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Abstract 
Probiotics are live microorganisms which when administered in adequate 
amounts confer a health benefit on the host. Human-origin Lactobacillus is a 
preferable source of probiotic bacteria. This study screened 14 vaginal Lacto-
bacillus strains as probiotic candidates by investigating probiotic-related cell 
surface characteristics including cell surface hydrophobicity (CSH), Lewis 
acidity/basicity, autoaggregation, and biofilm formation. Moderate to high 
CSH and autoaggregation, high basicity and low acidity were prevalent in the 
14 tested strains. Biofilm formation varied in a large range among the 14 
tested strains. CSH showed a high correlation with Lewis acidity and autoag-
gregation, while Lewis acidity was highly correlated with autoaggregation and 
biofilm formation. Four strains were selected as promising probiotic strains. 
This study was the first one to compare antibiotic sensitivity between bio-
film-forming cells and planktonic cells of Lactobacillus species, and found 
that biofilm-forming cells of a L. fermentum strain had a significantly higher 
survival rate than planktonic cells in cefotaxime, cefmetazole and tetracycline, 
but were as sensitive to oxacillin and ampicillin as planktonic cells were. 
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1. Introduction 

Probiotics are live microorganisms which when administered in adequate 
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amounts confer a health benefit on the host [1]. Lactobacillus spp. are widely 
used as probiotic bacteria, and their application in foods are generally recog-
nized as safe (GRAS) [2]. Probiotic potential of Lactobacillus spp. is closely re-
lated to the cell surface characteristics including cell surface hydrophobicity 
(CSH), cell surface charge, and abilities of autoaggregation and forming biofilm, 
which are widely used for in vitro characterization and screening of probiotic 
strains [3]-[8]. 

Bacterial CSH influenced the strength of bacterial adhesion to the host tissues, 
so is important for probiotic bacteria to confer health benefit to the host [8]. It 
was believed that hydrophobic nature of cell surface could facilitate colonization 
and adhesion of bacteria to the epithelium of gastrointestinal tract of a host [9]. 
Some studies even showed correlation between CSH and adhesion ability in 
Lactobacillus [7]. 

Bacterial cell surface charge has also been shown to influence the strength of 
bacterial adhesion to the host [8]. Electron acceptor (i.e. Lewis acid) and electron 
donor (i.e. Lewis base) on two surfaces can interact with each other by forming a 
coordinate covalent bond. This interaction had been implicated in microbial 
adhesion, as well as in other interfacial phenomena such as phagocytosis and 
biofouling [10]. 

Aggregation ability has been suggested to be an important characteristic of 
many bacterial strains used as probiotics [8]. A good probiotic must possess high 
autoaggregation as well as strong hydrophobicity [9]. The ability of Lactobacillus 
to form multicellular aggregates can facilitate probiotic adhesion to intestinal 
cells and colonization to the intestines [7]. 

Biofilm formation by probiotic bacteria is a beneficial characteristic, because it 
could improve colonization and permanence over time in host mucosa, me-
chanically protect the mucosa, and prevent colonization of pathogens [5] [6], 
and it is also an important feature in food processing [11]. Besides, biofilm could 
also protect bacteria against antibiotics, which had been well demonstrated in 
pathogenic bacteria [12] [13]. Antibiotics could be encountered by probiotic 
bacteria in human body and during food processing, but how biofilm affects an-
tibiotic sensitivity in probiotic bacteria, e.g. Lactobacillus species has been large-
ly neglected so far. 

Human-origin Lactobacillus is a preferable source of probiotic bacteria, and 
Lactobacillus isolates from human oral cavity [8] [14], breast milk [15] [16], 
stomach [17], feces or intestinal tract [18] [19] [20] have been studied on their 
probiotic characteristics. Lactobacillus plays an important role in maintaining 
the health of human vagina [4] [6]. Lactobacillus isolates from human vagina 
exhibited promising probiotic potential as suggested by high CSH, autoaggrega-
tion and biofilm formation [2]. This made vaginal Lactobacillus strains promis-
ing probiotic candidates. Investigation on probiotic-related cell surface characte-
ristics is necessary for vaginal Lactobacillus isolates to be used in a probiotic food. 

This study aimed to screen 14 vaginal Lactobacillus strains as probiotic can-
didates, by in vitro investigation of probiotic-related cell surface characteristics 
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including CSH, Lewis acidity/basicity, autoaggregation, and biofilm formation. 
This study also aimed to provide valuable and novel reference information to 
understand the characteristics of vaginal Lactobacillus strains. 

2. Materials and Methods 
2.1. Bacterial Strains 

The 14 vaginal Lactobacillus strains used in this study (i.e. L. plantarum strains 
KLB213, KLB234, KLB270, and KLB296, L. fermentum strains KLB231, KLB249, 
KLB261, KLB263, and KLB268, L. salivatius strain KLB265, L. rhamnosus strain 
KLB288 and unidentified strains KLB208, KLB223, and KLB255) were obtained 
from the Lactobacillus collection of So Lab of Inha University, Korea, and main-
tained in MRS broth with daily subculture as previously described [21]. 

2.2. CSH and Lewis Acidity/Basicity Assay 

Microbial adhesion to solvents (MATS) method has been widely used to inves-
tigate microbial CSH and Lewis acidity/basicity [4] [10] [22] [23]. In this study, 
adhesion of 14 Lactobacillus strains to three solvents, i.e. hexadecane, chloro-
form and ethyl acetate was measured as indication of CSH, Lewis base (electron 
donor) and Lewis acid (electron acceptor) characteristics, respectively. Briefly, 
each strain was cultured in MRS broth at 37˚C to stationary phage. The bacteria 
were then harvested by centrifugation at 8000 × g for 5 min, washed twice, and 
resuspended in phosphate buffered saline (pH 7.0, PBS) to an OD600 of 1 (A0). 
Three ml of this bacterial suspension was mixed 1 ml of hexadecane, chloroform 
or ethyl acetate by vortexing for 2 min, and then incubated at room temperature 
for 20 min to allow phage separation. OD600 of the aqueous phase (At) was 
measured. The percentage of bacterial adhesion to each solvent was calculated as 
(1 − At/A0) × 100%. The assay was performed in triplicate, and the results were 
averaged. 

2.3. Autoaggregation Assay 

Autoaggregation ability of 14 Lactobacillus strains was assessed by phase separa-
tion method as previously described [24] with minor modifications. Each of the 
14 Lactobacillus strains was grown at 37˚C in MRS broth to stationary phage. 
The cells were harvested by centrifugation at 8000 × g for 5 min, washed twice 
and resuspended in PBS to an OD600 of 0.5 (A0). Four ml of this bacterial suspen-
sion was incubated at room temperature for 5 h, and OD600 of 1 ml aliquot of the 
upper phase (At) was measured. The autoaggregation percentage was expressed 
as (1 − At/A0) × 100%. The assay was performed in triplicate, and the results 
were averaged. 

2.4. Biofilm Formation Quantification 

Biofilm formation by 14 Lactobacillus strains was quantified by crystal violet 
staining method as previously described [25] [26] with minor modifications. 
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Briefly, 100 μl culture of each strain at OD600 of 0.1 was inoculated per well in a 
flat-bottomed 96 well PVC plate and incubated at 37˚C for 40 h to allow biofilm 
formation. Planktonic bacteria were removed by gently rinsing twice with 100 μl 
PBS, and the plate was inverted to air dry for 30 min. The biofilm was stained 
with 50 μl of 0.1% crystal violet solution in ethanol for 45 min at room tempera-
ture. Unbound crystal violet was then removed and the well was rinsed twice 
with 100 μl PBS. The crystal violet bound in biofilm was dissolved with 200 μl of 
95% ethanol at 4˚C for 30 min, and OD595 of 100 μl aliquot was measured as 
quantification of biofilm formation. The assay was performed in triplicate, and 
the results were averaged. 

The L. fermentum strain KLB261, which exhibited high CSH and abilities of 
autoaggregation and biofilm formation (see the section of results), was selected 
to assess antibiotic susceptibility. 

2.5. Determination of Minimal Inhibitory Concentrations of  
Antibiotics 

Minimal inhibitory concentrations (MICs) of 5 antibiotics (oxacillin, cefotaxime, 
cefmetazole, ampicillin, tetracycline) on the L. fermentum strain KLB261 was 
determined using a previously described microdilution procedure [27] with mi-
nor modifications. Briefly, 100 μl culture at OD600 of 0.1 was inoculated per well 
in a flat-bottomed 96 well PVC plate containing a series of concentrations of an 
antibiotic. After incubation at 37˚C for 40 h, the lowest concentration at which 
no visible growth was observed was determined as MIC. The assay was per-
formed in triplicate and the results were averaged. 

2.6. Comparison of Antibiotic Susceptibility between  
Biofilm-Forming Bacteria and Planktonic Bacteria 

Susceptibility to 5 antibiotics (oxacillin, cefotaxime, cefmetazole, ampicillin, te-
tracycline) was compared between biofilm-forming cells and planktonic cells of 
the L. fermentum strain KLB261 using a method described by Ishida et al. [28] 
with minor modifications. KLB261 was cultured at 37˚C for 40 h in MRS broth 
with a 1.8 cm × 0.8 cm PVC sheet for biofilm formation. To assess the antibiotic 
susceptibility of biofilm-forming bacteria, the PVC sheet was taken out from the 
culture, washed gently with PBS, and incubated at 37˚C in PBS containing an 
antibiotic at its MIC for either 0 or 24 h. The PVC sheet was then transferred to 
1 ml fresh PBS and vortexed vigorously to suspend the biofilm-forming bacteria. 
The suspension was serially diluted, plated on MRS agar, and CFU was counted. 
To assess the antibiotic susceptibility of planktonic bacteria, the planktonic bac-
teria in the culture from which the PVC sheet had been taken out was harvested 
by centrifugation, washed twice, and resuspended in 1 ml PBS containing an an-
tibiotic at its MIC. After incubation at 37˚C for either 0 or 24 h, the suspension 
was serially diluted, plated on MRS agar, and CFU was counted. The survival 
rate of biofilm-forming or planktonic bacteria was calculated by dividing the 
CFU at 24 h by the CFU at 0 h of antibiotic challenge. The assay was performed 
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in triplicate and the results were averaged. 

2.7. Statistical Analysis 

The value arrays of CSH, Lewis acidity, Lewis basicity, autoaggregation, and bio-
film formation obtained from 14 Lactobacillus strains were paired, and correla-
tion coefficient of each pair was calculated as indication of the strength of corre-
lation. Differences in survival rate for each antibiotic between biofilm-forming 
cells and planktonic cells of the Lactobacillus strain KLB261 were assessed by 
performing ANOVA after determination of normality and variance homogenei-
ty. The significance level was set at P < 0.05. 

3. Results 
3.1. CSH and Lewis Acidity/Basicity of 14 Lactobacillus Strains 

CSH and Lewis acidity/basicity of 14 vaginal Lactobacillus strains were quanti-
fied by MATS assay. Five strains (KLB208, KLB213, KLB223, KLB255, KLB261, 
and KLB265) showed high CSH (≥60%), 4 strains (KLB213, KLB249, and 
KLB296) were found to have moderate CSH (10% - 60%), and 5 strains 
(KLB231, KLB263, KLB268, KLB270, and KLB288) presented low CSH (≤10%) 
(Table 1). Most strains tested turned out to be strong electron donors, showing 
high affinity for chloroform (≥80%), except that KLB263 showed a moderate af-
finity (43%), and KLB268 (11%) and KLB270 (5%) lacked affinity for chloroform 
(Table 1). By contrast, most strains in this study exhibited low affinity for ethyl 
acetate (≤40%), indicating they were weak electron acceptors, except that KLB223,  
 

Table 1. CSH, Lewis acidity, Lewis basicity, autoaggregation, and biofilm formation of Lactobacillus strains. 

Strain 
Adhesion to Hexadecane1 

(% ± S.D.) 
Adhesion to Chloroform2 

(% ± S.D.) 
Adhesion to Ethyl Acetate3 

(% ± S.D.) 
Autoaggregation 

(% ± S.D.) 
Biofilm formation  

(OD595 ± S.D.) 

KLB208 66.31 (±15.78) 89.90 (±1.89) 12.96 (±1.61) 57.06 (±8.28) 0.35 (±0.08) 

KLB213 59.90 (±3.98) 90.44 (±4.48) 32.76 (±1.77) 85.61 (±7.47) 0.16 (±0.06) 

KLB223 75.30 (±6.40) 81.46 (±8.75) 93.40 (±2.00) 88.56 (±3.48) 0.58 (±0.09) 

KLB231 3.40 (±1.84) 81.96 (±5.99) 15.85 (±5.09) 68.00 (±5.90) 0.59 (±0.05) 

KLB234 40.00 (±3.89) 95.59 (±0.47) 28.43 (±1.84) 68.85 (±9.83) 0.09 (±0.04) 

KLB249 21.22 (±7.27) 90.29 (±9.39) 26.49 (±1.70) 37.30 (±1.16) 0.21 (±0.05) 

KLB255 68.46 (±8.40) 82.23 (±6.78) 64.08 (±19.3) 79.13 (±6.61) 0.57 (±0.09) 

KLB261 72.33 (±11.58) 89.91 (±1.61) 85.13 (±3.63) 84.70 (±5.29) 0.63 (±0.03) 

KLB263 5.57 (±0.79) 43.37 (±2.13) 12.60 (±2.08) 60.86 (±7.26) 0.09 (±0.04) 

KLB265 82.62 (±8.58) 84.58 (±4.01) 90.66 (±2.38) 85.75 (±2.47) 0.68 (±0.09) 

KLB268 4.15 (±4.97) 10.94 (±5.61) 16.16 (±2.80) 46.89 (±16.97) 0.07 (±0.04) 

KLB270 3.43 (±4.22) 5.41 (±2.35) 11.37 (±1.80) 40.03 (±12.01) 0.04 (±0.01) 

KLB288 1.41 (±0.78) 98.24 (±1.39) 14.62 (±1.19) 32.95 (±6.93) 0.33 (±0.08) 

KLB296 31.27 (±3.58) 84.39 (±6.04) 34.77 (±1.58) 76.26 (±8.01) 0.44 (±0.12) 
1as indication of CSH; 2as indication of Lewis basicity; 3as indication of Lewis acidity; S.D. = standard deviation. 

https://doi.org/10.4236/aim.2021.112010


S.-J. Li, J.-S. So 
 

 

DOI: 10.4236/aim.2021.112010 149 Advances in Microbiology 
 

KLB255, KLB261, and KLB265 displayed high affinity for ethyl acetate (≥60%) 
(Table 1). 

3.2. Autoaggregation Ability of 14 Lactobacillus Strains 

Among the 14 tested vaginal Lactobacillus strains, 9 strains (KLB213, KLB223, 
KLB231, KLB234, KLB255, KLB261, KLB263, KLB265, and KLB296) exhibited 
high autoaggregation (≥60%), while the other 5 strains (KLB208, KLB249, 
KLB268, KLB270, and KLB288) showed autoaggregation of a moderate level 
(30% - 60%) (Table 1). 

3.3. Biofilm Formation Ability of 14 Lactobacillus Strains 

Ability of 14 vaginal Lactobacillus strains to form biofilm was quantified by 
crystal violet staining method and the results were summarized in Table 1. Five 
strains (KLB223, KLB231, KLB255, KLB261, and KLB265) exhibited high bio-
film formation (≥0.5), and other 5 strains (KLB208, KLB213, KLB249, KLB288, 
and KLB296) formed biofilm on a moderate level (0.1 - 0.5). The other 4 strains 
(KLB234, KLB263, KLB268, and KLB270) lacked biofilm formation ability 
(<0.1). 

3.4. MICs of Antibiotics on Strain L. fermentum KLB261 

MICs of oxacillin, cefotaxime, cefmetazole, ampicillin, and tetracycline on L. 
fermentum strain KLB261 were determined by microdilution procedure to be 
1.25 μg/ml, 5 μg/ml, 50 μg/ml, 0.125 μg/ml and 12.5 μg/ml, respectively. 

3.5. Antibiotic Susceptibility of Biofilm-Forming Cells and  
Planktonic Cells of L. fermentum KLB261 

Susceptibility of biofilm-forming cells and planktonic cells of L. fermentum 
KLB261 to oxacillin, cefotaxime, cefmetazole, ampicillin, and tetracycline at 
their respective MIC was assessed, and the results were presented in Figure 1. 
Biofilm-forming cells of KLB261 were significantly more tolerant than their 
planktonic counterparts to cefotaxime, cefmetazole, and tetracycline, but were as 
sensitive to oxacillin and ampicillin as planktonic cells were. 

4. Discussion 
4.1. CSH and Lewis Acidity/Basicity of 14 Lactobacillus Strains 

Lactobacillus strains with high CSH were preferable in probiotic application, as a 
hydrophobic cell surface could facilitate colonization and strengthen adhesion of 
bacteria to the epithelium of gastrointestinal tract of a host [7] [8] [9]. This study 
revealed the prevalence of moderate to high affinities for hexadecane and chlo-
roform, and low affinity for ethyl acetate among the tested Lactobacillus strains, 
but these three characteristics did not always coincide in the same strains. This 
result indicated that hydrophobic and negatively charged cell surfaces were pre-
valent in the tested strains, and that these bacteria might play a role of electron  

https://doi.org/10.4236/aim.2021.112010


S.-J. Li, J.-S. So 
 

 

DOI: 10.4236/aim.2021.112010 150 Advances in Microbiology 
 

 
Figure 1. Antibiotic susceptibility of biofilm-forming cells and planktonic cells of strain 
L. fermentum KLB261. The asterisks between two columns indicate significant difference. 
 
donor in interfacial interactions. The observed prevalence of moderate to high 
CSH in vaginal Lactobacillus isolates was consistent with the studies by Pino et 
al. [2] and Ocana et al. [29]. It was disagreed in different studies on whether 
correlation between CSH and Lewis acidity/basicity exists. Pelletier et al. found 
that strains with affinity for chloroform also had affinity for hexadecane, and not 
for ethyl acetate [30], but Ocana et al. suggested that there is no strong correla-
tion between the affinities for hexadecane and for chloroform [29]. In the cur-
rent study, analysis of data from the 14 Lactobacillus strains suggested that CSH 
was highly correlated with Lewis acidity, and moderately correlated with Lewis 
basicity, but Lewis acidity and basicity were not correlated (Table 2). 

4.2. Autoaggregation Ability of 14 Lactobacillus Strains 

Lactobacillus strains with higher autoaggregation ability were considered more 
desirable in terms of application in probiotic foods, as multicellular aggregates 
can facilitate colonization and adhesion of probiotic bacteria to intestinal cells 
[7] [8] [9]. Autoaggregation ability was prevalent in the 14 Lactobacillus stains 
tested in this study. This result was consistent with the prevalence of high au-
toaggregation in Lactobacillus strains from human vaginas reported by Bouri-
dane et al. [31] and Pino et al. [2], but showed a higher percentage of strains 
with autoaggregation activity than other studies [32] [33] [34] [35]. Correlation 
between autoaggregation and CSH of Lactobacillus strains was also controversial 
in different studies. Kmet et al. demonstrated this correlation in vaginal Lacto-
bacillus strains [34], but it was denied by Bouridane et al. [31]. In the current 
study, analysis of data from the 14 Lactobacillus strains suggested that autoag-
gregation was highly correlated with CSH and Lewis acidity, but not correlated 
with Lewis basicity (Table 2).  
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Table 2. Correlation coefficient between any two of CSH, Lewis acidity, Lewis basicity, 
autoaggregation, and biofilm formation of Lactobacillus strains. 

 CSH Lewis basicity Lewis acidity Autoaggregation 

Lewis basicity 0.51 - - - 

Lewis acidity 0.81 0.35 - - 

Autoaggregation 0.77 0.39 0.75 - 

Biofilm formation 0.60 0.53 0.74 0.61 

4.3. Biofilm Formation Ability of 14 Lactobacillus Strains 

Lactobacillus strains with ability of forming biofilm were considered good pro-
biotic candidates, as biofilm formation of probiotic bacteria is an important fea-
ture in food processing [11], and also provide health benefit by improving colo-
nization and permanence of probiotic bacteria in host mucosa, mechanically 
protecting the mucosa, and preventing colonization of pathogens [5] [6]. Biofilm 
formation varied in a large range among the tested vaginal Lactobacillus stains in 
this study. Similar results were previously found in vaginal Lactobacillus strains 
[2] [36] [37] and Lactobacillus strains of other origins [16], but most vaginal 
Lactobacillus strains were found to be weak biofilm producers by Malik et al. 
[35]. On the other hand, a study by Klimko et al. suggested the absence of corre-
lation between high hydrophobicity and intense biofilm formation [16], but 
analysis of data from the 14 Lactobacillus strains in the current study suggested 
that biofilm formation was highly correlated with Lewis acidity, and moderately 
correlated with CSH, Lewis basicity and autoaggregation (Table 2). 

4.4. Correlation among CSH, Lewis Acidity/Basicity,  
Autoaggregation, and Biofilm Formation of  
14 Lactobacillus Strains 

Although this study found high correlation coefficients (>0.7) in the pairs of 
CSH vs Lewis acidity, CSH vs autoaggregation, Lewis acidity vs autoaggregation, 
and Lewis acidity vs biofilm formation, there was no consensus on correlations 
among these cell surface characteristics in previous studies yet [29] [30] [31] 
[34]. Due to the limited quantity of Lactobacillus strains investigated this study, 
values of and relationships between different cells surface characteristics might 
not unveil the whole story of Lactobacillus spp., so there is a need for compre-
hensive analysis of cell surface characteristics when screening Lactobacillus 
strains to provide optimal probiotic functions for applications in food. 

4.5. Antibiotic Susceptibility of Biofilm-Forming Cells and  
Planktonic Cells of Strain KLB261 

Resistance of biofilm against antibiotics had been well documented in pathogen-
ic bacteria [12] [13], but was rarely studied in probiotic bacteria. This was the 
first study to compare antibiotic susceptibility between biofilm-forming cells and 
planktonic cells of Lactobacillus species, and suggested differential protective ef-
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fects of biofilm on Lactobacillus species against different antibiotics. Biofilm en-
hanced the tolerance of L. fermentum KLB261 against cefotaxime, cefmetazole, 
and tetracycline, but did not provide protection against oxacillin and ampicillin. 
It is equally important to find the antibiotics which a probiotic biofilm is tole-
rant against and sensitive to, so that probiotic strains can be selected or mod-
ulated during food processing and in human body. Protective mechanisms of 
biofilm include acting as a barrier against antibiotic penetration, interaction of 
antimicrobials with biofilm matrix components, reduced growth rates and vari-
ous actions of specific genetic determinants of antibiotic resistance and tolerance 
[12] [13]. 

5. Conclusion 

Lactobacillus strains KLB223, KLB255, KLB261, and KLB265, which were dis-
tinguished by their high CSH (≥60%), high autoaggregation (≥60%) and high 
biofilm formation (≥0.5), were selected as promising probiotic strains for further 
study, which would include adhesion to epithelial cells, safety evaluation, and 
animal trial. In addition, this study revealed correlations between different cells 
surface characteristics in lactobacilli (CSH vs Lewis acidity, CSH vs autoaggrega-
tion, Lewis acidity vs autoaggregation, and Lewis acidity vs biofilm formation). 
Another important finding of this study was the differential protective effects of 
biofilm on Lactobacillus species against different antibiotics. There is still a need 
for comprehensive analysis of cell surface characteristics when screening vaginal 
Lactobacillus strains to provide optimal probiotic functions for applications in 
food. 
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