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Abstract 
The stability and instability phenomenon coupled with the rotation effect and 
the thermal convection between two concentric cylinders was studied. By 
means of the Normal-Modes method, the stability or instability criteria for 
the linearized system in terms of the oscillation frequency, the axial wave-
length and the background thermal gradient are proved. Besides, some nu-
merical simulation for the axisymmetric perturbations is presented. 
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1. Introduction 

The study of the hydrodynamic stability has a long history, one of the oldest 
problems considered is the stability and instability of shear flows, for example, 
Rayleigh [1], as well as by many other authors with new perspectives (see [2] and 
references therein). The stability or instability phenomenon for the fluid system 
has attracted renewed interest during the past decades, due to the mathematical 
challenges and many interesting physical phenomena they present [3]. Since the 
pioneering works of Couette and Taylor (see [4] [5]), thousand of experimental, 
numerical and theoretical studies have considered different aspects of circular 
Couette flow [3] [6] [7]. The Taylor-Couette flow is a canonical and popular 
flow, it has also led to a very large number of studies and significant advances in 
the understanding of fluid stability [8] and transitions to turbulence [9] [10]. 

The Taylor-Couette flow is mainly to consider the sheared flow between two 
independently rotating concentric cylinders. However, Taylor-Couette flow with 
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axial thermal stratification has received little attention [3] [11] [12], which com-
bines horizontal shear and thermal convection, is of great interest in astrophys-
ics, for example, the stratified Taylor-Couette flow serves as a model for instabil-
ities in equatorial oceans [13] and [14]. The purpose of this paper is to study the 
Taylor-Couette flow with thermal convetion. 

The study of the hydrodynamic stability for rotation flow (see Figure 1) be-
gins with Rayleigh [1] (see also the overview in [15]). In the work of Rayleigh [1], 
a necessary and sufficient condition for the stability of linearized system is stated 
as  

( )22d 0,
d

r
r

Ω >                        (1) 

where ( )rΩ  is the angular velocity of the fluid at the distance r ( 1 2r r r≤ ≤ ) 
from the axis. More precisely, when the cylinders rotate in the same direction, 
only one mode of instability is present, which corresponds to the convection 
mode. When the cylinders rotate in opposite directions, two types or instability 
are presented. The second instability mode is of an oscillatory type. These results 
suggest that the “exchange of stability” may be valid when the cylinders rotate in 
the same direction, while it may not be valid when the cylinders rotate in oppo-
site direction [16]. 

When the thermal varies in this area, the convection triggered by the thermal 
variation, also named as Bernard convection, will cause instability. There were 
many efforts about the stability or not on this case, see more details in [3] [17]. 
As to the coupled system with both rotation and the thermal convection, in [2] 
[18], the case has been studied in a rotation coordinate. However, in the work of 
[2] [18], in terms of the rotation and thermal convection, which one is the do-
minant role of the instability is not very obvious. 

In this paper, we shall study the stability or instability criteria of the linearized 
incompressible inviscid fluid with both rotation and vertical background ther-
mal variation. The vertical thermal variation is commonly observed in the at-
mosphere and in the oceans. Certainly, there also exists a horizontal variation of 
thermal across the latitudes due to differential heat radiation by the sun [19], 
however, in a small scale region, it is reasonable to consider only vertical thermal 
variation case. Namely, we shall study the following system:  

( )
( ) 3

3

0,

,  , 0,
0,

t

t

U

U U U P e x t
U

ρ ρ

ρ

∂ + ⋅∇ =
∂ + ⋅∇ +∇ = ∈ >
∇ ⋅ =

               (2) 

where ( )T
1 2 3, ,U U U U=  is the velocity. The scalers ρ  and P be the thermal 

and the pressure respectively. The system (2) also named as Boussinesq sys-
tem, which is widely used to model the dynamics of the ocean or the atmos-
phere, see [20]. This system includes the weak nonlinear and dispersive ef-
fects, it can effectively interpret the dispersion wave in atmospheric dynamics 
[19] [21]. 
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Figure 1. The geometry of 
two rotation coaxial cylinders. 

 
The goal of present work is to understand the stability problem of system (2) 

connected with the rotation and the thermal variation. The main theorems state 
as following:  

Theorem 1.1 The necessary and sufficient condition to be stable of the linea-
rized system of (2) with axisymmetric perturbation is  

( )2

1

2

1

2

2
2

dd 0.
d d 1 d

d

r
rr

r
r rr

r r r
k

z
r r

r r

ξρ

ξ ξ

Φ
+ >

 + 
 

∫

∫
                 (3) 

To be more precisly, our results state:  
• The sufficient condition for the linear stable and unstable with axisymmetric 

perturbation:  

1) When the rotation effect ( ) 0rΦ >  (defined in (34)) and d 0
dz
ρ
≥  in 

1 2r r r≤ ≤ , then the axisymmetric perturbations are always linear stable;  

2) When the rotation effect ( ) 0rΦ >  and d 0
dz
ρ
<  in 1 2r r r≤ ≤ , then write  

( )

2

1

2

1

2

2
min 2

d d
dd ,
dd

r r r
r

r
rr

r r
r rk

zr r r

ξ ξ
ρ

ξ

 +    = − 
 Φ

∫

∫
                  (4) 

the modes with the wave number mink k≥  are stable, and when min0 k k≤ <  
the modes are unstable;  

3) When the rotation effect always ( ) 0rΦ <  the axisymmetric perturbations 
are unstable for the wave number mink k> , and be stable when min0 k k≤ ≤ ;  
• As to the stationary state ( 0ω = , which named as a marginal state), the crit-

ical value for d
dz
ρ  is determined by a variation problem,  

( )2

1

2

1

22

2
*

dd min ;
d dr

r
rr

r
critical rr

k r r r

z r D rξ

ξρ

ξ

 Φ = − 
  

∫
∫

 

• On the contrary to the case without rotation, the principle of the exchange of 
stabilities is invalid.  
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Remark 1.1 For the case d 0
dz
ρ
≡ , then (3) is the well-known Rayleigh’s criteria 

[1]. In this theorem, we conclude that when d
dz
ρ
≠ +∞ , the variation of thermal 

shall transfer the unstable modes. In other words, when d 0
dz
ρ
< , which implies 

hot fluid under the cold fluid, for the static fluid, the buoyancy tends to overturn 
the fluid. In terms of the rotation fluid, the thermal convection only affects the 
low-wave numbers modes, whether on the case ( ) 0rΦ >  or ( ) 0rΦ < .  

Theorem 1.2 The necessary and sufficient condition to be stable of the linea-
rized system of (2) with non-axisymmetric perturbation is  

1) For the special situation: ( ) d . 0
d

r const
z
ρ

Φ = = > , then system is linear sta-

ble. Meanwhile, when ( ) d . 0
d

r const
z
ρ

Φ = = < , the linearized system is unstable;  

2) When ( ) d
d

r
z
ρ

Φ ≠ , the necessary and sufficient condition to be stable of 

the linearized system of (2) with non-axisymmetric perturbation is  

( ) ( ) ( )2

1

2

1

2 2 2 2 2 2

2

2 2

d
0.

d d
d

r
rr

r

r

r s m P r s r
k

rP s r
z

ξ

ρ

 Φ − − = >
 − 
 

∫

∫
           (5) 

To be more precisly, our results state: 
• The necessary condition for the linear stable:  

1) When ( ) ( )22r s a mΦ > = + Ω , then the necessary condition for the linear 

stable are ( )2d
d

a m
z
ρ
< + Ω  or ( )

2 2 2
2

2

d
d

k r m a m
z m
ρ +
> + Ω ;  

2) When ( ) ( )22r s a mΦ < = + Ω , d
dz
ρ  must satisfy  

( ) ( )
2 2 2

2 2
2

d
d

k r ma m a m
z m
ρ +

+ Ω < < + Ω .  

• The sufficient condition for the linear stable and unstable:  

1) When ( ) 2r sΦ <  and 2d
d

s
z
ρ
< , the linearized system is unstable;  

2) When ( ) 2 d
d

r s
z
ρ

Φ < < , the linearized system is stable.  

The paper is organized as follows. In Section 3, we shall prove Theorem 1.1, 
and then theorem 1.2 shall be proved in Section 4. 

2. The Perturbation Equations and the Basic State 

We’re dealing with the system (2) in a coaxial cylinders area (see Figure 1), it’s 
more convenient to study the system (2) in cylindrical coordinates. Let  

( ), ,0 , , ,0 , 0,0,1 ,r z
x y y xe e e
r r r rθ

   = = − =   
   
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with 2 2r x y= + , and write  

( ) ( ) ( ), , , , , , , , , ,r r z zU u r z t e u r z t e u r z t eθ θθ θ θ= + +          (6) 

we obtain  

2

1 0,

1 ,

1 1 ,

1 ,

t r r z z

t r r r r r z z r r

r
t r r z z

t z r r z z z z z z

u u u
r

u
u u u u u u u P

r r
u u

u u u u u u u P
r r r

u u u u u u u P
r

θ θ

θ
θ θ

θ
θ θ θ θ θ θ θ

θ θ

ρ ρ ρ ρ

ρ

∂ + ∂ + ∂ + ∂ =

∂ + ∂ + ∂ + ∂ − = −∂

∂ + ∂ + ∂ + ∂ + = − ∂

∂ + ∂ + ∂ + ∂ = −∂ +


        (7) 

with  

1 0.r
r r z z

uu u u
r r θ θ∂ + + ∂ + ∂ =                    (8) 

By writing r z
r z

u
u u u

r
θ

θ

∂ ∂ ∂
⋅∇ = + +

∂ ∂ ∂
, we investigate the following system:  

( )

( )

( )

( )

2

0,

,

1 ,

,
0, 0,

t

t r r r

r
t

t z z z

u
u

u u u P
r
u u

u u u P
r r

u u u P
u U

θ

θ
θ θ θ

ρ ρ

ρ

∂ + ⋅∇ =

∂ + ⋅∇ − = −∂


∂ + ⋅∇ + = − ∂

∂ + ⋅∇ = −∂ +
∇ ⋅ = ⋅ = n

                (9) 

where n  denotes the normal exterior vector. 
Let ( ), ,r zu u uθ  are the velocity components in the cylindrical coordinates 

( ), ,r zθ  respectively, the velocity boundary conditions are  

1 2

1 2

,

1 1 2 2

0,1

0,

, ,

0,

r r r r

r r r r

z z

u

u r u r

u
θ θ

=

= =

=

 =
 = Ω = Ω


=

                  (10) 

where 1r r= , 2r r=  are the radii of the two cylinders. 1Ω  and 2Ω  are the con-
stant rotation velocities at 1r r=  and 2r r=  respectively. 

In this paper, we shall study the stability of the following stationary Couette 
flow  

( ) ( )0, ,r zu u u V r r rθ= = = = Ω                  (11) 

where ( )V r  is an arbitrary smooth function of r. 
In the experiments the basic temperature state is, a priori, a time-dependent 

state because the initial temperature gradient is not maintained by the boundary 
conditions. However, if we consider the time scale smaller than the typical diffu-
sion time over the height of the cylinders, this gradient can be considered as 
constant in time. Therefore, we choose as time scale small enough, which allows 
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us to write the basic state for the temperature as time-independent. In this paper, 
we consider the variation of background thermal as the following case:  

( ) .zρ ρ=                           (12) 

According to the (11) and (12), the basic pressure distribution is determined 
by the system (9). It takes the form as  

( )
( )

2

d d .z

V r
P r z const

r
ρ= + +∫ ∫                  (13) 

Consider an infinitesimal perturbation of the system (11)-(13), we write the 
perturbed state as  

, , , , .r r z zu u u u u u P Pθ θρ ρ+ + + + +                (14) 

Substitute (14) into (9), we get the system for the perturbations as  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

2 2

1 0,

1 0,

1 1 0,

1 ,

1 0.

t r r z z z z z

t r r r r r z z r r

r
t r r z z

t z r r z z z z z z

r
r r z z

u V u u u
r

V u V r
u u u V u u u u P

r r r
V u u

u u V u V u u u u P
r r r

u u u V u u u u P
r

uu V u u
r r

θ θ

θ
θ θ

θ
θ θ θ θ θ θ θ

θ θ

θ θ

ρ ρ ρ ρ ρ

ρ

∂ + ∂ + + ∂ + ∂ + ∂ =

 +
∂ + ∂ + + ∂ + ∂ − + ∂ + =

 +∂ + ∂ + + + ∂ + ∂ + + ∂ =

∂ + ∂ + + ∂ + ∂ + ∂ =

∂ + + ∂ + + ∂ =









(15) 

The linearized equations governing these perturbations system (15) is  

( ) 0,

2
0,

d 1 0,
d

,

1 0.

t z z z

t r r r

t r

t z z z

r
r r z z

V u
r

VuVu u P
r r
V V Vu u u P
r r r r
Vu u P
r
uu u u
r r

θ

θ
θ

θ θ θ θ

θ

θ θ

ρ ρ ρ

ρ

∂ + ∂ + ∂ =

∂ + ∂ − + ∂ =

  ∂ + ∂ + + + ∂ =  

 

∂ + ∂ + ∂ =


∂ + + ∂ + ∂ =

              (16) 

We analyze the disturbance by using the Normal-modes method. It is natural 
to write that the various quantities describing the perturbation have a ( ), , ,t r zθ
-dependence as  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

e ,

e ,

e ,

e ,

e ,

i kz m t

i kz m t
r r

i kz m t

i kz m t
z z

i kz m t

r

u u r

u u r

u u r

P P r

θ ω

θ ω

θ ω
θ θ

θ ω

θ ω

ρ ρ + −

+ −

+ −

+ −

+ −

 =

 =


=


=
 =

                       (17) 
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where ω  is a constant (which may be comlex). m and k are positive integers, 
which are the oscillation frequency and the wave number of the disturbance in 
the z-direction respectively. ( )ru r , ( )u rθ , ( )zu r  and ( )P r  denote the am-
plitudes of the respective perturbations. From (16) and (17), then we get  

d 0,
dzis u

z
ρρ + =                          (18) 

d2 ,
dr
Pisu u
rθ− Ω = −                        (19) 

( )d
,

d r

r imPisu u
r rθ

Ω 
+ Ω+ = − 
 

                  (20) 

,zisu ikP ρ= − +                          (21) 

d
0.

d
r r

z
u u im u iku
r r r θ+ + + =                     (22) 

where we used the notation s mω= − + Ω , which is named as the Dopp-

ler-shifted frequency. Physically, ( )V r
r

Ω =  be the angular velocity and 

( ) ( ) ( )2d d 1 d dr r r r rΩ+ Ω = Ω  be the axial vorticity of the base flow. 

To simplify the system (18)-(22), we consider the Lagrangian displacement 

rξ , θξ  and zξ  which describe the displacement of a fluid element in the per-
turbed flow relative the location at time t in the unperturbed flow. Thus we have 
variation of the velocity as  

,u U
t
ξδ ξ∂

= + ⋅∇
∂

                       (23) 

where U is the velocity field of the unperturbed flow. By using the Taylor’s for-
mula, we also have  

.u u uδ ξ= + ⋅∇                         (24) 

Combining (23) and (24), we get  

.u U U
t
ξ ξ ξ∂

= + ⋅∇ − ⋅∇
∂

                    (25) 

Now, we proceed directly to the equations of the normal modes by letting 
( ) ( ), , ei kz m t

r z
θ ω

θξ ξ ξ ξ + −= , then there holds  

d, , .
dr r r z zu is u is r u is
rθ θξ ξ ξ ξΩ

= = − =                (26) 

By using the solenoidal character of u and (26), we have  

d 0,
d zs s

z
ρρ ξ+ =                        (27) 

2 2 ,r
ims i s P
rθξ ξ− Ω =                      (28) 

2 d d2 ,
d dr r

Ps is r
r rθξ ξ ξΩ − − Ω − = − 

 
              (29) 
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2 ,zs ikPξ ρ= −                         (30) 

d
0.

d
r r

z
im ik

r r r θ
ξ ξ

ξ ξ+ + + =                     (31) 

Eliminating θξ  between Equations (28) and (29), we have  

2 d 2 d2 2 .
d dr r

i im Ps r i s P
r s r r

ξ ξΩ Ω   − Ω + Ω + =   
   

            (32) 

Rearranging the terms in this equation, we obtain  

( )2 d 2 ,
dr
P ms r P
r sr

ξ Ω −Φ = +                     (33) 

where  

( ) ( )2 2d 2 d2 4
d d

r r r
r r r
Ω Ω

Φ = Ω + Ω = Ω                 (34) 

is the Rayleigh discriminant. Similarly, we also get  

2 2

2 2
2

d 2 .
dd
d

r r
r

m m k P
r r rs r s s

z

ξ ξ
ξ

ρ

 
 Ω

+ − = + 
 − 
 

               (35) 

Due to the fluid is confined between two coaxial cylinders of radii 1r  and 2r , 
we must require that the radial components of the velocity vanish for these val-
ues of r. Thus, we consider the Equations (33) and (35) with the boundary con-
ditions  

1 2

1 2

,

,

0,

d 2 0.
d

r r r r

r r r

P m P
r sr

ξ
=

=

 =

 Ω + = 
 

                      (36) 

3. Linear Stability for Axisymmetric Perturbations 

In this section, we shall prove Theorem 1.1, the results for the axisymmetric 
perturbation case. Namely in (17), we take 0m =  (which implies  
s mω ω= − + Ω = − ), then Equations (33) and (35) read as  

( )( )2 d ,
dr
Pr
r

ω ξ−Φ =                      (37) 

2

2

d
.

dd
d

r r k P
r r

z

ξ ξ
ρω

+ =
−

                     (38) 

Eliminating P between these equations, we obtain  

( ) ( )2 2 2
*

d d .
d dr rDD k k r
z z
ρ ρω ξ ξ   − − = − Φ −   

   
          (39) 

Write 2 d
dz
ρω= − , we get  
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( ) ( )2 2
*

d
dr rDD k k r
z
ρξ ξ − = − Φ − 

 
               (40) 

where we used the notations  

*d d and d d 1 .D r D r r= = +  

Equation (40) together with the boundary conditions (36) constitute a cha-
racteristic value problem in terms of  . Now let’s prove the Theorem 1.1. 

We shall first show that the principle of the exchange of stabilities is invalid.  

3.1. Exchange of Stability Is Invalid 

Proof. Testing Equation (40) by *
rrξ  (where *

rξ  is the conjugate function of 

rξ ), we obtain  

( ) ( ) ( ) ( )2 2 2

1 1 1

* 2 * 2 *
*

dd d d
d

r r r
r r r r r rr r r

DD r r k r r k r r r
z
ρξ ξ ξ ξ ξ ξ − = − Φ − 

 ∫ ∫ ∫  (41) 

Integrating by parts, from the left hand of side, we get  

( ) ( )

( ) ( )

( )

2 2

1 1

2 2

1 11 2

2

1

* 2 *
*

2* * 2
* *,

2 22
*

d d

d d

d .

r r
r r r rr r

r r
r r r r rr rr r r

r
r rr

DD r r k r r

D r D D r r rk r

r D k r

ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ

=

−

 = ⋅ − −  

= − +

∫ ∫

∫ ∫

∫

 

 



     (42) 

Similarly, from the right hand side of the Equation (41) we get  

( ) ( ) ( )2 2

1 1

2 22 * 2d d d .
d d

r r
r r r rr r

k r r k r r r r
z z
ρ ρξ ξ ξ ξ   − Φ − = − Φ −      ∫ ∫      (43) 

So we have 

( )

( )

2

1

2

1

22

2 22
*

d d
d .

d

r
rr

r
r rr

k r r r
z

r D k r

ρ ξ

ξ ξ

 Φ − 
 =

+

∫

∫
                   (44) 

From (44), we conclude that the real and the imaginary parts must vanish 

separately. Noting that k, ( )rΦ  and d
dz
ρ  are all real, we get  

( ) 0.im =                             (45) 

Recalling that 2 d
dz
ρω= − , then (45) implies that ω  be a real number or 

pure imaginary number. Let a biω = +  then 0a b⋅ = . 
Now we prove the exchange of stability is invalid by using the proof of con-

tradiction. Let 0b = , by using (44), then  

( )

( )

2

1

2

1

22

2
2 22

*

d d
dd , .
dd

r
rr

r
r rr

k r r r
za k

zr D k r

ρ ξ
ρ

ξ ξ

 Φ − 
 = + ∈

+

∫

∫
              (46) 

Since the Equation (46) holds for k ∈ , we conclude that 0a ≡/ , which im-
plies the principle of exchange the stability is invalid. 
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3.2. The Critical Value of 
z

d
d
ρ  at the Marginal State 

The marginal state illustrates that the transition from stability to instability. In 

the following, we present the critical value for the d
dz
ρ  at the marginal state. 

The equations governing the marginal state as (by setting 0ω = )  

( )
2

*

d ,
d

.
d
d

r

r

Pr
r

kD P

z

ξ

ξ
ρ

−Φ =



=
 −


                       (47) 

Eliminating P between these equations, and denoting 1
d
d

R

z
ρ

= − , we obtain  

( )

1 2

2
*

,

,

0.
r r

r r r r

DD k R rξ ξ

ξ
=

 = − Φ
 =

                    (48) 

We shall show that the critical value for R in (48) is a minimum for a variation 
problem. By testing rrξ  to the Equation (48), we get  

( ) ( )2 2

1 1

22
* d d .

r r
r r rr r

DD r r k R r r rξ ξ ξ= − Φ∫ ∫              (49) 

Integration by parts we have  

( ) ( ) ( )2 2

1 21 1

2

1

* * *,

2
*

d d

d .

r r
r r r r r rr r rr r

r
rr

DD r r D r D D r r

r D r

ξ ξ ξ ξ ξ ξ

ξ

=
= −

= −

∫ ∫

∫
       (50) 

From (49) and (50) we obtain  

( )

2

1

2

1

2
*

1
22

2

d
: .

d

r
rr

r
rr

r D r IR
Ik r r r

ξ

ξ
= =

Φ

∫
∫

                 (51) 

In (51), the characteristic value of minR  will be a minimumin terms of the 
characteristic functions of a variation problem. To verify this fact, we denote 

Rδ  be the variation in R when rξ  is subjected to a small variation rδξ  which 
is also compatible with the boundary conditions on rξ . 

According to the Equation (51), we obtain  

( )1
1 2 1 2

2 2 2

1 1 ,
IR I I I R I

I I I
δ δ δ δ δ

 
= − = − 

 
              (52) 

where  

( ) ( )

( )

2

1

2

1

2

1

1
0

*

d d 1 d 1
d d d

d 1 d 1 d 1 d 1 d
d d d d
d 12 d ,
d

r
r r r rr

r
r r r r r r r rr

r
r r rr

I r
r r r r

r r
r r r r r r r r

r D r
r r

ε

δ ξ εδξ ξ εδξ
ε

δξ δξ ξ ξ ξ ξ δξ δξ

δξ δξ ξ

=

    = + + + +    
    

      = + + + + +            
 = + 
 

∫

∫

∫

(53) 
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and  

( ) ( )( )( ) ( )2 2

1 1
2

0

d d 2 d .
d

r r
r r r r r rr r

I r r r r r r
ε

δ ξ εδξ ξ εδξ δξ ξ
ε =

= Φ + + = Φ∫ ∫   (54) 

Integrations by parts, we further get  

( ) ( ) ( )2 2

1 2 1 1
1 * * *,

2 2 d 2 d .
r r

r r r r r rr r r r r
I r D DD r r DD r rδ δξ ξ ξ δξ ξ δξ

=
= − = −∫ ∫   (55) 

Thus  

( )2

1

2
*

2

2 d .
r

r r rr
R r DD k R r r

I
δ δξ ξ ξ = − + Φ ∫              (56) 

From (56), it follows that 0Rδ =  if and only if ( )2
* 0r rDD k R rξ ξ+ Φ = , 

which comes from the Equation (48). 

3.3. The Linear Stability for Axsymmetric Perturbation  

Proof. Recalling (45), for simplicity we write ( )Re =  . Next, we rewrite 
Equation (41) as  

2 2
1 2 3

d 0,
d

I k I k I
z
ρ

− + =                    (57) 

with  

( )

2

1

2

1

2

1

2
22

1

2
2

2
3

d 1 d ,
d

d ,

d .

r
r rr

r
rr

r
rr

I r k r
r r

I r r r

I r r

ξ ξ

ξ

ξ

  = + +  
   

= Φ

=

∫

∫

∫

              (58) 

From (57), we get  

2 2
2 3

2

1

d
d d .
d

k I k I
z

z I

ρ
ρω

−
= − =                 (59) 

To keep the linearized system stable, the necessary and sufficient condition is 
that ω  be real. That is to say,  

2 2
2 3

2

1

d
dd 0.
d

k I k I
z

I z

ρ
ρω

−
= + >                 (60) 

It is equivalent to study  

2 2
2 3 1

d d 0.
d d

k I k I I
z z
ρ ρ

− + >                   (61) 

Recalling (58), the inequality (61) is equivalent to the following one:  

( )2 2

1 1

2 2 2
*

d d d 0.
d

r r
r rr r

r D r k r r r
z
ρ ξ ξ+ Φ >∫ ∫             (62) 

From (62), we get 
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Case 1. d 0
dz
ρ
= . In this case, the equilibrium state ρ  is a constant. From 

the Equation (62), it is sufficient to study  

( )2

1

2 d 0.
r

rr
r r rξ Φ >∫                      (63) 

According to the inequality (63), it is apparent that the linearized systems 
(33)-(36) are stable when ( )rΦ  is positive, and which is unstable when ( )rΦ  
is negative. And if ( )rΦ  changes sign in the interval ( )1 2,r r , Such case is a lo-
cally unstable situation. 

This case is also the well-known Rayleigh’s criterion. 

Case 2. d 0
dz
ρ
> . From the Equation (62), we obtain 

1) If ( ) 0rΦ > , the inequality (62) always holds. In this case, the fluid is sta-
ble.  

2) If ( ) 0rΦ < , we write  

( )

2

1

2

1

2
*2

min 2

d d ,
dd

r
rr

r
rr

r D r
k

zr r r

ξ ρ

ξ

 = −  
 Φ

∫
∫

                 (64) 

then for the modes mink k≥ , they all be unstable. For the modes mink k< , they 
are stable. Compare with the results of Rayleigh’s situation (see for example case  

1), the condition d 0
dz
ρ
> , which means that cold fluid is under hot fluid, the  

buoyancy tends to stabilize the fluid although the rotation tends to turn over the 
fluid. In this case, the positive temperature gradient effect can stabilize the low 
modes, but the rotation effect is the dominant role to cause the instability.  

Case 3. d 0
dz
ρ
< . Physically, under this condition, it means that hot fluid un-

der the cold fluid.  
1) If ( ) 0rΦ < , the fluid must be unstable and convection will occur. In this 

case, both the rotation and the buoyancy tend to overturn the flow.  
2) If ( ) 0rΦ > , when mink k>  the fluid is stable and when min0 k k≤ < , it is 

unstable. Compare with Case 2-2), we conclude that the thermal affects only the 
small wave numbers (whatever the stabilize or destabilize the fluid).  

4. Non-Axisymmetric Linear Stability Analysis 

In this section, we study Theorem 1.2, the non-axisymmetric perturbation situa-
tion. 

Proof. We consider non-axisymmetric perturbations, namely, 0m ≠ . Noting 
that s mω= − + Ω , we shall analyze the following cases. 

Case 1. 2 0s = . In this case, it is equivalent to  

( )
( )2 2

0,

0.

a m b

a m b

 + Ω =


+ Ω − =
                      (65) 

From which, we conclude that 0b = , When 0b = . In this situation, the 

https://doi.org/10.4236/jamp.2021.92020


H. Yang, H. Liu 
 

 

DOI: 10.4236/jamp.2021.92020 284 Journal of Applied Mathematics and Physics 
 

perturbation is stable. Actually, from (26)-(31), this case means the trivial case 
0r zu u uθ= = = . 

Case 2. 2 d 0
d

s
z
ρ

= ≠ . In this case, it is equivalent to  

( )

( )2 2

0,
d .
d

a m b

a m b
z
ρ

 + Ω =



+ Ω − =

                     (66) 

If d 0
dz
ρ
≥ , then recalling (4.2)1 we get 0b =  which implies the stable situa-

tion. When d 0
dz
ρ
< , then recalling (4.2) we conclude that 0b ≠ , which means 

unstable case. 
Under this situation, by using (26)-(31) again, we conclude that  

( ) ( )d
d

r z
z
ρ

Φ ≠  or ( ) ( )d
d

r z const
z
ρ

Φ = = . In the first case, it is corresponding 

to the trivial case 0r zu u uθ= = = . For the second case, then  

( ) ( )d 0
d

r z const
z
ρ

Φ = = >  it is stable and ( ) ( )d 0
d

r z const
z
ρ

Φ = = <  is unsta-

ble. In this situation, both the rotation and the thermal convection play the sta-
bilization or destabilize role simutanously. 

Case 3. 2 d
d

s
z
ρ

≠  and 2 0s ≠ . In this case, we write  

( )
2 2

2 2
2

.
d
d

m kC r
r s s

z
ρ

= +
−

                    (67) 

Since 0m ≠ , which implies that ( ) 0C r ≠ . From (35), we obtain  

( ) ( )1 d 2 ,
d r r

mP r r
rC r r rs

ξ ξΩ = −  
                (68) 

and  

( ) ( ) ( ) ( ) ( )d d 1 d d 2 2 d .
d d d d dr r r
P m mr r r
r r rC r r r rC r rs rC r rs r

ξ ξ ξ
    Ω Ω

= − +            
 (69) 

Substitute Equations (68) and (69) into Equation (33) and eliminat P, we obtain  

( ) ( ) ( ) ( )
( )

( )

( ) ( )

2 2

3 2

2

d 1 d d 2 4
d d d

.

r r r

r

m mr r r
r rC r r r rC r rs r C r s

s r
r

r

ξ ξ ξ

ξ

    Ω Ω
− −            

−Φ
=

    (70) 

By testing *
rrξ−  (the conjugate function of rrξ− ) to Equation (70), we ob-

tain  

( ) ( ) ( ) ( )
( )

2 2

1 1

2 2

1 1

2*
2

22 2
2 2

3 2

d 1 d d 2d d
d d d

4 d d .

r r
r r rr r

r r
r rr r

mr r r r r
r rC r r r r C r s

s rm r r r r
rr Cs

ξ ξ ξ

ξ ξ

   Ω
− +         

−ΦΩ
+ = −

∫ ∫

∫ ∫

    (71) 
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Integrating by parts and using the boundary condition, we estimate the first 
term of (71) as  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

1

2

1

1 2

2

1

*

* *

,

2

d 1 d d
d d

1 d 1 d d
d d d

1 d d .
d

r
r rr

r
r r rr

r r r

r
rr

r r r
r rC r r

r r r
rC r r rC r r r

r r
rC r r

ξ ξ

ξ ξ ξ

ξ

=

 
−  

  

 
= − +  

 

=

∫

∫

∫

        (72) 

Similarly, there also holds  

( )

( ) ( )

( )

2

1

2

1

1 2

2

1

2
2

2
2 2

,

2

d 2 d
d

2 4 d d
d

4 d d .
d

r
rr

r
r r rr

r r r

r
r rr

m r r
r r C r s

m mr r r r
rr C r s r C r s

m r r r
rr C r s

ξ

ξ ξ ξ

ξ ξ

=

 Ω
  
 

 Ω Ω
= −  
 

Ω
= −

∫

∫

∫

        (73) 

Combining (71)-(73), we get  

( )
( )2 2

1 1

2 2
21 d 2 d d .

d
r r

r r rr r

r smr r r r r
rC r r rs r

ξ ξ ξ
Φ −Ω − = 

 ∫ ∫       (74) 

Noting that ( )s a m bi= + Ω +  and ( ) ( )22 2 2s a m b a m bi = + Ω − + + Ω  , we 
get  

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

2 2
2

2 22

2 22 22 2

2 2

2
2

2 22 2

d
d

2

4

d 2
d

d 4
d

:

m kC r
r s s

z
a m b a m bim

r a m b a m b

a m b a m bi
zk

a m b a m b
z

A Bi

ρ

ρ

ρ

= +
−

 + Ω − − + Ω =
 + Ω − + + Ω 
 + Ω − − − + Ω  +
 + Ω − − + + Ω  

= −

         (75) 

where  

( )

( ) ( )

( )

( ) ( )

( )
( ) ( )

( )

( ) ( )

22 222 2

2 22 22 2 2 2 22 2

2 2

2 22 22 2 2 2 22 2

d
d ,

d4 4
d

2 2
.

d4 4
d

k a m bm a m b zA
r a m b a m b a m b a m b

z
m a m b k a m b

B
r a m b a m b a m b a m b

z

ρ

ρ

ρ

  + Ω − −  + Ω −      = +
    + Ω − + + Ω + Ω − − + + Ω    
 + Ω + Ω = +
    + Ω − + + Ω + Ω − − + + Ω     

(76) 

Substitute Equation (75) into Equation (74), we obtain  

https://doi.org/10.4236/jamp.2021.92020


H. Yang, H. Liu 
 

 

DOI: 10.4236/jamp.2021.92020 286 Journal of Applied Mathematics and Physics 
 

( )
( )

( ) ( )

( ) ( ) ( )

2

1

2

1

2

2 2

2 2
2

d 2 d
d

2
d .

r r
rr

r
rr

rA Bi m r r
r r a m bir A B

r a m b a m bi
r r

r

ξ
ξ

ξ

 + Ω
− 

+ Ω++   

Φ − + Ω + − + Ω
=

∫

∫

          (77) 

The real and the imaginary parts must be considered separately. From (77) we 
obtain  

( )
( ) ( )

( ) ( )
( )

( )
[ ]( ) ( )

( ) ( ) ( )

( ) ( )

2 2

1 1

2

1

2

1

2
2

22 2 2 2 2 2

2 2
22 2

22 23 2 2 2 2

2 2
2

2d dd
d d

2
4 d

4

d .

r rr
rr r

r
rr

r
rr

m A a m BbrA r r
r rr A B r A B a m b

A a m b B a m b
m r r

r A B a m b a m b

r a m b
r r

r

ξ
ξ

ξ

ξ

Ω + Ω +  −
 + + + Ω + 

+ Ω − + + Ω
+ Ω

 + + Ω − + + Ω 

Φ − + Ω +
=

∫ ∫

∫

∫

(78) 

and  

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )
( )

2 2

1 1

2

1

2

1

2
2

22 2 2 2 2 2

2 2
22 2

22 23 2 2 2 2

2

2d dd
d d

2
4 d

4

2
d .

r rr
rr r

r
rr

r
rr

m Ab a m BrB r r
r rr A B r A B a m b

A a m b B a m b
m r r

r A B a m b a m b

a m b
r r

r

ξ
ξ

ξ

ξ

Ω − + Ω  +
 + + + Ω + 

 + Ω − + Ω − − Ω
 + + Ω − + + Ω 

+ Ω
=

∫ ∫

∫

∫

 (79) 

It is obvious that 0b =  (that is s R∈ ) is the necessary and sufficient condi-
tion for linearized stable to system (33)-(35). 

At the beginning, we assume that s∈ . Testing the Equation (33) by *
rrξ , 

we obtain  

( )

( ) ( )

( )

2 2 2

1 1 1

2 2

1 11 2

2

1

22 * *

* * *

,

* *

d 2 d
d

2d d

d 2 d .
d

r r r
r r rr r r

r r
r r rr rr r r

r
r rr

P mr s r r r P r
r sr

mr P P r P P r
s

mP r r
r s

ξ ξ ξ

ξ ξ ξ

ξ ξ

=

Ω −Φ = + 

Ω = − +  
 

Ω = − −  

∫ ∫ ∫

∫ ∫

∫

(80) 

From (35), by taking the complex conjugate, we have  

( )
2 2

* * *
2 2

2

d 2 .
dd
d

r r
m m kr r P

r s r s s
z

ξ ξ
ρ

 
 Ω

− = + 
 − 
 

             (81) 

Substitute (81) into (80), we obtain  

( )( )2 2

1 1

2 2
2 22

2 2
2

d d ,
d
d

r r
rr r

m kr s r r r P r
r s s

z

ξ
ρ

 
 

−Φ = − + 
 − 
 

∫ ∫         (82) 
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from which we get  

( ) ( ) ( )2

1

2

1

2

1

2

1

2 2 2 2 2 2

2

2 2

2 2 2

2 2 2

2 2

d

d d
d

1 d 2 d
d

.
d d
d

r
rr

r

r

r

r

r

r

r s m P r s r
k

rP s r
z

P m m PP r r
r srs r s

rP s r
z

ξ

ρ

ρ

 Φ − − =
 − 
 

 Ω + +  −Φ    = −
 − 
 

∫

∫

∫

∫

          (83) 

In the last step above, we use the Equation (33). 
Noting that 2 0k ≥ , and write  

2

1

2 2 2

1 2 2 2

1 d 2 d ,
d

r

r

P m m PI P r r
r srs r s

 Ω = − + +  −Φ    
∫            (84) 

and  

2

1

2

2
2

d ,
d
d

r

r

rPI r
s

z
ρ

=
−

∫                         (85) 

we have the following results:  

1) 2d
d

s
z
ρ
< . From the Equation (85), we obtain 2 0I > . When ( ) 2r sΦ <  

then 1 0I < , combining with 2 0I > , we obtain 2 0k < . Therefore the assump-
tion s∈  is not true. In other words, s must be complex, which means that 
the system is unstable. 

2) ( )2 2d
d

m s
z
ρ ω> − + Ω = . From the Equation (85), we obtain 2 0I < . When 

( ) 2r sΦ <  then 1 0I < , combining with 2 0I < , we obtain 2 0k > . Therefore 
2 0k >  is equivalent to s∈ . In this situation, the system is linear stable. 
Moreover, we also give a necessary condition for the linear stable. To do this, 

let 0b = , we get  

( )
( ) ( )

2 2

22 2
.

d
d

m kC r
r a m a m

z
ρ

= +
+ Ω + Ω −

           (86) 

From the Equations (78)-(79) and (74), we get the following necessary condi-
tion for the linear stable:  

3) When ( ) 2 0r sΦ > ≥ , namely ( ) ( )2 0r a mΦ > + Ω ≥ . From the Equation 

(74), we know that d
dz
ρ  must satisfy ( )2 2d

d
a m s

z
ρ
< + Ω =  or  

( )
2 2 2 2 2 2

2 2
2 2

d
d

k r m k r ma m s
z m m
ρ + +
> + Ω = ;  

4) When ( ) 2r sΦ < , namely ( ) ( )2r a mΦ < + Ω . From the Equation (74), 

d
dz
ρ  must satisfy ( ) ( )

2 2 2
2 2

2

d
d

k r ma m a m
z m
ρ +

+ Ω < < + Ω . 
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5. Further Discussion on the Axisymmetric Perturbations  
Case 

To study the role of ( )rΦ  and 
( )d

d
z

z
ρ

 in the stabilize or destabilize the flow 

in a more obvious way, in this section, we shall present some simulation by tak-

ing ( )rΦ  and 
( )d

d
z

z
ρ

 with some special value. Moreover, for simplicity, we 

constrain for the case with axisymmetric perturbations on the domain 
2rπ ≤ ≤ π  and 0 z≤ ≤ π . In this case, we get the system as  

0, (87-1)

2 0, (87-2)

d 0, 2 ,0 , (87-3)
d

, (87-4)

0. (87-5)

t z z

t r r

t r

t z z

r
r r z z

u
Vu u P
r
V Vu u r z
r r

u P
uu u
r

θ

θ

ρ ρ

ρ

∂ + ∂ =

∂ − + ∂ =

  ∂ + + = ≤ ≤π π ≤ ≤  

 
∂ + ∂ =

∂ + + ∂ =

π  

We first rewrite the linearized system (87) in a scalar equation. 
Applying z∂  and r∂  to the Equations (87-2) and (87-4) respectively, elimi-

nating P, we get  

( ) 2 .t r z z r z ru u uθ ρ∂ ∂ − ∂ + Ω∂ = ∂                  (88) 

Similarly, from (87-1) and (87-3), we obtain  

( ) ( )2 0,t r z z r z z ru u r uθρ ρ∂ ∂ − Ω∂ + ∂ ∂ −Φ ∂ =             (89) 

where ( ) ( ) ( )d
2

d
V r V r

r
r r

 
Φ = Ω + 

 
 is the Rayleigh discriminant. Combine the 

Equations (88) and (89), we have  

( ) ( ) .tt r z z r z r z r zu u r u uρ∂ ∂ − ∂ = Φ ∂ − ∂ ∂               (90) 

By using the incompressible conditions (87-5), as to the axisymmetric case, we 
write  

and , 2 , 0 ,r z z rru ru r zψ ψ= ∂ = −∂ ≤ ≤ ≤π ≤π π        (91) 

with ( ), ,t r zψ  be a scalar function and satisfying  

,2 0,0, 0.z rr zψ ψ
π= =π π

∂ = ∂ =                  (92) 

Then we analyze the Equations (90)-(91), we get  

( )

,2 0,

1 1 0, 2 ,0 , (93-1)

0, 0. (93-2)

tt rr zz r zz z rr r

z rr z

r r z
r r

ψ ψ ψ ψ ρ ψ ψ

ψ ψ
π π = π=

    ∂ ∂ + ∂ − ∂ +Φ ∂ + ∂ ∂ − ∂ = ≤ ≤ ≤ ≤       
∂

π π

= ∂ =

π
 

Let ( ) ( ) ( ) ( )1 2 3, ,t r z t r zψ ψ γ γ= , next by using the boundary condition 

(93-2), we take ( ) ( )
02 0sinmkr a k rγ = ∑  and ( ) ( )3 sinkkz b kzγ = ∑ . From (93), 

we take  
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( ) ( )

( )( ) ( ) ( ) ( )

0 0 1

2 2 0
0 0 0 1

, ,

sin cos 0,

tt

z z

C k k r t

k
k r k k r k r t

r

ψ

ρ ρ ψ

∂

 + Φ + ∂ + ∂ =  

      (94) 

where  

( ) ( ) ( ) ( )2 2 0
0 0 0 0 0, , sin cos .

k
C k k r k k k r k r

r
= + +  

Case 1. ( )0 0 , , 0C k k r = . From Equation (94), to find a non-trivial solution, 
we have  

( )( ) ( ) ( ) ( )2 2 0
0 0 0sin cos 0.z z

k
k r k k r z k r

r
ρ ρΦ + ∂ + ∂ =          (95) 

From which, we get ( ) zr ρ λΦ = ∂ = , with λ  be a uniform constant. 

Write ( ) 1, , rr zz rt r z
r

ψ ψ ψΓ = ∂ + ∂ − ∂ , combing (93), we conclude that:  

• When ( ) ( ) 0r zρ λ′Φ = = > , the general solution can be written as  

( ) 1 20, , e e ,t tr z A Aλ λ− Γ = Γ ⋅ +                   (96) 

with 0A  and 1A  be constants. In this case, it is unstable for any non-trivial 
perturbation.  
• When ( ) ( ) 0r zρ λ′Φ = = ≤ , the solution is  

( ) ( ) ( ) ( )1 2, , 0, , cos sin ,t r z r z B t B tλ λ Γ = Γ ⋅ − + −          (97) 

with 0B  and 1B  be constants. In this case, the linearized system is stable.  
Case 2. 0 0C ≠ . From the Equation (94), we get  

( )
( )( ) ( ) ( )

( ) ( )
2 2 0

0 0 0

1 1
0 0

sin cos
0.

, ,

z z

tt

kk r k k r k r
rt t

C k k r

ρ ρ
ψ ψ

Φ + ∂ + ∂
∂ + =    (98) 

Write  

( )( ) ( ) ( )
( )

2 2 0
0 0 0

0 0

sin cos
.

, ,

z z
kk r k k r k r
r

C k k r

ρ ρΦ + ∂ + ∂
Λ = −         (99) 

To simplify this equation, we get  

( ) ( )( ) ( ) ( )
( ) ( )

2 2
0 0 0

2 2
0 0

ctan
.

ctan

k r z k r k z k r

k k r m k r

ρ ρ′ ′Φ + +
Λ = −

+ + ⋅
         (100) 

It is obviously, the flow will be stable with 0Λ ≤  and is unstable when 
0Λ > . In the following, we shall present some numerical simulation by taking 

( )rΦ , ( )zρ′ , and the wave number 0k , k with some special value. 
• First, in Figure 2 and Figure 3, we take ( ) 1rΦ = − , ( ) 2zρ′ = −  and 

( ) 2rΦ = − , ( ) 1zρ′ = −  respectively, In the graph, we also see that the ordi-
nate values are all greater than zero on the interval. which are unstable cases.  

• The next, in Figure 4 and Figure 5, we take ( ) 1rΦ = , ( ) 1zρ′ = −  and 
( ) 1rΦ = − , ( ) 1zρ′ =  respectively, In that graph, we see that the ordinate 

values are less than zero on the interval. which are unstable cases also. In 
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Figure 4, the instability comes from the thermal convection, more precisely, 
the higher frequency m with the variable z is more sensible. In Figure 5, the 
instability comes from the rotation. In this case, the higher frequency k with 
the variable r is more sensible, which implies the thermal buoyancy 
smoothed the lower frequency k with the variable r. 

Remark 5.1 The effect from the boundary. During the numerical simulation 
above, whatever the sign for both Φ  and ( )zρ′ , there is rapid oscillation near 

2r = π . Since ( )ctan r →∞  as 2r → π , we guess this oscillation is from the 
function ( )ctan r  at the beginning. However, from the results of numerical si-
mulation, the oscillation is more likely an effect from the boundary. To clarify 
the situation, we shall take the following simulations:  

• In Figure 6, we do the simulation with 
19,
10

r  ∈  
π


π , oscillation vanished. 

Subsequently, In Figure 7, we do the simulation with 
199,
100

r ∈ π π  
, oscilla-

tion appeared. Apparently, there are some extra influence from the boundary 

in the interval 
19 199,
10 100

r  ∈ 


π


π .  

 

 

Figure 2. 1, 2ρ′Φ = − = − . 
 

 

Figure 3. 2, 1ρ′Φ = − = − . 
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Figure 4. 1, 1ρ′Φ = = − . 
 

 

Figure 5. 1, 1ρ′Φ = − = . 
 

 

Figure 6. 
192, 1,
10

rρ π′Φ = = ≤ ≤ π . 
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Figure 7. 
1991, 2,
100

rρ′Φ = = ≤ ≤π π . 

6. Conclusion 

In this paper, we analyze the stability and instability criteria for the coupled 
thermal effects of fluids between coaxial rotating cylinders. The perturbation 
equation is analyzed by normal-modes method. We extend Rayleigh stability 
criterion by the analysis of axisymmetric perturbation in some cases, and we also 
analyze the case of non-axisymmetric perturbation, the results are presented in 
Theorem 1 and Theorem 2. Finally, through numerical simulation experiments, 
the results obtained by our experiments are consistent with the results obtained 
by our analysis on the specific cases of axisymmetric perturbations under certain 
given special values. For the fluid instability near the cylinder boundary, we also 
found some new problems waiting for us to further deal with. 
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