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Abstract 
In this study, the closed form of series solutions of the original and modified 
nonlinear time-fractional Fornberg-Whitham equations are derived by means 
of the Laplace decomposition method (LDM). The fractional order deriva-
tives are expressed in the sense of Caputo. For the specific choice of parame-
ters, the obtained solutions are compared with the exact solutions to validate 
the accuracy of this method. Numerical solutions are represented graphically 
which illustrate the behavior of the solutions. Further, the computations ex-
press that the above method is straightforward, and it desires the smaller size 
of computation. 
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1. Introduction 

The fractional order nonlinear differential equations (NDE) have been the fo-
cus of many studies due to their numerous applications in the areas of mathe-
matical physics and engineering [1]. In recent years, it has been a great interest 
to find the analytical methods for solving fractional NDE. Exact solutions of 
most of the fractional NDE cannot be found easily, consequently, analytical and 
approximate methods have been used. Some of the recent approximate methods 
for solving NDE include the Variational iteration method (VIM) [2], Differential 
transformation method (DTM) [3], Homotopy-perturbation method (HPM) [4], 
Adomian decomposition method (ADM) [5] [6] [7] and Homotopy analysis 
method (HAM) [8]. 
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Nonlinear partial differential equations (PDE) widely express complex me-
chanical and physical phenomenon. Many nonlinear PDE, such as the Korteweg 
de Vries equation, Camassa Holm equation and Degasperis-Procesi equation 
have different types of traveling wave solutions. The Fornberg-Whitham equa-
tion is one such type of equation which was first introduced for illustrating the 
qualitative behaviour of wave breaking [9]. Recently, various types of methods 
are successfully applied to find extract travelling wave solutions and numerical 
solutions to the nonlinear Fornberg-Whitham equation [10] [11] [12]. 

The original Fornberg-Whitham equation with time-fractional of the form 
[13]  

3 ,t xxt x xxx x x xxu u u uu uu u uα − + = − +                 (1) 

with the initial condition  

( ) 2,0 e ,  0,xu x x= >  

where ( ),u x t  is the fluid velocity. For 1α =  the Equation (1) becomes a clas-
sical Fornberg-Whitham equation. This equation was utilized to study the qua-
litative behaviours of wave-breaking and obtained a peaked limiting travelling 
wave solution of the form  

( ) ( )1 2 4 3, e ,x tu x t A − −=                       (2) 

where A is constant [14]. 
The modified time-fractional Fornberg-Whitham equation is considered by 

changing the nonlinear term xuu  in Equation (1) to 2
xu u  as follows [15]:  

2 3 ,t xxt x xxx x x xxu u u uu u u u uα − + = − +               (3) 

with the initial condition  

( ) ( )2,0  sech .u x a bx=  

For 1α = , using the bifurcation theory method which is widely used to solve 
the nonlinear differential equations, the explicit peakon and soliton solutions are 
obtained by the form  

( ) ( )( )2,  sech 4 3u x t a b x a t= +                (4) 

where ( )3 4 5 15a = − −  and ( )1 20 10 5 15b = −  [16]. Further, numerical 
solutions time fractional Fornberg-Whitham type equations are obtained by us-
ing various methods [17] [18] [19] [20]. 

In the present study, we consider the original and modified time-fractional Forn-
berg-Whitham equation to find the series solutions through Laplace decompasition 
method (LDM). The LDM is combined with the Adomian decomposition me-
thod and the Laplace transform. Our manuscript is structured as follows: In 
Section II, we list some basic definitions and properties of the fractional cal-
culus theory. A brief summary of Laplace decomposition method is given in 
Section III and the implementation of LDM is given in Section IV. Then the 
following two subsections, the series solutions of the time-fractional Forn-
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berg-Whitham equation and modified Fornberg-Whitham equation are pro-
vided. Finally, the concluding remark to the proposed results is given in Sec-
tion V. 

2. Preliminaries 

We provided some definitions and basic properties of fractional calculus theory 
and then we give the basics of Laplace transformation which will be applied later 
in this work. 

Definition 2.1 Let a function , 1f Cµ µ∈ ≥ −  and 0α ≥ , then the Rie-
mann-Liouville fractional integral of order α  is defined by  

( ) ( ) ( ) ( )1

0

1 d ,   0,
x

J f x x t f t t xαα

α
−= − >

Γ ∫               (5) 

Some basic properties of the operator Jα  are as following [21]:  
1) ( )( ) ( )( ) ,J J f x J J f xα β β α=   

2) ( )( ) ( ) ,J J f x J f xα β α β+=   

3) 
( )

( )
1

,
1

J x xα γ α γγ
α γ

+Γ +
=
Γ + +

  

where , 0α β ≥  and 1γ > − .  
Caputo and Mainardi [22] modified the fractional differentiation operator 

which overcomes the discrepancy of Riemann-Liouville derivative. 
Definition 2.2 The Caputo fractional derivative of order 0α >  is defined by  

( ) ( ) ( ) ( ) ( ) ( )1

0

1 d ,
x m mm mD f x J D f x x t f t t

m
αα α

α
− −−= = −

Γ − ∫       (6) 

where 11 , , 0, mm m m N x f Cα −− < ≤ ∈ > ∈ .  
Also the derivative satisfies the following properties:  
1) ( )( ) ( )D J f x f xα α =   

2) ( )( ) ( ) ( ) ( )1
0 0 , 0

!

k
m k
k

xJ D f x f x f x
k

α α − +
=

= − >∑   

Details study of fractional derivatives and integrals can be found in [21] [22] 
[23]. 

Definition 2.3 The Laplace transform of a given function ( )f t  is defined by  

( ) ( ){ } ( )
0

e d ,stF s f t f t t
∞ −= = ∫                    (7) 

whenever the improper integral converges.  
Some properties of the Laplace transform are given below:  
1) ( ) ( ){ } ( ){ } ( ) ( )1 1

0 0nn kn n k
kf t s f t s f− − −
=

= −∑  ,  

2) ( ){ } ( ) ( ) ( )1 n nnt f t F s= − .  

3. The Laplace Decomposition Method 

In order to explain the central idea of this method, first we consider a general 
fractional nonlinear PDE with the initial condition of the following form:  
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( ) ( ) ( ) ( ), , , ,tD u x t Ru x t Nu x t g x tα + + =                (8) 

( ) ( ),0u x f x=  

where ( ),tD u x tα  denotes the Caputo fractional derivative of ( ),u x t , R is a li-
near operator, N is a nonlinear operator and g is a non-homogeneous term. 

We take the Laplace transform on both sides of Equation (8) and then using 
the differentiation property of Laplace transform, we get,  

( ) ( ) ( ) ( ) ( )1 1, , , , .
f x

u x t g x t Ru x t Nu x t
s s sα α= + − +                  (9) 

Now, taking the inverse Laplace transform to Equation (9)  

( ) ( ) ( ) ( )1 1, , , , .u x t G x t Ru x t Nu x t
sα

−  = − +    
           (10) 

where ( ),G x t  is source term and give initial condition. 
The series solution of the Adomian decomposition method is given by,  

( ) ( )
0

, , ,n
n

u x t u x t
∞

=

= ∑                       (11) 

with the nonlinear term ( ),Nu x t  can be decomposed as  

( ) ( )0 1
0

, , , , ,n n
n

Nu x t A u u u
∞

=

= ∑                   (12) 

Adomian polynomials nA  can be derived by particular algorithms constructed 
by Adomian [24] or alternatively by Wazwaz [25]. The formula for nA  is given 
by  

0 0

1 d .
! d

n n
k

n kn
k

A g u
n λ

λ
λ = =

  =   
  
∑                  (13) 

Substituting (11) and (12) into Equation (10), we get,  

( ) ( ) ( ) ( )1
0 1

0 0 0

1, , , , , , ,n n n n
n n n

u x t G x t R u x t A u u u
sα

∞ ∞ ∞
−

= = =

  = − +    
∑ ∑ ∑     (14) 

From the equation (14) we get,  

( ) ( )

( ) ( ) ( )

0

1
1 0 1

, , ,

1, , , , , , 0,1, 2,n n n n

u x t G x t

u x t Ru x t A u u u n
sα

−
+

 =

   = − + =    

  
  (15) 

From (15), the series solution of (8) can be found  

( ) ( ) ( ) ( )
0 0

, , , where lim , , .
k k

n nkn n
u x t u x t u x t u x t

→∞= =

≈ =∑ ∑           (16) 

In generally, the above series is convergence rapidly [26] [27] [28] [29]. 

4. Implementation of LDM 

First, consider the generalized Fornberg-Whitham equation with time-fractional 
of the form  
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3 ,  0,  0 ,n
t xxt x xxx x x xxu u u uu u u u u tα α− + = − + > <           (17) 

( ) ( )0,0 ,u x u x=  

where 1n =  and 2. Comparing (17) with Equation (8) we get ( ), 0g x t =  and 
linear term R turn out to be  

,xxt xRu u u= − +                         (18) 

whereas the nonlinear term  

3 .n
x xxx x xxNu u u uu u u= − −                    (19) 

Using Equation (17), we get  
( ) ( )

( ) ( ) ( )

0 0

1
1

, ,

1, , , , 0,1, 2,n n xxt n x n

u x t u x

u x t u x t u x t A n
sα

−
+

 =

  = − − + + =     

 
  (20) 

Also  

1
0

3n
x xxx x xx n

n
N u u u uu u u A

∞

=

= − − = ∑                 (21) 

Adomian polynomials { } 0n n
A ∞

=
 can be calculated using the procedure stated 

in [24] as follows:  

0 0 0 0 0 0 03 ,n
x xxx x xxA u u u u u u= − −  

1
1 0 1 0 0 1 1 0 0 1 1 0 0 13 3 ,n n

x x xxx xxx x xx x xxA nu u u u u u u u u u u u u+= + − − − −  

2 2 2 2 2 1 1
2 0 1 0 0 1 0 0 2 0 0 1 1 0 2

2 0 1 1 0 2 2 0 1 1 0 2

1 1
2 2

3 3 3 ,

n n n n n
x x x x x

xxx xxx xxx x xx x xx x xx

A n u u u nu u u nu u u nu u u u u

u u u u u u u u u u u u

− − − −= − + + +

− − − − − −
 

3 3 3 3 3 2 3 3 2 2
3 0 1 0 0 1 0 0 1 0 0 1 1

2 2 2 2 2 2 1
0 1 1 0 1 2 0 0 1 2 0 0 3 0

1 1
0 2 1 0 1 2 0 3 3 0 2 1 1 2

0 3 3 0 2 1

1 1 1 1
6 3 2 2
1
2

3 3

n n n n
x x x x

n n n n
x x x x

n n n
x x x xxx xxx xxx

xxx x xx x

A n u u u nu u u n u u u nu u u

n u u u nu u u u n u u u u nu u u

nu u u nu u u u u u u u u u u
u u u u u u

− − − −

− − − −

− −

= + − −

+ − + +

+ + + − − −

− − − 1 2 0 33 3 ,xx x xx x xxu u u u− −

 

and so on. Using the above recursive relationships with Adomian polynomials 
the decomposition series (16) can be found as follows:  

( )0 0, ,u x t u=  

( ) { }1
1 0 0 0

1, ,xxt xu x t u au A
s

−  = − +  
   

( ) { }1
2 1 1 1

1, ,xxt xu x t u au A
s

−  = − +  
   

( ) { }1
3 2 2 2

1, ,xxt xu x t u au A
s

−  = − +  
   

  

( ) { }1
1 1 1

1, ,n n xxt n x nu x t u au A
s

−
− − −

 = − +  
   
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and so on. In the following two subsection, we utilize the above results for two 
initial value problems associated with the original and modified time-fractional 
Fornberg-Whitham equations in order to find the series solutions.  

4.1. Solution of the Original Time-Fractional Fornberg-Whitham  
Equation 

For 1n = , the Equation (17) reduces to the original time-fractional Forn-
berg-Whitham equation as follows;  

3 ,  0,  0 1,t xxt x xxx x x xxu u u uu uu u u tα α− + = − + > < ≤         (22) 

( ) 2,0 e ,  0.xu x x= >  

For 1α = , the exact solution of peaked limiting form of the travelling wave is 
given by [14]  

( ) ( )1 2 4 3, e .x tu x t A − −=                       (23) 

By using the above recursive relationships and Adomian polynomials nA , we 
find the terms of decomposition series (16) as follows:  

( ) 2
0 , e ,xu x t =  

( ) [ ]
2

1
e, ,

2 1

x tu x t
α

α
= −

Γ +
 

( ) [ ] [ ]
2 2 2 1 2

2
e e, ,

4 1 2 8 2

x xt tu x t
α α

α α

− +

= + −
Γ + Γ

 

( ) [ ] [ ] [ ]
2 3 2 1 3 2 2 3

3
e e e, ,

8 1 3 8 3 32 1 3

x x xt t tu x t
α α α

α α α

− + − +

= − + −
Γ + Γ Γ − +

 

( ) [ ] [ ] [ ] [ ]
2 4 2 1 4 2 2 4 2 3 4

4
e 3e 3e e, ,

16 1 4 32 4 64 1 4 128 2 4

x x x xt t t tu x t
α α α α

α α α α

− + − + − +

= + − + −
Γ + Γ Γ − + Γ − +

 

and so on. Consequently, the approximate analytical solution of (22) is found in 
the closed form of series as follows:  

( ) [ ]
21

2

1 0

1 1 e, lim e .
2 1

n i x n ik n
x

k n i

n tu x t
i n i

α

α

+ −−

→∞ = =

 −  = + −    Γ + −    
∑∑        (24) 

To verify the accuracy of the LDM, we compare the numerical values of ap-
proximate solutions with the exact solutions in Table 1. These numerical val-
ues show that LDM yields a good approximate solution, even for the lowest or-
der approximate solution. The accuracy of solution can be improved by taking 
higher-order approximate solutions. 

In Figure 1, the approximate solution and the exact solution are plotted. its 
leads to get the behavior of the approximate solutions are the same behavior 
with the exact solution. Consequently, the approximate series solutions are ra-
bidly convergence as the exact solution. The 3D and 2D plots for different values 
of α  are presented in Figure 2 and Figure 3.  
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4.2. Solution of Modified Time-Fractional Fornberg-Whitham  
Equation 

For 2n = , the Equation (17) reduces to the modified time-fractional Forn-
berg-Whitham equation as follows;  

 
Table 1. Comparison of exact solution with 5th order approximate solution of Equation (22). 

t x 0.2α =  0.7α =  1α =  Exact Solution Abs. error Exact LDMu u−  

0.1 

0.5 0.55330756 1.0548937 1.2014201 1.2012147 0.00020536966 

1.0 0.71046097 1.3545103 1.542654 1.5423903 0.00026369986 

1.5 0.91224994 1.7392257 1.9808069 1.9804683 0.00033859733 

2.0 1.1713521 2.23321 2.5434064 2.5429716 0.00043476757 

0.5 

0.5 0.78942785 0.83412887 0.91975844 0.92004441 0.00028597406 

1.0 1.0136454 1.0710427 1.1809932 1.1813604 0.00036719796 

1.5 1.3015465 1.375246 1.5164253 1.5168968 0.00047149152 

2.0 1.6712188 1.7658508 1.9471286 1.94773404 0.00060540709 

0.9 

0.5 0.78469782 0.7174914 0.70407427 0.70468809 0.00061381852 

1.0 1.0075719 0.92127719 0.90404926 0.90483742 0.00078815858 

1.5 1.293748 1.1829433 1.1608222 1.1618342 0.0010120157 

2.0 1.6612053 1.5189293 1.4905252 1.4918247 0.0012994538 

 

 
Figure 1. The exact solution is shown in the figure (a) in comparison with the 5th order approximate solution is shown in (b) 
when 1α =  of Equation (22). 

 

 

Figure 2. The behavior of the 5th order approximation solutions for 0.2α =  (a) and 0.6α =  (b) of Equation (22). 
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Figure 3. The 5th order of approximate solutions for different 
values of α  at 0.1t =  of Equation (22). 

 
2 3 ,  0,  0 1,t xxt x xxx x x xxu u u uu u u u u tα α− + = − + > < ≤         (25) 

( ) ( )2,0  sech ,u x a bx=  

For 1α = , the explicit peakon and soliton solution of Equation (25) is given 
by [16]  

( ) ( )( )2,  sech 4 3 .u x t a b x a t= +                   (26) 

By using the above recursive relationships and Adomian polynomials nA , we 
find the terms of decomposition series (16) as follows:  

( ) ( )2
0 ,  sech ,u x t a bx=  

( )
( )

[ ]
0

2
1

1

  sech
, ,

1
c a bx t

u x t
α

α
=

Γ +
 

( )
( )

[ ]
( )

[ ]
0 1

2 2 2 1 2
2 2

2

  sech   sech
, ,

4 1 2 2
c a bx t c a bx t

u x t
α α

α α

− +

= + −
Γ + Γ

 

( )
( )

[ ]
( )

[ ]
( )

[ ]

0 1

2

2 3 2 1 3
3 3

3

2 2 3
3

  sech   sech
,

1 3 3

  sech
,

1 3

c a bx t c a bx t
u x t

c a bx t

α α

α

α α

α

− +

− +

= − +
Γ + Γ

+
Γ − +

 

( )
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]

0 1

32

2 4 2 1 4
4 4

4

2 3 42 2 4
44

  sech   sech
,

16 1 4 4

  sech  sech
,

1 4 2 4

c a bx t c a bx t
u x t

c a bx tc a bx t

α α

αα

α α

α α

− +

− +− +

= −
Γ + Γ

+ −
Γ − + Γ − +

 

and so on. Consequently, as the above case, the approximate analytical solution 
of (25) is found in the closed form of series as follows:  

( ) ( ) ( )
[ ]

21
2

1 0

 sech
, lim  sech  ,

1i

n ik n

nk n i

a bx t
u x t a bx c

n i

α

α

−−

→∞ = =

 
= + 

Γ + −  
∑∑        (27) 

where,  
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( )( ) ( )( ) ( )
0

42 2
1 2 1 22 8 cosh 2 sech tanh ,c b a a b b bx bx bx= + + −  

( ) ( ) ( )( )(((
( ) ( )( (
) ( ) ( )( ) ( ) )))

0

2 22 2 2 4
2

22 2 4 2 2

4 64 2 2

2 2 sech 3 128  sech 4 130 3 864

2 7 10 21 32 13280 sech 2 5 960

26172 sech 11 30 90 sech ,

c b bx ab a bx b a b

a a b ab bx a a ab

b bx a a b a b bx

= + − − + + +

− + + + + +

+ − + +

 

( )( ) ( )(
( ) ( ) [ ]) ( ) ( )

1

3 2 2 2
2

62

26 304 7968 33 16 9 326 cosh 2

2 3 128 cosh 4 cosh 6 sech tanh ,

c b a ab a a b bx

ab bx bx bx bx

= − − − + − + +

− + +
 

and so on. In Table 2, we compare the approximate solution with the exact solu-
tion of Equation (25) for some different values of α . These numerical values 
show that the LDM provides more accurate approximate solutions. 

Similarly as in the previous case, the approximate solutions are the same be-
havior with the exact solution. This is illustrated by Figure 4. The 3D and 2D 
plots for some different values of α  are presented in Figure 5 and Figure 6.  

 
Table 2. Comparison of exact solution with 4th order approximate solution of Equation (25). 

t x 0.2α =  0.7α =  1α =  Exact Solution Abs. error Exact LDMu u−  

0.1 

0.5 −0.84015035 −0.84719431 −0.84200369 −0.84170019 0.00030349875 

1.0 −0.79140244 −0.83591408 −0.82723018 −0.82678633 0.00044385734 

1.5 −0.74342766 −0.81235381 −0.8015035 −0.8010345 0.00046899813 

2.0 −0.70107965 −0.77787419 −0.76618668 −0.76580255 0.00038413104 

0.5 

0.5 −0.81320446 −0.84990096 −0.84802561 −0.84516644 0.0028591668 

1.0 −0.80726139 −0.84820141 −0.84379648 −0.84074121 0.0030552675 

1.5 −0.7933088 −0.83324893 −0.82726913 −0.82471511 0.0025540116 

2.0 −0.77275166 −0.8062717 −0.79944392 −0.79796266 0.001481259 

0.9 

0.5 −0.78865494 −0.83899061 −0.84577223 −0.83899395 0.0067782736 

1.0 −0.78842909 −0.84297517 −0.85111767 −0.84525761 0.0058600603 

1.5 −0.78148415 −0.83403147 −0.84330532 −0.83966942 0.003635898 

2.0 −0.76844313 −0.81333057 −0.82306334 −0.82253964 0.00052370169 

 

 

Figure 4. The exact solution is shown in the figure (a) in comparison with the 4th order approximate solution is shown in (b) 
when 1α =  of Equation (25). 
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Figure 5. The behavior of the 4th order approximation solutions for 0.2α =  (a) and 0.6α =  (b) of Equation (25). 
 

 

Figure 6. 4th order of approximate solutions for different values 
of α  at 0.1t =  of Equation (25). 

5. Conclusion 

In this study, the Laplace-Adomian decomposition method has been successfully 
applied to find a closed form of series solution of the original and modified 
time-fractional Fornberg-Whitham equations. For some specific choice of pa-
rameters, the approximate solutions are compared with the exact solutions. 
Further, the behaviours of the solutions are presented by 3D and 2D graphs. The 
graphs showed that the behaviors of the approximate solutions are the same be-
haviors of the exact solutions. As a result, we realize that the approximate solu-
tions are rapidly convergent series as the exact solutions. Further, the computa-
tions show that the described method is easy to apply and it needs the smaller 
size of computation than the existing methods. Therefore, it is obvious that the 
LDM is very powerful, efficient and accurate for solving the nonlinear fractional 
differential equations. 
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