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Abstract 

Increasing needs for the study of complex dynamical systems require com-
puting solutions of a large number of ordinary and partial differential time- 
dependent equations in near real-time. Numerical integration algorithms, 
which are computationally expensive and inherently sequential, are typically 
used to compute solutions of ordinary and partial differential time- depen-
dent equations. This presents challenges to study complex dynamical systems 
in near real-time. This paper examines the challenges of computing solutions 
of ordinary differential time-dependent equations using the Parareal algo-
rithm belonging to the class of parallel-in-time algorithms on various high- 
performance computing accelerator-based architectures and associated pro-
gramming models. The paper presents the code refactoring steps and perfor-
mance analysis of the Parareal algorithm on two accelerator computing ar-
chitectures: the Intel Xeon Phi CPU and Graphics Processing Unit many- 
core architectures, and with OpenMP, OpenACC, and CUDA programming 
models. The speedup and scaling performance analysis are used to demon-
strate the suitability of the Parareal to compute the solutions of a single ordi-
nary differential time-dependent equation and a family of interdependent or-
dinary differential time-dependent. The speedup, weak and strong scaling 
results demonstrate the suitability of Graphical Processing Units with the 
CUDA programming model as the most efficient accelerator for computing 
solutions of ordinary differential time-dependent equations using parallel- 
in-time algorithms. Considering the time and effort required to refactor the 
code for execution on the accelerator architectures, the Graphical Processing 
Units with the OpenACC programming model is the most efficient accelerator 
for computing solutions of ordinary differential time-dependent equations us-
ing parallel-in-time algorithms. 
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1. Introduction 

The study of complex systems to analyze their stability and time evolution in 
near real-time due to external forces or disturbances is an emerging field of re-
search. A natural or engineered system is defined as a complex system if it exhi-
bits the following characteristics: 
• Consists of a large number of interacting subsystems or components or 

agents. 
• Exhibit emergence; that is, a self-organizing collective behavior difficult to 

determine from the knowledge of components behavior. 
• Lack of a central controller controlling the emergent behavior. 

Out of the three above characteristics, emergent behavior is considered the 
most distinguishing feature of complex systems. The nonlinear dynamics of the 
complex system [1] is the main contributor to the emergent behavior of a com-
plex system, hence the term complex dynamical systems. In the study of emer-
gent behavior, the system’s time evolution requires a system model, which is the 
mathematical representation of the system [2]. If the system dynamics are non-
linear, the mathematical representation involves nonlinear algebraic or nonli-
near differential equations or both.  

The mathematical models of complex dynamical systems consisting of ordi-
nary differential equations (ODEs), partial differential equations (PDEs), and 
time independence equations can be found in both natural and engineered sys-
tems. Examples of complex natural system models are the protein folding model, 
weather forecasting models, and crowd simulation models, to mention a few. 
The models of modern power grid and internet are of two massive, complex en-
gineered systems. These models’ common characteristics consist of equations 
modeling both the complex system’s steady-state and dynamic behavior. De-
pending on the application domain of a complex system, the algebraic or grid 
equations modeling the steady-state of the complex system are known as the 
network equations or dynamic-core (dycore), and the ODEs/PDEs modeling the 
dynamic state of the complex system is known as the system dynamics or phys-
ics. For example, the sensor network equations used in weather forecasting con-
stitute the dycore, while the physics consists of the PDEs. In the modern power 
grid, the steady-state load flow equations constitute the network equations, and 
the ODEs modeling the grid components are the system dynamic equations. 

Therefore, the study of complex dynamical systems to analyze their stability 
and time evolution involves computing the solutions of a large number of non-
linear algebraic and differential equations, which is computationally expensive. 

To date, the research to address the computation burden in the study of com-
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plex dynamic systems is focused on using high-performance computation 
(HPC) techniques with traditional supercomputers to parallelize the computa-
tion of network equations or dycore solutions resulting in execution times in 
terms of days. In the last few years, with the emergence of supercomputers based 
on many-core architectures due to hardware accelerators like graphical 
processing units (GPUs) and Intel Xeon Phi, the execution times have been re-
duced from days to hours or a single day. Recently, the computation time of 
weather forecasting using the model for prediction across scales (MPAS) was 
reduced to less than an hour from 24 hours using GPU high-performance com-
puting techniques [3]. The HPC technique used to parallelize the computation of 
the network equations solutions constitutes distributing the computations across 
the cores in each socket (CPU) in a supercomputer node. The distribution 
among the cores is implemented using spatial domain decomposition [4] [5] [6]. 
However, the underneath system dynamic equations or the physics solutions are 
computed sequentially using traditional numerical integration techniques re-
sulting in only offline studies of complex systems to evaluate stability and time- 
evolution. 

In recent years, due to the availability of powerful hardware accelerators like 
GPUs and Xeon Phi, HPC techniques to parallelize numerical integration me-
thods to compute solutions of ODE/PDE using time-domain decomposition [7] 
[8] [9] approaches in being researched. The time-domain decomposition ap-
proaches to parallelize the numerical integration methods are researched to re-
duce the computational time from hours to a few minutes or seconds, depending 
on the complexity. This paper investigates the time-domain decomposition ap-
proach to compute the solutions of ODEs.  

The idea of developing parallel methods for solving the ODEs dates back to 
the 1960s in [10] [11], where the authors present a parallel numerical integration 
method to solve the ODEs. In the 1990s, time-parallel multigrid methods were 
developed and presented in [12] [13] for the Navier-Stokes equation. Other stu-
dies were performed on parallel multiple shooting methods [14] and parabolic 
multigrid-methods [15]. In recent years, several parallel-in-time algorithms are 
developed namely: The Parareal algorithm (PRA) [16], parallel in time algorithm 
(PITA) [17], parallel full approximation scheme in space and time (PFASST) 
[18] [19], revision deferred corrections [20] [21] and space-time multigrid me-
thods [22] [23]. 

PRA is widely studied and implemented for computing solutions of ODEs and 
PDEs in several application domains like finance [24], molecular dynamics [8], 
quantum chemistry [25], non-linear parabolic equations [26], plasma physics 
[27], and power systems [28] [29] [30]. Several studies are performed to analyze 
the stability and convergence properties [9] [31] [32] [33] of the algorithm. The 
scalability of the algorithm is studied in [34] [35] using different computing 
cores. 

The PRA is implemented on heterogeneous and homogeneous computing ar-
chitectures for several applications. The research in [36] demonstrates the im-
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plementation of PRA for unsteady hydrodynamic simulations. The authors focus 
on analyzing the stability of the PRA for solving the advanced turbulence models 
to solve evolution fluid problems at high Reynolds number. The instability 
problem of PRA is addressed by incorporating the windowing technique at a 
high Reynolds number. The proposed framework is illustrated with a fully tur-
bulent vortex shedding from a cylinder and a flow from the Grand Passage tidal 
zone in the Bay of Fundy. OpenMP is used to achieve temporal parallelism, and 
MPI is used to achieve data parallelism introduced by spatial decomposition. 
The computationally intensive tasks of the application are accelerated using 
CUDA.  

In [37], the authors have implemented PRA to parallelize the time dimension 
in solving the PDEs modeling neural tissue’s electrical activity. The models are 
mathematically represented as PDEs. Parallelization space in GPU using dy-
namic grids, i.e., launching multiple streams technique, is used to solve the 
mono-domain model. CUDA programming model is used to implement on 
GPUs. The GPU results are compared with the simulations obtained from a 
multicore processor cluster using the MPI programming model. A speedup of 
100 is achieved in computation time between the sequential and parallel execu-
tion on the GPU.  

The research in [38] demonstrates PRA’s implementation, coupled with the 
Exact Domain Decomposition method (EDD), to solve the Hodgkin-Huxley eq-
uation. PRA is implemented to achieve the outer level parallelism, and the EDD 
algorithm with fine decomposition is used for inner-level parallelism. The me-
thod uses dynamic parallelism of CUDA to achieve multi-level parallelism on 
GPUs. The maximum speedup achieved is 2.5x for the largest matrix size. 

A stencil-based implementation of PRA is presented in [39] called STELLA. 
STELLA provides OpenMP and CUDA backend for shared memory paralleliza-
tion on CPUs and GPUs for intranode spatial stencils. The node-wise spatial 
parallelism is combined with PRA, and the MPI programming model is used to 
parallelize in time across nodes. The performance is analyzed for an advec-
tion-diffusion problem with a time-dependent diffusion coefficient. In this 
framework, the spatial dimension of the PDEs is solved on GPUs for fine- 
grained parallelism.  

In the above literature, the PRA is implemented to solve PDEs, which involves 
space and time. The majority of the above implementations incorporate both 
spatial and temporal parallelism. For the heterogeneous computing architectures 
implementation, only the CUDA programming model is used. In [28], PRA is 
implemented to solve the power systems dynamics that involve only temporal 
parallelization. However, the research focuses on the stability and suitability of 
PRA to solve a system of ODEs. The PRA is implemented on MATLAB, and 
ODEs are solved sequentially on the CPU. The potential speedups that can be 
achieved when implemented on multicore processors are presented.  

In [40], the use of the time-parallel approach and, in particular, the Parareal 
algorithm (PRA) implementation on the Graphical Processor Unit (GPU) was 
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investigated. The Compute Unified Device Architecture (CUDA) programming 
model was used for solving ODEs representing the electrical components of the 
power system. The investigation focused on developing a reliable implementa-
tion of PRA on heterogeneous architecture to solve ODEs in temporal decompo-
sition to reduce computational time and be applied to achieve real-time or faster 
than real-time TSA using a large number of GPUs. 

In this paper, PRA is implemented using different programming models on 
homogeneous and heterogeneous computing architectures. OpenMP [41] pro-
gramming model is used for the PRA implementation for the homogeneous 
computing architectures. CUDA [42] and OpenACC [43] programming models 
are used for the PRA implementation on heterogeneous computing architec-
tures. PRA’s performance on both computing hardware architectures and three 
programming models is analyzed by comparing using the speedup and scaling 
achieved. We study the performance of PRA for the system of interdependent 
ODEs. First, the PRA is implemented to solve the system of ODEs on two ho-
mogeneous computing architectures: Intel Xeon and Intel Xeon Phi processors, 
and secondly, on the heterogeneous computing architecture: NVidia GPUs. The 
programming models for the heterogeneous computing architecture are imple-
mented using the OpenACC, a directive-based programming model, and the 
CUDA programming model. In addition to the PRA implementations’ speedup 
performance analysis, the PRA’s scaling is also analyzed. The scaling analysis is 
performed by increasing the number of fine grids of the PRA, increasing the 
number of dependent ODEs of a system, and increasing the hardware resources. 

This paper is organized as follows: In Section 2, a detailed explanation of the 
Parareal algorithm is presented. A brief overview of multicore Intel Xeon and 
Xeon Phi computing hardware architectures are discussed in Section 3. Section 4 
discusses implementing the Parareal algorithm on multicore CPUs and NVIDIA 
GPUs using the three programming models. In Section 5, the performance anal-
ysis of PRA implementation is presented. Section 6 presents the conclusion and 
future work. 

2. Parareal Algorithm 

The Parareal Algorithm (PRA) is one of the temporal domain decomposition 
algorithms developed in 2001 [16]. The PRA involves decomposing the entire 
simulation time into small subintervals and solving each subinterval in parallel 
with different initial conditions generated by the coarse grid. A computationally 
inexpensive numerical integrator provides these initial conditions for the inter-
vals with a less accurate solution. The small sub-intervals are solved indepen-
dently in parallel to obtain a more accurate solution of the differential equation. 
The system of nonlinear ODEs to be solved is defined as  

( ) [ ], , 0,u f u t t T= ∈                       (1) 

Let the entire simulation time t be decomposed into N sub-intervals as 

0 1 NT T T< < <  with the step size of 1n nT T T −∆ = −  1 n N∀ ≤ <  as shown in 
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Figure 1. The solution of the ODE in Equation (1) is solved using PRA in three 
major steps with two numerical operators. The two numerical operators defined 
in PRA are 1) Fine Propagator, which is denoted as Fδt, and 2) Coarse Propaga-
tor, which is denoted as GΔT. The two numerical operators using initial condition 
( )1 1n nu T U− −=  compute the approximate solution of Equation (1) at time Tn but 

with different time steps.  
The Fδt computes the approximate solution of Equation (1) with a small time-

step t Tδ ∆  at time Tn, as shown in Figure 1. The solution obtained using Fδt 
is computationally expensive but provides a more accurate solution. The solu-
tion computed from the fine propagator is denoted as nU . The fine propagator 
can be mathematically defined as 

 ( )  0
1 1 0, , ,n t n nU F T U t U uδ δ− −= =                   (2) 

The GΔT computes the approximate solution of Equation (1) at the same time 
instance Tn but with a time step ΔT. The solution obtained using a coarse prop-
agator is less accurate and is computationally inexpensive. The approximate so-
lution computed by the coarse propagator is denoted as nU . The coarse propa-
gator is mathematically represented in Equation (3). 

 ( )  0
1 1 0, , ,n T n nU G T U T U u∆ − −= ∆ =                  (3) 

The two numerical operators defined above are used in three major steps of 
the PRA algorithm, as shown in Figure 2.  

Figure 2 shows three major steps, with steps 2 and 3 that are iterated until 
convergence. The following steps describe the PRA implementation: 

Step 1: Initial coarse propagation  
This step is used for the initialization of the algorithm. It generates fast but 

less accurate initial conditions sequentially using the GΔT used as a starting point. 
The approximate solution obtained at Tn is used as the initial conditions for step 
2. The first for loop in the pseudocode is the initial coarse propagation step. The 
superscript “0” indicates it is the initial iteration. 

Step 2: Fine propagation 
In this step, the Fδt, which is computationally expensive, is used to propagate 

the fine solution in parallel over each sub-interval [ ]1,n nT Tt −∈ . This step pro-
vides a more accurate solution at time Tn using smaller time step δt. The first 
inner for loop in the pseudocode indicates the fine propagation step. The outer 
for loop in the pseudocode shows the PRA iterations where k is the iteration 
number.  

 

 
Figure 1. Decomposition of time into smaller sub-intervals. 
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Figure 2. Pseudocode of PRA algorithm [33]. 

 
Step 3: Predictor-Corrector 
In this step, the coarse values are corrected using the fine solutions obtained 

from the previous step. The Predictor-Corrector method is used to correct the 
solution difference obtained from coarse and fine propagators for the next itera-
tion. The second inner for loop in the pseudocode is the predictor-corrector 
method. This step of the algorithm is a sequential process. The coarse values 
updated using the predictor-corrector method is used as the initial conditions in 
step 2 for the next iteration. 

The notation U in Figure 2 represents the corrected coarse solution obtained 
from the predictor-corrector step. The fine propagator corrects the initial condi-
tions which are given by the coarse propagators in every iteration. At the end of 
the 1st iteration, the coarse value at time T1 gets corrected to the fine solution. 
Similarly, at the end of the kth iteration, the coarse value at time Tk gets corrected 
to its respective fine solution. Steps 2 and 3 of the algorithm are iterated until the 
difference between the two successive coarse values meets the desired tolerance 
level. Faster convergence can be obtained by choosing the time step for the 
coarse propagator properly as it generates the initial conditions for the fine 
propagators. The coarse solutions are generally less accurate but play an essential 
role in the convergence of the algorithm [33]. 
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3. Architecture Overview 

PRA is implemented on a multicore homogeneous computing architecture and 
heterogeneous computing architecture. In this section, a brief description of 
homogeneous computing architectures is provided. The detailed description of 
heterogeneous computing architecture is provided in [42].  

3.1. Homogeneous Computing Architecture 

PRA is implemented on the homogeneous computing architecture using the 
OpenMP programming model. PRA’s performance is analyzed on two Intel 
processors: Intel Xeon processor code-named Haswell and Intel Xeon Phi pro-
cessor code-named Knights Landing. 

3.1.1. Haswell Processor 
PRA is implemented on the Haswell (HSW) processor using the OpenMP pro-
gramming model. The HSW processor is the successor of the Ivy Bridge proces-
sor. It is a multicore processor with better vector processing compatibility com-
pared to the Ivy Bridge processor. The hardware block level diagram of the HSW 
processor is shown in Figure 3. HSW is a dual-socket processor with 12 physical 
cores/socket with 30 MB L3 cache. With hyperthreading enabled, each core 
supports two logical threads. Therefore, a total of 48 logical threads can be ex-
ecuted in parallel. The multithreaded execution on the hardware enables us to 
compute 48 fine grids of the PRA in parallel, reducing the computational time.  

HSW processor supports advanced vector extension (AVX) 2 instruction set 
with 256 wide registers, which means it can hold up to 8 single-precision float-
ing-point values or 4 double-precision floating-point values in a register. The 
AVX instructions allow us to vectorize the application, i.e., perform single in-
struction multiple data (SIMD) operation and add performance improvement 
and parallel execution. Data alignment plays a vital role in increasing vectoriza-
tion opportunities since misaligned data access reduces load and store opera-
tions efficiency. Figure 4 shows the possible ways of data alignment. If the data 
is aligned, only one clock cycle is needed to perform load/store operations.  

In contrast, misaligned data requires multiple CPU clock cycles to perform 
the same load/store operations. Therefore, the efficient utilization of the vector 
registers requires data alignment. HSW processor is suitable for vector opera-
tions due to 256 bit wide registers and SIMD operations. In PRA, step 2 per-
forms SIMD operation while computing the solution of the fine grids. With 
vectorization capabilities, additional performance improvement can be achieved 
for PRA execution using the HSW processor. 

Solving ODEs involves multiple addition and multiplication operations to 
compute the numerical solution using PRA. In PRA, the ODEs are solved twice, 
once with the coarse propagator and another with the fine propagator. Modern 
Intel architectures like HSW have a feature that enables performing multiplica-
tion and addition in a single clock cycle called fused multiply-add (FMA). The 
use of FMA also maximizes vectorization capabilities and improves application  

https://doi.org/10.4236/jcc.2021.92003


S. Lakshmiranganatha, S. S. Muknahallipatna 
 

 

DOI: 10.4236/jcc.2021.92003 37 Journal of Computer and Communications 
 

 
Figure 3. Haswell Architecture block diagram [44]. 

 

 
Figure 4. Possible ways of data alignment [45]. 
 
performance. The compiler flag -xCORE-AVX2 is required to utilize FMA with 
the 256 wide registers present on HSW. This flag enables special instructions like 
FMA, which maximizes the utilization of the vector registers and AVX version 2 
instruction set. Solving the differential equations using PRA involves performing 
a number of multiplication and addition operations in a single equation in both 
coarse and fine propagators. Using this flag, the code is optimized by the compi-
ler for the potential FMA operations in both propagators that improves PRA’s 
performance.  

3.1.2. Knight’s Landing Processor 
The PRA is implemented on multicore homogeneous computing architectures 
called Knights Landing (KNL). KNL is the second generation Intel Xeon Phi ar-
chitecture and successor to the Intel Xeon Phi coprocessor introduced in 2012. 
KNL mainly targets high-performance computing by delivering massive thread 
parallelism, data parallelism, and memory bandwidth in a CPU for high 
throughputs [46]. KNL is also binary compatible with Intel Xeon processors, i.e., 
HSW and Broadwell. KNL also has the processor chip capable of supporting the 
AVX512 instruction set extension, which doubles the vector registers’ width for 
SIMD operations. Unlike the previous generation Xeon Phi coprocessor, KNL is 
a standalone system with self-boot capability, eliminating the PCIe bottleneck 
issue due to the data transfer with a host processor. The KNL is highly suitable 
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for PRA implementation due to many salient hardware features. Two salient 
features that make KNL more suited for PRA implementation compared to 
HWS are the 256 simultaneous multithread execution on 64 computing cores on 
a single socket and the associated thirty-two 512 bit wide registers for SIMD or 
vector operations.  

Figure 5 shows the block diagram of the KNL CPU processor. The architec-
ture description [47] highlights the new features of KNL compared to the 
first-generation Knights Corner coprocessors. KNL CPU design introduces the 
concept of tile, the basic computational unit which is replicated. Figure 6 depicts 
the block diagram of each tile in KNL. Each tile comprises two cores, two vector 
processing units (VPU) per core, and a 1 megabyte of level-2 (L2) cache and 
Cache/Homing Agent (CHA) shared between two cores. There are 38 tiles out of 
which at most 36 tiles are active for computation.  

Also, each tile has its own cache 1 MB L2 cache. This feature of KNL is very 
beneficial, especially while solving the fine propagator of PRA. In the case of 
PRA implementation, there are ~ten variables that are required in each iteration 
and are made available using the load/store operations. Each fine propagator is 
assigned to a thread on the core. Assuming the fine propagator is iterated 100 
times to solve the fine propagator value, each thread will require about 4 KB of 
memory to compute the fine solution i.e. 10 floating-point variables iterated for 
100 times. Therefore, each core requires ~16 KB of memory since KNL supports 
4 threads/core. Hence, the total memory required by the tile is ~32 KB, is much 
less than 1 MB of L2 cache that is available on the tile. Since the memory re-
quested by each fine propagator is less than the available L2 cache on the tile, the 
frequently used data can be read/stored on the tile’s cache itself for all 8 fine 
propagators (threads). The lower memory requirement for each thread reduces 
the cache misses for the fine propagators resulting in PRA’s performance im-
provement.  

 

 
Figure 5. KNL block diagram [47]. 
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Figure 6. Block diagram of each tile [47]. 

 
KNL has two types of memory: MCDRAM and DDR together provide both 

high bandwidth and large capacity for applications. MCDRAM is in-package 
high bandwidth memory of size 16 GB to boost the performance. The bandwidth 
is 450 GB/s and 380 GB/s for stream and read-only bandwidth. The MCDRAM 
can be configured into several modes at boot time. The first mode is called cache 
mode, where the MCDRAM is used as a cache for DDR. This mode provides the 
application benefits of high bandwidth memory cache. In this mode, the 64 B 
cache lines are direct-mapped cache. The second mode is called flat mode, in 
which the MCDRAM is treated as a standard memory in the same address space 
as DDR. Here, the default memory is DDR. The last mode is the hybrid mode, a 
combination of cache and flat modes. Here, a portion of MCDRAM is cache, 
and the remaining is flat.  

Each core is a two-wide, out-of-order core derived from the Intel Atom pro-
cessor microarchitecture code-named Silvermont [48]. KNL has significant 
modifications to the Silvermont microarchitecture to incorporate features to 
handle high-performance computing workloads. Some of the features include 
support for four threads per core, more L1 cache, higher L1 and L2 bandwidths, 
the addition of AVX512 vector instruction set, and many more. KNL has 512-bit 
wide vector registers, which can hold sixteen single-precision numbers or eight 
double-precision numbers in each register, making effective use of the AVX512 
instruction set.  

The compiler flag -xMIC-AVX512 can be used to effectively use the AVX 512 
instruction set during compilation on KNL. The flag makes sure that both VPUs 
are used for computational tasks. Intel AVX512 is a comprehensive instruction 
set architecture with higher performance than predecessor AVX and AVX2 in-
struction set architectures. Four functionalities are supported by this compiler 
flag for KNL architecture [49], and out of which, Intel AVX-512 foundation in-
structions (AVX-512F) functionality is used for PRA implementation. (AVX- 
512F) are the base of Intel AVX-512. They include extensions of the Intel AVX 
and Intel AVX2 family of SIMD instructions. The assembly code generated uses 
AVX-512 IA.  

4. Implementation 

This section discusses the PRA implementation details using different pro-
gramming models. The PRA is implemented to parallelize the numerical inte-
gration algorithm for solving a system of ODEs. The system of ODEs is the ma-
thematical model of the synchronous generator used to perform the transient 
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stability analysis (TSA) of a power grid [40]. The number of ODEs is a function 
of the generator model order or level used in the TSA. If the TSA focus does not 
include subtransients, the classical model of a generator consisting of two 
first-order ODEs is solved at each time step. If the subtransients are taken into 
account, the fourth-order model of a generator consisting of four first-order 
ODEs is solved at each time step.  

4.1. OpenMP  

PRA is implemented using the C++ programming language with OpenMP for 
multithreaded execution on the Intel processors. The code snippet of PRA im-
plementation using C++ with OpenMP is shown in Figure 7. In Figure 7, it can 
be seen that the fine propagators are parallelized by annotating the C++ code 
with OpenMP directives (code in red color). 

The executions on the CPU showed in Figure 7 uses the Fork-Join approach 
of OpenMP. The executions are: 
• The master thread computes the coarse solutions of the ODE sequentially 

shown as step 1 in Figure 7.  
• The master thread initiates the fork by spawning multiple child threads to 

compute the fine solutions in parallel, shown as step 2 in Figure 7. Each child 
thread is assigned with one fine propagator. Each fine propagator using the 
initial condition at time Tn-1 (coarse solution) computes the fine solution at 
time Tn.  

• Each fine propagator computes the solution at Tn using the time step δt se-
quentially. If the simulation time is decomposed into N intervals, N fine 
propagators are executed in parallel.  

• After the fine propagators have computed the fine solutions in step 2, the fine 
propagator threads join the master thread, shown as step 3 in Figure 7.  

• In step 3, the master thread performs predictor-corrector sequentially to up-
date the solutions.  

Figure 7 shows the data are aligned with 64-byte boundary [50] for better 
vectorization and performance improvement. The code developed for KNL and 
HSW is identical since the optimization techniques are applicable across all 
types of Intel processors. Therefore, we have a single optimized PRA codebase 
working on different Intel processors. The same codebase is compiled using dif-
ferent compiler flags reflecting the different instruction sets of KNL and HSW 
architectures.  

4.2. CUDA 

NVIDIA GPUs with CUDA programming model is used for accelerating the 
parallel step of the PRA algorithm. CUDA provides simple language extensions 
to programming languages like C, C++, FORTRAN, and Python to expose the 
fine and coarse grain parallelism. The application needs to be refactored using 
the CUDA APIs to offload the parallelizable portion of the application on to the 
GPUs.  
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Figure 7. Code snippet for PRA implementation using OpenMP. 

 
The C programming language version of CUDA is used in implementing the 

PRA for execution on GPUs. From the pseudocode presented in Figure 2, the 
PRA algorithm consists of three major steps, out of which steps 1 and 3 can only 
be executed sequentially. In contrast, step 2 can be executed in parallel. 
• For the GPGPU implementation, the PRA’s sequential steps are executed on 

the host (CPU), and the parallel step of the PRA executed on the device or 
accelerator (GPU).  

• First, the coarse solutions computed on the host are copied from the 
host-to-device for use by the fine propagators.  

• After the fine solutions are computed on the device, the fine solutions are co-
pied back from the device-to-host for the predictor-corrector step.  

• The corrected coarse values again copied to the device for the next iteration 
of the fine propagators.  

• Therefore, the memory transfers back and forth between host and device in 
each iteration increase overall computation time.  

In Figure 8, the code snippet of PRA implementation using CUDA is shown. 
The code in black color in Figure 8 is associated with the host execution. The 
code in red color in Figure 8 is associated with the device (GPU) execution. In 
the research [51], the process of developing optimized CUDA based code is dis-
cussed. 

4.3. OpenACC 

Implementing an algorithm using CUDA for heterogeneous computing involves 
a significant amount of time and effort to refactor existing sequential code for 
executing on GPUs. Also, the CUDA programming model requires extensive 
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memory management, which is a time-consuming process. Therefore, most 
HPC researchers do not opt for rewriting the existing application code in CUDA 
for heterogeneous computing, even though the best execution time with high 
scaling efficiency can be achieved. Also, the CUDA programming model is spe-
cific to NVIDIA GPUs. At the same time, supercomputers employ a variety of 
computing architectures. There is a need for having a single codebase that can be 
executed on various HPC architectures. In recent years, several programming 
models like OpenACC, Kokkos [52], oneAPI [53], and many more are devel-
oped to achieve performance by porting an existing application code targeting 
different HPC platforms. The OpenACC programming is a directive-based pro-
gramming model for porting codes targeted for execution on multiple HPC 
platforms. Unlike CUDA, OpenACC provides rapid tools to parallelize and port 
an existing code for execution on GPUs and other architectures with minimal 
code refactoring. 

 

 
Figure 8. Code snippet for PRA implementation using CUDA. 
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PRA is implemented using the OpenACC programming model to execute on 
the GPUs. The code is written in the C++ programming language. PGI compiler 
is used for compiling the code. The code snippet of PRA implementation using 
OpenACC is shown in Figure 9. The code snippet is color-coded to differentiate 
the host (CPU) and the device (GPU) code. The code in red executes on the de-
vice, and the code in black color executes on the host. Steps 1 and 3 are executed 
on the host while step 2 annotated with OpenACC directives execute in parallel 
on the device (GPU).  

The code snippet in Figure 9 can be observed to have the code flow similar to 
the pseudocode shown in Figure 2. In OpenACC implementation, the Ope-
nACC directives are annotated to advise the compiler which portion of the code 
needs to be parallelized. The sequential code can be easily parallelized using 
OpenACC directives and clauses and achieve performance on multiple HPC ar-
chitectures. In this paper, we present the OpenACC clauses used for improving 
the performance of GPU execution. Since the code is implemented using the 
C++ programming language, the keyword pragma is used as the compiler direc-
tive to highlight the parallelization code block. The compiler directive is fol-
lowed by the directive type “acc” for OpenACC directives. Followed by the di-
rective type, the compute directive is inserted. There are two types of “compute” 
directives that can be inserted to parallelize the code block. They are kernels and 
parallel. Kernel directive provides hints to the compiler to look for parallelism in 
a block of code and parallelize. 

In contrast, the parallel directive is an assertion to the compiler to parallelize 
the code. The parallel directive is used when the developer has prior knowledge 
about the code suitability for parallelizing. In PRA porting, the parallel construct 
is used to assert the code block of fine propagators that needs to be parallelized. 
The syntax #pragma acc parallel directive in Figure 9 identifies the region of the 
code that needs to be offloaded onto the GPUs. 

The OpenACC directive is augmented with different clauses to assist the 
compiler and achieve better performance. The two main clauses used in step 2 in 
Figure 9 are: 
• The “workers” clause is a clause that distributes the parallelism in three levels 

to split the work across different hardware units. The three levels are gang, 
worker, and vector.  

 Vector is the finest granularity of a GPU SIMT.  
 The gang is the most coarse-grained, which works independently of each 

other and may not synchronize.  
 Worker defines how work is distributed inside a gang. 

Figure 10 gives the comparison of the work distribution clauses in OpenACC 
with CUDA. In Figure 10, the vector and worker identify the number of threads 
along the x and y dimensions of a block, respectively. This hierarchy is similar to 
CUDA. The number of workers and vector length can be specified using the 
clauses num_workers, m, and vector_length, n. The compiler automatically gene-
rates the number of gangs based on m, n, and total simulation time for the PRA.  
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Figure 9. Code snippet for PRA implementation using OpenACC. 

 

 
Figure 10. Organization of worker, vector, and the gang in OpenACC 
in comparison to CUDA thread hierarchy [54]. 
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• The data clause is used to override the default compiler analysis of specified 
variables movement between the host and the device. The data clause con-
trols how and when to copy the data to and from the device. In Figure 9, the 
three data clauses used for data movement between the host and the device 
are shown.  

 The first clause is the copyin clause that allocates memory on the device for 
all the variables listed inside the parentheses. This clause initializes the va-
riables by copying data to the device at the beginning of the region. Once the 
parallel region completes the execution, memory is released on the device.  

 The second data clause used is the create clause, which creates all the listed 
variables on the device. The variables created on the device are local to the 
device and cannot be copied back to the host. The memory is freed on the 
device once the execution is complete.  

 The third clause is copyout, where all the computed values stored in the va-
riables listed are copied back to the host from the device at the end of the pa-
rallel region.  

For solving the ODEs, first, the state variables of the differential equations are 
copied to the device before computation of the fine solution similar to CUDA. 
The temporary variables used in CUDA implementation to minimize the global 
memory access are created here using the create clause. The variables are created 
on the device, and the intermediate solutions are computed using these va-
riables.  

The #pragma acc loop construct is used for defining the work distribution of 
the for-loop. Augmenting the construct #pragma acc loop with additional claus-
es independent and gang results in the best performance. These two clauses al-
low the execution of each loop independently and partition the loops across 
gangs. Similar to the CUDA implementation, a kernel function is launched by 
the host to execute on the GPU. The function is identified as the kernel function 
by decorating the function with the #pragma acc routine. Similar to CUDA and 
OpenMP versions, each thread is associated with one fine propagator. The solu-
tion is computed for Tn with Tn-1 as the initial condition with time step δt. 

5. Performance Results 

The test system described in [40] is used for the time-domain simulations. The 
accuracy of the numerical simulations using PRA has been presented in [40]. 
The focus here is on the computing performance across the different types of 
accelerators and programming models. The performance is analyzed using three 
performance metrics: parallel runtime, speedup, and scalability of parallelization 
referred to as the scaling efficiency. The general definition of parallel runtime or 
the execution time is the time that elapses from the instance a parallel computa-
tion starts to the instance the last processor finishes execution. The parallel run-
time metric is dependent on the application and hardware architecture.  

For homogeneous computing, PRA is implemented on HSW and KNL pro-
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cessors. HSW processor used for the PRA implementation is the Intel Xeon CPU 
E5-2670 v3 @2.30 - 3.10 GHz with 24 physical cores. With hyperthreading 
enabled, 48 logical threads are available for computations. KNL [55] processor 
used for PRA implementation is Intel Xeon Phi CPU 7210 @1.30 - 1.4 GHz with 
64 physical cores and 256 logical cores. The total execution time TPRA of the PRA 
for the OpenMP programming model on multicore core CPU architectures is 
given in Equation (4). 

( )1
c f pc

PRA
N
iT t t t
=

= + +∑                      (4) 

where,  
ct  is the computation time of the coarse propagator. 
ft  is the computation time for the fine propagator.  
pct  is the computation time for predictor-corrector. 

N is the number of PRA iterations. 
For heterogeneous computing, PRA is implemented on a server having an Intel 

Xeon CPU E5-2670 @2.30 GHz, interfaced through the PCIe bus to the NVIDIA 
Quadro RTX 6000 GPU hosting 4608 computing cores with 24 GB GPU memory 
[56]. The parallel runtime is modified to address the GPU architecture. The PRAT  
is the sum of four components, as shown in Equation (5) [40].  

( )1
c G f H pc

PRA H H G G
N

HiT t t t t t
=

= + + + +∑                  (5) 

where, 
c
Ht  is the computation time of the coarse propagator on the CPU. 
G
Ht  is the memory transfer latency between the host and the GPU. 
f

Gt  is the computation time of the fine propagators in parallel on the CPUs. 
H
Gt  is the memory transfer latency between the GPU and the host. 
pc
Ht  is the computation time of the predictor-corrector on the host. 

N is the number of iterations. 
The speedup metric is defined as the ratio of the serial or sequential runtime 

of the best sequential algorithm for solving a problem to the time taken by the 
parallel algorithm to solve the same problem using p processors. The speedup is 
given by Equation (6) [40]. 

Speedup seq

PRA

T
T

=                           (6) 

where, 

seqT  is the computation time of the sequential approach. 

PRAT  is the execution time of the PRA on parallel computing architectures. 
The general definition of the scaling efficiency metric is the ratio of speedup 

to the number of processors. Even though the definition of the scaling efficiency 
metric involves the number of processors used to parallelize, the number of 
processors may not be used directly in measuring the scaling efficiency. In the 
PRA performance analysis, the number of threads running in parallel is used in-
stead of the number of processors. Since the hardware architectures considered 
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in this research support multiple threads per processor, using the number of 
processors will result in a higher scaling. Furthermore, the number of threads 
spawned by the PRA is dependent on the number of fine propagators, which 
dictates the accuracy of the solution. 

The coarse propagator computation time is dependent on the coarse propa-
gator time step c

stept  and the fixed interval of time T for which the ODEs are 
solved. For a fixed T, the coarse propagator computational time will increase 
with smaller c

stept . The number of fine propagators fN  corresponding to a 
coarse propagator time step c

stept  and for a given T is  

f
c
step

TN
t

=                             (7) 

The scaling efficiency is classified as strong and weak scaling. The strong 
scaling indicates that for a fixed problem size, with an increasing number of 
processors, the scaling efficiency is linear or superlinear. In contrast, weak scal-
ing indicates the speedup is constant or decreasing with an increasing number of 
processors. Therefore, good performance of PRA is indicated by low execution 
runtime, large speedup, and at least linear speedup increase (strong scaling) with 
an increasing number of fine propagators.  

By varying fN , the number of threads running in parallel is varied, and va-
rying the fine propagator time step f

stept  the computation load of each thread is 
varied. The speedup achieved using the PRA is demonstrated through several 
simulations with varying c

stept  or fN , and f
stept  for the classical and detailed 

model. 

5.1. Classical Model 

The performance statistics were collected for the classical model using all four 
versions of PRA implementation. In Table 1, the execution time for the classical 
model with varying fN  for sequential and all four versions of PRA are pro-
vided. In Table 1, it can be observed that the execution time for the PRA im-
plementation is significantly less compared to the traditional sequential ap-
proach. 

Figure 11 shows the speedup graph for all four versions of the code executed 
on different computing architectures and programming models with varying 

fN . For the OpenMP-HSW version, the speedup increases linearly up to 256 
fine propagators, showing strong scaling efficiency for the parallel execution. On 
increasing fN  further, the speedup increases nonlinearly. The overhead for 
spawning the threads and switching stalled threads contributes to the nonlinear 
scaling. A speedup of 16x is achieved for the PRA on the Haswell architecture 
with OpenMP. The speedup obtained using OpenMP-KNL is significantly high-
er for the classical model compared to the HSW processor. The PRA algorithm 
shows strong scaling with the 36x speedup achieved. The scaling curve is similar 
to what is observed with HSW execution but has better performance. The num-
ber of threads spawned on KNL for solving fine propagators is five times that of 
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the OpenMP threads on HSW. Therefore, the number of threads stalled for the 
execution on KNL is less, which improves the performance. Since the PRA con-
sists of a sequential portion, and due to lower processor clock speed, the perfor-
mance does not scale up linearly with five times the number of processors on 
KNL. In the case of CUDA-GPU, the speedup increases linearly with an increase 
in fN  exhibiting a strong scaling efficiency The strong scaling efficiency is due 
to the f

Gt  being significantly large compared to the sum of the other compo-
nents in Equation (5). The maximum speedup achieved was 25x with the 
CUDA-GPU version. The CUDA-GPU implementation provides better perfor-
mance when the fine propagator computation load is large, i.e., smaller f

stept . 
For OpenACC-GPU, the speedup increases linearly, similar to CUDA, and 
shows strong scaling efficiency. The maximum speedup achieved using Ope-
nACC is 19x for larger fN . However, the OpenACC-GPU performance is low-
er compared to CUDA-GPU. The performance of OpenACC is ~75% of the 
CUDA performance for the classical model. However, the maximum possible 
performance is not achieved using GPUs because the number of fine grids run-
ning in parallel is significantly less than the number of computing cores available 
on the GPU, resulting in the inefficient use of the GPU. 

 

 
Figure 11. Speedup with varying fN  for the Classical model. 

 
Table 1. Execution time for Classical model with varying fN . 

c
stept  (ms) f

stept  (μs) fN  
Execution Time (ms) 

Sequential OpenMP-HSW OpenMP-KNL OpenACC-GPU CUDA-GPU 

20 200 128 1.778 0.191 0.087 0.267 0.183 

10 100 256 3.594 0.245 0.113 0.347 0.242 

5 50 512 7.105 0.452 0.196 0.376 0.283 
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5.2. Detailed Model 

The implementation of the detailed model consists of computing the numerical 
solutions of four ODEs at each time step. In Table 2, the execution time for the 
detailed model for sequential and all four versions of PRA are provided. It can be 
observed in Table 2, the execution time for the PRA implementation, even with 
computing the solutions of four ODEs at each time step, is significantly less 
compared to the traditional sequential approach. 

Figure 12 shows the comparison of speedup for all the four versions of the 
code executed on different computing architectures and programming models 
with varying fN  for the detailed model.  

The speedup increases marginally until fN  equals 12,800 and then decreases 
for OpenMP-HSW. However, the algorithm does not scale linearly with an in-
crease in fN . The maximum speedup achieved is 18.5x. It is important to note 
that the number of ODEs solved sequentially in the detailed model is twice the 
number of ODEs solved in the classical model. This makes the detailed model 
more compute-intensive compared to the classical model. The total simulation 
time for the detailed model is significantly more compared to the classical mod-
el. From Equation (7), fN  is directly proportional to T, which results in more 

fN  running in parallel compared to the classical model. Also, there are only 48 
threads that are running in parallel due to the number of actual hardware cores 
but the fN  dictates the use of at least 2560 threads which is the minimum 
number of fine propagators for the detailed model from the Table 2. All these 
factors account for the weak scaling performance of the PRA with the increase in 

fN . The OpenMP-KNL performs slightly better compared to OpenMP-HSW 
only for a smaller number of fine propagators. The speedup decreases with an 
increase in fN  indicating weak scaling with KNL also. As the fN  increases, 
the performance of OpenMP-KNL reduces in comparison to OpenMP-HSW, 
and for fN  greater than 5120, the OpenMP-HSW processor performs better. 
The detailed model having more number of equations solved at each time step 
sequentially; the lower clock speed of the KNL processor contributes to a larger 
execution time. For CUDA-GPU also, it can be seen that the speedup does not 
increase linearly and flattens with increasing fN  indicating a weak scaling effi-
ciency. The weak scaling is due to the sum of the coarse propagator computation 
time c

Ht  and the memory transfer latencies ( G
Ht , H

Gt ) being larger compared to 
the fine propagators’ computation time f

Gt . The c
Ht  is mainly due to four 

ODEs solved at each time step sequentially and larger memory transfer latencies 
to transfer the larger coarse propagator solutions from host to GPU and vice 
versa. The maximum speedup achieved is 31x for CUDA-GPU. The scaling 
curve of OpenACC-GPU exhibits weak scaling, similar to CUDA PRA. Even 
though the performance of OpenACC is lower compared to the CUDA imple-
mentation, the difference is less when compared to the performance with the 
classical model. The kernel launch time has a huge overhead in the case of 
OpenACC. Therefore, when the computations on the device are less due to  

https://doi.org/10.4236/jcc.2021.92003


S. Lakshmiranganatha, S. S. Muknahallipatna 
 

 

DOI: 10.4236/jcc.2021.92003 50 Journal of Computer and Communications 
 

Table 2. Execution time for the Detailed model with varying fN . 

c
stept  (ms) f

stept  (μs) fN  
Execution Time (ms) 

Sequential OpenMP-HSW OpenMP-KNL OpenACC-GPU CUDA-GPU 

10 100 2560 40.786 2.573 2.209 2.233 1.875 

5 50 5120 72.57 4.553 4.425 3.04 2.728 

2 20 12,800 159.665 8.621 11.052 6.144 5.043 

1 10 25,600 289.96 15.972 22.02 13.395 9.714 

 

 

Figure 12. Speedup with varying fN  for the Detailed model. 
 
smaller simulation time, the launch time latency negatively impacts the perfor-
mance. To hide the kernel launch time latency, solving a larger number of ODEs 
with longer simulation times is more suitable for OpenACC. The best speedup 
achieved was 26x. The performance of OpenACC is observed to be approx-
imately 83% of CUDA implementation, with less refactoring of the sequential 
code for execution on GPUs. 

A list of advantages and disadvantages is presented to summarize the findings 
of PRA implementation on different HPC architectures using different pro-
gramming models.  
• The CUDA-GPU implementation has the highest speedup for a higher 

number of ODEs solved in each time step. 
• OpenACC-GPU implementation has a better performance compared to the 

OpenMP CPU/KNL implementation for the detailed model. The perfor-
mance on the GPU is better than the OpenMP CPU/KNL implementations 
due to a larger number of cores. A large number of cores on the GPU allow a 
larger number of parallel execution of fine propagators. The OpenACC com-
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piler using the directives generates a generic CUDA code that is not opti-
mized for a particular application and leads to a performance lower than the 
application-specific CUDA implementation. 

• The CUDA implementation requires refactoring the code to execute on GPU, 
and the refactoring requires significant development time and effort. Fur-
thermore, the refactoring of the code has to be performed repeatedly to 
achieve the best performance on newer architectures of GPUs. The CUDA 
code portability across different hardware architectures does not exist. 

• Both OpenACC and OpenMP codes have the advantage of minimal refac-
toring with portability across different hardware platforms. 

• The scaling of all implementations is dependent on the order of dynamic 
modeling of the complex system. The number of ODEs solved at each time 
step and dependency between the ODEs is a function of the system dynamic 
model order. The increase of sequential execution time results in weaker 
scaling. For example, the transient stability analysis of the power grid by util-
ities is typically performed using models consisting of twenty-seven ODES. 
Solving twenty-seven ODEs in each time step sequentially will weaken the 
scaling further. 

The weak scaling could be improved by using more hardware resources or 
modify the PRA to reduce the effect of the sequential execution part. 

6. Conclusion 

In this paper, we investigated the performance of PRA to solve the system of 
time-dependent ODEs representing using homogeneous and heterogeneous 
computing architectures. PRA is implemented on the Intel Xeon processor 
code-named HSW and Xeon Phi processor code-named KNL using the OpenMP 
programming model. Intel CPU and NVIDIA GPUs are used for heterogeneous 
computing with CUDA and OpenACC programming models. The data align-
ment optimization technique is used in the code with readily available optimiza-
tion flags to improve vectorization on multicore Intel Architectures. For the 
classical model with two first-order ODEs, the KNL outperformed the GPUs and 
HSW processors. For the detailed model with more number of equations, the 
performance of GPUs is significantly better than the KNL and HSW processors. 
PRA is an iterative algorithm, and a significant amount of time is spent on the 
sequential steps of the algorithm in the detailed model since four first-order 
ODEs are solved in each time step. This impacts the overall performance of KNL 
making GPUs suitable for more compute-intensive problems. In future work, 
methods will be explored to reduce the computation burden caused by the se-
quential part of the algorithm to exploit further the data parallelism and improve 
the overall performance. 
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