540 s in the absence of the economization. The use of the eco-
nomization procedure thus helps us save 253 s due to the fact that the time spent 
on computing the [ ] ( )0,1, ,k

ia i N k= −  coefficients (see Equations (49) and 
(50)) is compensated by the gain of time when calculating the (N + 1)-term sum 
mentioned above. 

4. Conclusion  

New transformation formulas between finite power series and series of first-kind 
shifted Chebyshev polynomials are proposed. These formulas have been used to 
establish formulas that directly turn any Nth-degree truncated power series into 
an economized one whose degree n is lower than N. We also have shown that 
the application of these formulas to the Fröbenius and Taylor’s methods for or-
dinary differential equations can, in some situations, help to reduce the compu-
ting time while preserving and even improving the accuracy of the results. 
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