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Abstract 
Existing particle physics models do not account for dark matter and neutrino 
mass, or explain the three generations of fundamental fermions. This analysis 
uses simple mathematics, related to general relativity, to address these prob-
lems. The paper does not address the very difficult problem of quantizing 
general relativity. 
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1. Introduction 

Particle physics models fail to account for dark matter, and the Standard Model 
for fundamental particles of ordinary matter faces several problems. First, since 
neutrinos oscillate between neutrino states when propagating through space, the 
Standard Model must be modified to accommodate neutrino mass. Second, the 
Standard Model does not explain why three, and only three, fundamental fer-
mions are in each Standard Model charge state e, (2/3)e, and −(1/3)e, where e is 
electron charge. Third, the Standard Model involves point particles with spin 
angular momentum ћ, or ћ/2. Angular momentum is usually defined for rotat-
ing objects extended in space and, regarding point particles with angular mo-
mentum, we might ask what is rotating. Fourth, infinite energy density of point 
particles is a problem. These problems are reframed below using simple mathe-
matics related to general relativity.  
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2. Dark Matter from Elbaz-Novello Quantized Friedmann 
Equation 

It is often assumed all four forces governing the universe were unified early in 
the history of the universe. When initial force symmetry broke, the gravitational  

structure constant 
2

395.9 10PGm
c

−= ×


, with 27 2/1.05 10 g cm sec−= × ⋅ , c = 3 × 1010  

cm/sec, and proton mass 241.67 10 gpm −= × , is the ratio of the strengths of 
gravity and the strong force after inflation. In flat, homogeneous, and isotropic 
post-inflationary space with matter density ρ, a strong gravity model for dark 
matter [1] approximates the strong force as an effective strong gravity acting  

only on matter, with strength 
2

381.7 10P
S

p

MG G G
m

 
= = ×  
 

, gravitational con-

stant 86.67 10G −= × ⋅3 2c (g/m sec ) , and Planck mass 52.18 10 gP
cM

G
−= = ×

 . 

The strong gravity Friedmann equation 
2

2 2d 8 8
d 3 s
R G R c
t

ρ   − = −   
  

π


 describes  

local curvature of spaces defining closed massive systems bound by effective 
strong gravity. Because strong force at short distance is involved, quantum me-
chanical analysis is necessary. The Schrodinger equation resulting from El-
baz-Novello quantization [2] [3] of the Friedmann equation for closed massive 
systems bound by effective strong gravity is 

2 2 2

2

2d
2 3 2d

SG M c
rr
µ µψ ψ ψ

µ
− − = −

π
                  (1) 

where 2 32M rρ= π  is conserved mass of closed systems with radius r and μ an 
effective mass. Equation (1) is identical in mathematical form to the Schrodinger 
equation for the hydrogen atom and can be solved immediately. Ground state  

curvature energy 
2

2

2
32
SG Mµµ  −  

 π

 of Equation (1) must equal 
2

2
cµ

−  for 

consistency with the corresponding Friedmann equation, so effective mass 
3
2 s

c
G M

µ π
=

 . Ground state solutions of Equation (1) describe stable closed sys-

tems bound by effective strong gravity, with zero orbital angular momentum and 

radius 2 2
S

p

G M Mr
c cm

= =
π π



. Geodesic paths inside these stable ground state 

closed systems created by effective strong gravity are all circles with radius 

2
p

Mr
cmπ

=
 , so matter within these closed systems is permanently confined  

within a radius r . No matter can enter or leave them after they form, to in-
crease or decrease the amount of matter in those closed systems, so they consti-
tute rigid impenetrable spheres of dark matter interacting only gravitationally. 
Assuming velocity-independent rigid sphere scattering [4], (self-interaction  

collision cross-section)/mass ratio for dark matter particles is 
( )24 2r

M M
σ π

= . 
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Consider values of 
M
σ  between 0.015 cm2/g and 0.025 cm2/g, near the esti-

mated [5] 20.01 /g5 cm
M
σ

= . Inserting dark matter particle radius/mass relation 

2
p

Mr
cmπ

=
  into rigid sphere (self-interaction collision cross-section)/mass re-

lation 
( )24 2r

M M
σ π

=  yields 
2

3

16 p p
cM m m

M
σ    =     

   

π

 

. Values of 
M
σ  be-

tween 0.015 cm2/g and 0.025 cm2/g indicate dark matter particle mass between 
10.5 GeV and 17.5 GeV, consistent with Kelso/Hooper/Buckley analysis [6]. Es-

timated nucleon mass equivalent 
2

3

16 p
cA m

M
σ   =   

π


   
 of dark matter particles 

ranges from 11.2 to 18.7, with radii 
p

Ar
m c

  =      π
  ranging from 0.75 × 10−13 

cm = 0.75 F to 1.25 × 10−13 cm = 1.25 F. 

If 20.02 /gcm
M
σ

= , dark matter particles have mass 14 GeV 14.9 pm= , radius  

1.00 F, and density 6 × 1015 g/cm3. Then, if all four forces were unified in the 
early post-inflationary universe, as the universe continued expanding prior to 
force symmetry breaking, matter density in the universe steadily dropped. When 
matter density fell to 6 × 1015 g/cm3, matter could coalesce into close-packed 
dark matter spheres accounting for 74% of all matter (88% of dark matter). 

Impenetrable spheres of dark matter are the ultimate defense against gravita-
tional collapse, suggesting a core of close-packed spheres of dark matter is at the 
center of black holes, rather than a singularity. Close-packed spheres of n dark  

matter particles have radius 133 3 3
2  10 cm Fn
p

MR n n n
cm

−= = × =
π
  and Schwarz-

schild radius 51
2

29.9
3.7 10 cmp

S

Gnm
R n

c
−= = × , smaller than the physical radius  

of the sphere until 13 513  10 cm 3.7 10 cmn n− −× = ×  or 561.4 10n = × , indicating 
minimum mass for accretionary black holes is 57 332.1 10 3.5 10 gpm× = × , or 
about 1.75 times the solar mass. Surface temperature of black holes with mass 
near the solar mass is about 10−9 K, about a billion times less than the cosmic 
microwave background temperature, so black hole evaporation will only occur 
far in the future. Discovery of black holes with mass less than a solar mass would 
invalidate this analysis. 

3. Standard Model Particles Described by Solutions of  
Einstein Equations 

This section describes Standard Model particles with mass as small radius solu-
tions of Einstein’s equations. 

Fundamental fermions with mass m and Compton wavelength 2
cl

mc
=
  can 

be treated as spherical shells with radius 
4
l  rotating around an axial core cen-
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tered on the axis of rotation, with half of any fermion charge on the shell surface 

at distance of the Planck length 33
3 1.62 10 cmP
Gl

c
−= = ×

  from the axis of ro-

tation. Fundamental fermions can then be represented as Godel solutions of 
Einstein’s equations, with average matter density ρ equal average fermion mass 

density, pressure 21
2

cρ 
 
 

 from negative vacuum energy density 21
2

cρ − 
 

, 

and effective internal gravitational constant fG  determined by 

2 fGω ρ= π                            (2) 

Rotation axis orientation is unknown until z component of fermion angular 
momentum is measured, so fermion mass appears sinusoidally distributed on a 
disk of radius (l/4) perpendicular to the line of sight. 

Considered as spheres with radius (1/4) their Compton wavelengths l, funda-
mental fermions have three associated geometric quantities, volume ~l 3, surface 
area ~l 2, and diameter ~l. Mass and pressure distribution in fundamental fer-
mions identifies three wavelengths in each charge state as solutions of a cubic 
equation 3 2 0Al Bl Cl+ + = . Describing mass and pressure distribution in terms 
of surface and linear elements requires shell thickness and core radius Pl . In  

each charge state 
3
ne , with 0,1,2n =  or 3, total fermion mass is the sum of 

mass equivalent of pressure, 
2
m , in the volume, mass equivalent of surface 

pressure 2

4
Slπ , and core mass Ll , so 

3 3 24 4 4 2
3 4 3 2 4 4 2

l l l lS Lρρ        = + +   π π    
    

π
  

.             (3) 

Writing (3) as 
3 2 0Al Bl Cl− − =                          (4) 

with 
96

A ρ=
π , 

4
SB=
π , and 2C L= , the discriminant 2 2 34B C AC−  is positive  

regardless of the sign of B and the equation has three real roots corresponding to 
three fermion Compton wavelengths in a charge state. Nickalls [7] showed wa-
velengths l satisfying Equation (4) correspond to projections on the l axis, de-
fined by an angle Θ, of vertices of an equilateral triangle. Θ is the angle between 
two lines starting at the center of the triangle, one parallel to the l axis and one 
extending to the rightmost vertex of the equilateral triangle. Nickall’s parameters  

8
3N
B Sl
A ρ

= − = − , 2 2 2 64
3N N
C Ll l
A

δ
ρ

= − = − , 1 2 33 Nl l l l= + + , and  

( ) ( )2 2
1 2 32

4 12
Nl l l l

δ
− −

= + , identify roots 1 2 cosNl l δ= + Θ ,  

( )2  cos 3sinNl l δ= − Θ − Θ , and ( )3 cos 3sinNl l δ= − Θ + Θ  corresponding 
to fermion Compton wavelengths in a charge state. Three positive Compton 
wavelengths in each charge state require negative surface mass equivalent density  
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8
NlS ρ

= − , 2 2
Nlδ <  in each charge state, and positive mass per unit core length 

( )2 2

64 NL lρ δ= − . Negative S results from positive shell vacuum energy density 

21
2

cρ 
 
 

, opposite the negative vacuum energy density 21
2

cρ − 
 

 in the volume,  

and negative pressure equivalent mass inside the shell counters positive pressure 
equivalent mass in the volume. With no net pressure at the fermion surface, no 
force acts to increase or decrease fermion size, as necessary for stable funda-
mental fermions identified as Godel solutions within our universe. 

Fermion spheres with radius 
4
l  and core radius Pl  have moment of inertia 

2 2
2 22 2 1

5 2 4 3 4 4 2 P
m l lI Sl Lllπ   = + +   
   

, with negligible last term because Pl l . 

Angular velocity 8
2 0.2 N

c
I l l

ω = =
−

  and tangential speed of points on the 

spherical shell equator as a multiple of the speed of light 2
4 0.2

T

N

v l l
c c l l

ω
= =

−
. 

1Tv
c
>  for lowest mass fermions in each charge state, allowing closed time-like 

curves within those Godel solutions, is acceptable in fundamental fermions un-

changing from creation to annihilation. From Equation (2), 
( )

4

22

3
0.2

f

P N

G l
G l l l

=
−

. 

Ground state fundamental fermions, the constituents of atoms and molecules, 
differ from higher mass fundamental fermions in the same charge state by having  

core mass less than total mass, tangential speeds 1Tv
c
> , and larger internal gra-

vitational constants. With fine structure constant 
2 1

137
e
c
=



, electrostatic poten-

tial energy of fundamental fermions from repulsion between equal surface 

charges near the rotation axis is 
2 2

2 2

6 2 9 1233
me mne l n n

c
    = =   
    

. If electrostatic  

potential energy is the same for all charged ground state fundamental fermions 
and electron mass em = 0.511 MeV , up quark mass u em m= =4 2.04 MeV  and 
down quark mass d em m= =9 4.60 MeV , well within quark mass error bars. All 
charged fundamental fermion masses and charges then relate to electron charge 
and mass. 

Treating massive Standard Model bosons as Godel solutions is simpler than 
for fermions. W± and Z bosons can be described as uniform spheres rotating 
around a core, with radius Pl , surrounding the spin axis. Again, core term con-

tribution is negligible, so the moment of inertia is approximately 22
5

I mr= , 

where r is boson radius 
4
l . Fundamental bosons have angular momentum 

Iω= , so their angular velocity is 2
40 40 c

lml
ω = =

  and Equation (2) results in 

https://doi.org/10.4236/jmp.2021.123019


T. R. Mongan 
 

 

DOI: 10.4236/jmp.2021.123019 259 Journal of Modern Physics 
 

2
25
3

i

P

G l
G l

 
=  

 
. Higgs bosons can be treated as static Einstein solutions of gener-

al relativity with matter energy density 2cρ  and positive vacuum energy densi-

ty 21
2

cρ , opposite the negative vacuum energy density of Godel solutions. The 

Friedmann equation for radius of such closed, homogeneous, isotropic systems 
with internal gravitational constant iG  is  

32 2
2 2 208d 1  

d 3 2
iG RR Rc c c

t R c
ρ ρ
     − + =−          

π


, with d 0

d
R
t
= , 0 4

HlR R= = , and 

Higgs Compton wavelength Hl , resulting in 
2

1
12

i H

P

G l
G l

 
=  

 
. 

4. Magnetic Moments of Fundamental Particles 
Magnetic moments of fundamental particles with fractional charge fe , mass m, 

and spin s  are approximately fes
m

µ =
  [8]. Fractional charge fe  circling 

the spin axis at distance Pl  from the axis, with velocity v, produces a current 

2 P

fevI
lπ

= . Treating particle cores as solenoids with N turns surrounding the 

spin axis, charged fundamental fermions and bosons have magnetic moment 

2 P
N fevl  and 2

P

sN
vml

=
 . So, electrons require 

( )
2

0.2
8

n

p

l l
N

mcl
−

=


. 
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