
Communications and Network, 2021, 13, 36-49
https://www.scirp.org/journal/cn

ISSN Online: 1947-3826
ISSN Print: 1949-2421

DOI: 10.4236/cn.2021.131004 Feb. 26, 2021 36 Communications and Network

Analysis and Evaluation of Performance
Related to Java and PHP Security Codes

Fontaine Rafamantanantsoa*, Rabetafika Louis Haja, Randrianomenjanahary Lala Ferdinand

University of Fianarantsoa, Fianarantsoa, Madagascar

Abstract

In recent years, Internet exposure of applications continuously engenders
new forms threats that can endanger the security of the entire system and
raises many performance issues related to code security. The safety of infor-
mation systems becomes essential. This is why the performance linked to se-
curity codes is of importance essential in the security systems of all compa-
nies. Indeed, as contribution, to carry out measurements, it appropriates tools
that are the JMH tool (Java Microbenchmark Harness) and the PHP Bench-
mark script tool which include unsecure java and PHP codes and secured
against SQL (Structured Query Language) injection, XSS (Cross Site Script-
ing) i.e., using prepared requests, stored procedures, validation of input from
white lists, reinforcement of minimum privilege, when sending requests from
the last ones to MySQL databases and Postgresql. We recover the times of re-
sponse to his requests. From java codes and PHP (Hypertext Preprocessor)
secure, we also retrieve the response time for requests to databases MySQL
and PostgresqL data. We then obtain the curves and interpretations compar-
ing performance related to security and non-security of codes. The goal is to
analyze and evaluate the performance comparing secure Java and PHP code
against unsecure java and PHP code using MySQL and Postgresql databases.
In Section 1, we presented the performance of the code Java and PHP. The
configuration of the experiments and the experimental results are discussed
in Sections 2 and 3, respectively. Use of suitable tool which is the JMH tool
and the PHP Benchmark script tool, we have developed in Java 1.8 and PHP
7.4 secure and non-secure codes that send the queries to the MySQL or Post-
gresql database to carry out the measurements which led to the conclusion
that the insecure PHP and Java codes are faster in terms of response time
compared to the PHP and Java secure codes as the number of tables linked to
the query increases because the blocking times of SQL injection and XSS pre-
ventions linked to its secure codes are increasing.

How to cite this paper: Rafamantanantsoa,
F., Haja, R.L. and Ferdinand, R.L. (2021)
Analysis and Evaluation of Performance
Related to Java and PHP Security Codes.
Communications and Network, 13, 36-49.
https://doi.org/10.4236/cn.2021.131004

Received: January 15, 2021
Accepted: February 23, 2021
Published: February 26, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/cn
https://doi.org/10.4236/cn.2021.131004
https://www.scirp.org/
https://doi.org/10.4236/cn.2021.131004
http://creativecommons.org/licenses/by/4.0/

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 37 Communications and Network

Keywords

Applications, Attacks, XSS, Security, Java, PHP, Performances

1. Introduction

The web has become increasingly popular. The number of internet users con-
tinues to increase therefore the number of sources malicious or malware and
hacking becomes considerable. This is why the security codes such as Java codes
and PHP codes are of importance primordial. Various studies [1] have proposed
the safety of web applications: analysis, modeling and detection of learning at-
tacks automatic, work [2] presented the modeling and automatic classification of
security information. [3] [4] [5] [6] have studied computer hacking, testing se-
curity, penetration testing and basic testing. In the studies [7]-[18], authors
showed hacking and cyber security, quantitative of computer security, security
holes discovery, web hacking, systems information performance and hardening
java security.

Few of the studies on performance related to code security. This is why re-
searchers are urged to analysis and evaluation of related performance security
codes. The methodology is based on the recovery time when launching codes
that perform requests to the databases data, then we recover the time after ex-
ecuting its codes to calculate response times and obtain the curves related to se-
curity or not codes. The expected results are to have the results of analyzes on
the impact of codes compared to response times to using the results of the mea-
surements carried out making it possible to draw the curves for each type of da-
tabase. We are not satisfied with the measurements of performance of a code, by
calculating the difference between the start of the process and its end, because it
was necessary to modify the code of the method to add the measurement ele-
ments, the method is not the same as what was initially predicted. it is therefore
advisable to use a suitable tool which is the JMH tool (Java Microbenchmark
Harness) and the PHP tool Benchmark script which include java codes and PHP
secure or not.

2. Code Performance

The security of information systems (ISS) or more simply computer security is
all the technical, organizational, legal and human resources necessary for the
implementation of means aimed at preventing unauthorized use, misuse, mod-
ification or misappropriation of the information system.

To measure the execution time of a method reliably, we isolate the execution
of the method to be measured, then by stimulating the JVM with the code which
one wishes to measure (one often speaks about Warmup). This step allows the
JVM time to optimize the code if necessary. Then, you have to run the code to be
measured repeatedly (also called iterations). It is during these iterations that the

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 38 Communications and Network

measurements will be carried out so as to obtain a reliable average execution
time. Obviously, it is preferable to carry out these measures with the least intru-
sive means possible. That is, by modifying the code of the method to be tested as
little as possible.

To carry out measurements taking into account the previous points, we use a
suitable tool which is the JMH tool and the PHP Benchmark script tool.

Secure codes are codes that block the following vulnerabilities:
 Block SQL injection using prepared queries, using stored procedures, per-

forming validations on whitelist entries, avoiding special characters in SQL
queries, strengthening minimum privilege.

 XSS (Cross Site Scripting) prevention by avoiding the insertion of data in the
codes. The system must meet the following conditions:

A computer where is installed:
 A MySQL or Postgresql database.
 A secure and unsecure java 1.8 or PHP 7.4 code that makes requests to the

MySQL or Postgresql database.
 An apache web server 2.

Eight measurements are used to measure the performance related to code se-
curity:
 Secure code written in java 1.8 executing queries to the MySQL database.
 Secure code written in PHP 7.4 executing queries to the MySQL database.
 Insecure code written in java 1.8 executing queries to the MySQL database.
 Insecure code writes PHP 7.4 executing queries to the MySQL database.
 Secure code written in java 1.8 executing queries to the Postgresql database
 Secure code written in PHP 7.4 executing queries to the Postgresql database.
 Insecure code written in java 1.8 executing queries to the Postgresql database.
 Insecure code written in PHP 7.4 executing queries to the Postgresql data-

base.

2.1. Methodology for Performance Analysis

The main steps in performance evaluation are:
 Isolate running the method at measure, then by stimulating the JVM with the

code that we are going to measure.
 Execute the code to be measured repeatedly (also called iterations). It is dur-

ing these iterations that the measurements will be carried out so as to obtain
a reliable average execution time.

Figure 1 shows the experimental Java Mysql setup.
Figure 1 shows that the time t is the average response time for a request sent

from a secure and non-secure Java code to the MySQL database.
Figure 2 shows the experimental Java Postgresql setup.
Figure 2 shows that the time t is the average response time for a request sent

from a secure and non-secure Java code to the Postgresql database.
Figure 3 shows the experimental PHP MySQL configuration.

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 39 Communications and Network

Figure 1. Java MySQL experimental setup.

Figure 2. Java Postgresql experimental setup.

Figure 3. Experimental PHP MySQL configuration.

Figure 3 shows that the time t is the average response time for a request sent
from a secure and non-secure PHP code to the MySQL database.

Figure 4 shows the experimental PHP Postgresql setup.
Figure 4 shows that the time t is the average response time for a request sent

from a secure and non-secure PHP code to the Postgresql database.

2.2. Architecture Related to Code Security

SQL injection attack is very common because it is quick to set up, can cause ir-
reversible damage to your database or, if used in a more subtle way, it allows
passwords to be recovered discreetly and identifiers. The hacker hijacks your
request by injecting code into the form fields: hence the term SQL injection.

Java security is provided at two main levels: at compile time and at interpreta-
tion. Although the security provided at the compiler level is very interesting. On
the other hand, the security provided at the level of the Java virtual machine is
directly affected by the three articles synthesized. We must escape our values for
render inert and harmless. The magic_quotes are part of a PHP directive aimed
at ensuring the security of SQL queries without its knowledge by systematically
escaping the following characters:
 double quotes ”;
 the slashes /;
 NULL characters;
 single quotes ’.

3. Configuration of Experiments

Figure 5 shows the architecture related to code security.
The characteristics of the system used are shown in Table 1.
Table 1 summarizes the hardware and software used for the experiments.

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 40 Communications and Network

Figure 4. PHP Postgresql experimental setup.

Figure 5. Architecture related to code security.

Table 1. Characteristics of the hardware and software used in the experiments.

Mark DELL Vostro 3400

CPU 2.40 GHz

NIC RealTek Semiconductor

RAM 1 GB

Operating System Ubuntu 16.04

Java 1.8

PHP 7.4

MySQL 14.14

Postgresql 9.6

The operating system Ubuntu 16.04, Java 1.8, PHP 7.4, MySQL and Postgresql

9.6 were installed on the same machine without any modification material.
Presentation of measurement methods Java and PHP are programming in

object language, multi-paradigm and multiplatform. It promotes structured and
object-oriented imperative programming.

We developed in Java 1.8 and PHP 7.4. Its codes send queries to the MySQL
or Postgresql database. Its queries make joins on tables and after responses, the
execution time is calculated.

To escape a character, this directive adds backslashes to strings that pass
through the PHP script. In fact, it plays the same role as the addslashes () func-

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 41 Communications and Network

tion.
Extract from Java source code
package org.sample;
import
org.openjdk.jmh.annotations.Benchmark;
import java.util.concurrent.TimeUnit;
import
org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import
org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import
org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.State;
import
org.openjdk.jmh.annotations.Warmup;
import java.sql.*;
@Warmup(iterations = 3, time = 1000, TimeUnit = TimeUnit.MILLISECONDS)
@Measurement(iterations = 3, time = 1000, TimeUnit = Time-

Unit.MILLISECONDS)
@BenchmarkMode (Mode.AverageTime)
@OutputTimeUnit (TimeUnit.MILLISECONDS)
@Fork (1)
@State (Scope.Benchmark)
public class MyBenchmark {
@Benchmark
public void testMethod () {Connection connection = null; PreparedStatement

pstmt = null; String sql = "select usr.username as
name, usr.firstname as firstname, usr.email
as email, usr.id as id from group_member,
usr, group, usr_account_preference,
usr_activity_preference, usr_custom_layout
where ((group_member.groupe = 1) AND
(group_member.member = usr.id) AND
(group_member.groupe = group.id) AND
(group_member.member = usr.id) AND
(usr.id = usr_account_preference.usr) AND
(usr.id = usr_activity_preference.usr) AND
(usr.id = usr_custom_layout.usr))";
try
{

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 42 Communications and Network

connection =
DriverManager.getConnection ("jdbc: postgresql: //localhost:

5432/BDmesure", "postgres", "postgres");
pstmt = connection.prepareStatement (sql);
ResultSet rs = pstmt.executeQuery ();
rs.close ();
pstmt.close ();
connection.close ();
}
catch (Exception e) {
e.printStackTrace ();
} finally {
try {
pstmt.close ();
connection.close ();
} catch (Exception e) {
e.printStackTrace ();
}
}
}
Extract from PHP source code
public static function run ($ echo = true) {$ db = new
PDO ('mysql: host = localhost; dbname = BDmesure', "root", "admin");
$sql = $db->prepare ("select usr.username as name, usr.firstname as

firstname, usr.email as email, usr.id as id from group_member, usr, 'group'
where ((group_member.group = 1) AND (group_member.member = usr.id)
AND (group_member.group = 'group'.id) AND (group_member.member =
usr.id))");

$sql->execute ();
$rows = $sql->fetchAll (PDO :: FETCH_ASSOC);
$total = 0;
$server =
(isset($_SERVER['SERVER_NAME'])? $_SERVER ['SERVER_NAME']: '?').

'@'. (isset ($_SERVER['SERVER_ADDR'])? $_SERVER ['SERVER_ADDR']: '?');
$methods = get_class_methods ('benchmark');
$line = str_pad ("-", 38, "-");
$return = "<pre> $ line \ n |" .str_pad ("PHP BENCHMARK SCRIPT", 36, "",

STR_PAD_BOTH). "| \ n $ line \ nStart:" .date ("Ymd H: i: s ")." \ nServer:
$ server \ nPHP version: ".PHP_VERSION." \ nPlatform: ".PHP_OS. "\ n $ line \
n";

for each ($ methods as $ method) {if (preg_match ('/ ^ test_ /',
$method)) {
$total + = $result = self ::
$method ();

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 43 Communications and Network

$return. =
str_pad ($method, 25). ":". $result. "sec. \ n";
}
}
$return. = str_pad ("-",
38, "-"). "\n" .str_pad ("Total time:", 25). ":".
$total. "sec. </pre>";
if ($echo) echo $return;
return $return;
}
}
benchmark :: run ();
Notes:
"Warmup (itérations = 3, time = 1000, timeUnit = time-

Unit.MILLISECONDS)"
Iterations: Warmup iterations are intended to bring the JVM into a steady

state (e.g., execute all applicable just-in-time compilations). We can configure
the code being benchmarked to run a specified number of “warmup” iterations
first before any measurement actually begins. This allows the JVM optimizations
to take place before we are actually going to benchmark it. We should also
measure it after some warmup iterations to simulate “real” production condi-
tions. Each iteration takes a defined amount of time (typically 1 s), during which
the framework repeatedly calls the method annotated with @Benchmark (a sin-
gle invocation in JMH parlor) and records all configured performance counters
(e.g., throughput, execution time, latency). That’s why, we set the value 3 to the
iteration parameter

time: Sets how much time every warmup iteration will take in specified
timeUnit. That’s why, we set the value 1000 to the time parameter

time Unit: Almost every possible unit starting from Time-
Unit.NANOSECONDS up to TimeUnit.DAYS (SI standard). That’s why, we set
the value TimeUnit.MILLISECONDS to the timeUnit parameter to have more
precision of the results.

4. Experimental Results

Using as MySQL Database
Table 2 shows the query times as a function of the number of tables in the

database for secure and non-secure java code.
Figure 6 shows the curves of the time of queries as a function of the number

of tables in the MySQL database for secure and non-secure java code approx-
imate a quadratic curve which is given by the formula simulink:

20.31004 0.18869 14.05633y x x= ∗ + ∗ + (1)

Figure 6 shows that in the interval of time [15.2; 18.4], the deadline is almost
same for secure java code and code unsecure java using as base MySQL data. By

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 44 Communications and Network

Figure 6. Curve of query time as a function of number of tables in the database for secure
and non-secure java code.

Table 2. Query time depending on the number of tables in the database for the secure
and unsecured java code.

Non-secured Java Code Secured Java Code

Table Number Time t in millisecond Table Number Time t in millisecond

1 14.452 1 14.583

2 15.295 2 15.312

3 16.830 3 16.752

4 18.235 4 18.265

5 19.936 5 19.220

6 20.203 6 20.692

increasing the number of tables used by the query, the java code secure consi-
derably loses its performance, which means that the queries according to the
number of tables in the database for secure java code slow down as the number
of tables in the database increases. This can be explained by increased access
time to tables caused by the increase in selection of the lines linked to each table
because the sizes of the tables slow down its query operations.

Table 3 shows the query times as a function of the number of tables in the
database for secure and non-secure PHP code.

Figure 7 shows the curves of the time of queries as a function of the number
of tables in the MySQL database for secure and non-secure PHP code approx-
imate a quadratic curve which is given by the formula simulink:

20.05396 0.10211 1.93333y x x= ∗ + ∗ + (2)

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 45 Communications and Network

Figure 7. Curve of query time as a function of number of tables in the database for secure
and non-secure PHP code.

Table 3. Request time according to the number of tables in the database for secure and
non-secure PHP code.

Non-secured PHP Code Secured PHP Code

Table Number Time t in millisecond Table Number Time t in millisecond

1 2 1 3

2 2.2 2 3.3

3 2.5 3 3.6

4 3.4 4 3.8

5 3.8 5 5

6 7 6 8

Figure 7 shows that query times as a function of the number of tables in the

database for secure and unsafe PHP code using as base MySQL data slows down
as the number of tables in the database increases. This can be explained by the
increase in the access time to the tables caused by the increase in the selection
times of the rows linked to the queries of each table because the sizes of the
tables slow down its query operations.

Using as Postgresql Database
Table 4 shows query times as a function of the number of tables in the data-

base for secure and non-secure java code.
Figure 8 shows the curves of the query time as a function of the number of

tables in the Postgresql database for secure and non-secure java code approx-
imate a quadratic curve which is given by the simulink formula:

20.09484 1.26220 4.24133y x x= ∗ + ∗ + (3)

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 46 Communications and Network

Figure 8. Curve of query time as a function of number of tables in the database for secure
and non-secure java code.

Table 4. Query time depending on the number of tables in the database for secure and
non-secure java code.

Non-secured Java Code Secured Java Code

Table Number Time t in millisecond Table Number Time t in millisecond

1 5.234 1 5.428

2 6.114 2 6.382

3 7.079 3 7.182

4 8.139 4 8.122

5 8.374 5 8.366

6 8.896 6 9.015

Figure 8 shows that in the interval of time [7, 8; 8.5], the deadline is almost

same for secure java code and code unsecure java using as base Postgresql data.
By increasing the number of tables used by the query, the java code secure con-
siderably loses its performance, which means that the queries according to the
number of tables in the database for secure java code slow down as the number
of tables in the database increases. This can be explained by increased access
time to tables caused by the increase in selection of the lines linked to each table
because the sizes of the tables slow down its query operations.

Table 5 shows query times as a function of the number of tables in the data-
base for secure and non-secure PHP code.

Figure 9 shows the curves of the query time as a function of the number of
tables in the Postgresql database for secure and non-secure PHP code approx-
imate a quadratic curve which is given by the formula simulink:

20.30873 0.92513 2.33333y x x= ∗ + ∗ + (4)

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 47 Communications and Network

Figure 9. Curve of query time as a function of number of tables in the database for secure
and non-secure PHP code.

Table 5. Request time according to the number of tables in the database for secure and
non-secure PHP code.

Non-secured PHP Code Secured PHP Code

Table Number Time t in millisecond Table Number Time t in millisecond

1 3 1 4

2 3.4 2 4.3

3 3.6 3 4.6

4 4.6 4 5.5

5 5.6 5 6

6 8 6 9

Figure 9 shows that query times as a function of the number of tables in the

database for secure and unsafe PHP code using as base Postgresql data slows
down as the number of tables in the database increases. This can be explained by
the increase in the access time to the tables caused by the increase in the selec-
tion times of the rows linked to the queries of each table because the sizes of the
tables slow down its query operations.

Secured Java code
We run the JMH (Java Microbench Harnessmark) tool code repeatedly (also

known as iterations) containing the secure connection and queries to the data-
base. It is during these iterations that measurements will be made in such a way
as to obtain an average of reliable query execution time to the database tables.
Because the codes are secure, they block vulnerabilities like SQL injections by
using prepared queries, using stored procedures, validating whitelist ens entered,

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 48 Communications and Network

avoiding special characters in SQL queries, and strengthening minimum privi-
lege. Codes do XSS (Cross Site Scripting) preventions by avoiding the insertion
of data into codes. After running its codes contained in the JMH tool, we get the
response times in milliseconds based on the fixed table number of its queries.

Non-secured Java code
We run the codes of the JMH (Java Microbench harnessmark) tool repeatedly

(also called iterations) containing the unsecured connection and queries to the
database. It is during these iterations that measurements will be made in such a
way as to obtain an average of reliable query execution time to the database
tables. Because the codes are insecure, they don’t block vulnerabilities like SQL
injections, and don’t do XSS (Cross Site Scripting) preventions, i.e. by running
queries directly. After running its codes contained in the JMH tool, we get the
response times in milliseconds based on the fixed table number of its queries.

Secured PHP code
We launch the codes of the Benchmark script PHP tool containing the secure

connection and queries to the database. It is during the repeated launch that the
measurements will be made in such a way as to obtain an average of reliable
query execution time to the tables in the database. Because the codes are secure,
they block vulnerabilities like SQL injections by using prepared queries, using
stored procedures, validating whitelist ens entered, avoiding special characters in
SQL queries, and strengthening minimum privilege. Codes do XSS (Cross Site
Scripting) preventions by avoiding the insertion of data into codes. After
launching its codes from the Benchmark script PHP tool, we get the response
times in milliseconds based on the fixed table number of its queries.Code.

Non-secured PHP code
We launch the codes of the Benchmark script PHP tool containing the unse-

cured connection and queries to the database. It is during the repeated launch
that the measurements will be made in such a way as to obtain an average of re-
liable query execution time to the tables in the database. Because the codes are
insecure, they don’t block vulnerabilities like SQL injections. Codes do not do
XSS (Cross Site Scripting) preventions i.e. launch queries directly. After launch-
ing its codes from the Benchmark script PHP tool, we get the response times in
milliseconds based on the table number of its queries.

5. Conclusion

This article presents the analysis and evaluation of performance related to both
Java and PHP security codes. In Section 1, we presented the performance of the
code. The configuration of the experiments and the experimental results are
discussed in Sections 2 and 3, respectively. To carry out measurements, it is ne-
cessary to use a suitable tool which is the JMH tool (Java Microbenchmark Har-
ness) and the PHP Benchmark script tool, we have developed in Java 1.8 and
PHP 7.4 secure and non-secure codes that send the queries to the MySQL or
Postgresql database. Its queries make joins on tables and after responses, the ex-

https://doi.org/10.4236/cn.2021.131004

F. Rafamantanantsoa et al.

DOI: 10.4236/cn.2021.131004 49 Communications and Network

ecution time is calculated. The measurements led to the conclusion that the in-
secure codes are faster in terms of response time compared to the secure codes
as the number of tables linked to the query increases because the blocking times
of SQL injection and XSS preventions linked to its secure codes are increasing.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References

[1] Makiou, A. (2016) Web Application Security: Analyzing, Modeling, and Detecting
Machine Learning Attacks.

[2] Benali, F. (2009) Modeling and Automatic Classification of Security Information.

[3] Hall, G. and Watson, E. (2016) Computer Hacking, Security Testing Penetration
Testing and Basic Testing.

[4] Engebretson, P. (2011) The Basics of Hacking and Penetration Testing: Ethical
Hacking and Penetration Testing Made Easy. Elsevier, Amsterdam.
https://doi.org/10.1016/B978-1-59749-655-1.00001-5

[5] Weidman, G. (2018) Penetration Testing: A Hands-On Introduction to Hacking.

[6] Allsopp, W. (2018) Advanced Penetration Testing: Hacking the World’s Most Se-
cure Networks. John Wiley & Sons, Inc., Hoboken.
https://doi.org/10.1002/9781119367741

[7] Sahay, U. (2013) Hack-x-Crypt. A Straight Forward Guide towards Ethical Hacking
and Cyber Security.

[8] Stuttard, D. and Pinto, M. (2018) The Web Application Hacker’s Handbook: Find-
ing and Exploiting Security Flaws. 2nd Edition.

[9] Vache-Marconato, G. (2009) Quantitative Evaluation of Computer Security: Ap-
proach by Vulnerabilities.

[10] Anley, C., Heasman, J., Lindner, F. and Richarte, G. (2018) The Shellcoder’s Hand-
book: Discovering and Exploiting Security Holes. 2nd Edition.

[11] Yaworski, P. (2018) Web Hacking 101.

[12] Elien, F. (2013) The Performance of Information Systems.

[13] Yende, R. (2018) Safety Course Support.

[14] Mazri, C. (2015) Safety Management by Performance Indicators.

[15] El Hamzaoui, M., Bensalah, F. and Rachid, H. (2017) Contribution of the Manage-
ment of Computer Networks to the Performance of Business Management: A New
Theoretical Model for Effective Business Management.

[16] Holzinger, P.A. (2019) A Systematic Analysis and Hardening of the Java Security
Architecture.

[17] Kahanwal, B. (2013) Performance Evaluation of Java File Security System.

[18] Babatunde, J. (2015) Evaluating the Impact of Security Measures on Performance of
Secure Web Applications Hosted on Virtualized Platforms.

https://doi.org/10.4236/cn.2021.131004
https://doi.org/10.1016/B978-1-59749-655-1.00001-5
https://doi.org/10.1002/9781119367741

	Analysis and Evaluation of Performance Related to Java and PHP Security Codes
	Abstract
	Keywords
	1. Introduction
	2. Code Performance
	2.1. Methodology for Performance Analysis
	2.2. Architecture Related to Code Security

	3. Configuration of Experiments
	4. Experimental Results
	5. Conclusion
	Conflicts of Interest
	References

