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Abstract 
In this paper, a new traffic flow model called the forward-backward velocity 
difference (FBVD) model based on the full velocity difference model is pro-
posed to investigate the backward-looking effect by applying a modified 
backward optimal velocity using generalized backward maximum speed. The 
FBVD model belongs to the family of microscopic models that consider spa-
tiotemporally continuous formulations. Neutral stability conditions of the 
discrete car-following model are derived using the linear stability theory. The 
stability analysis results prove that the modified backward optimal velocity 
has a significant positive effect in stabilizing the traffic flow. Through nonli-
near analysis, a kink-antikink solution is derived from the modified Korte-
weg-de Vries equation of the FBVD model to explain traffic congestion of the 
model. The validity of this theoretical model is checked using numerical re-
sults, according to which traffic jams were found to have been significantly 
diminished by the introduction of the modified backward optimal velocity. 
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1. Introduction 

In this day and age, one of the most challenging issues being faced worldwide is 
the mitigation of traffic congestion along with the development of urban life, 

How to cite this paper: Hossain, Md.A., 
Kabir, K.M.A. and Tanimoto, J. (2021) Im-
proved Car-Following Model Considering 
Modified Backward Optimal Velocity and 
Velocity Difference with Backward-Looking 
Effect. Journal of Applied Mathematics and 
Physics, 9, 242-259. 
https://doi.org/10.4236/jamp.2021.92018 
 
Received: January 11, 2021 
Accepted: February 17, 2021 
Published: February 20, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2021.92018
https://www.scirp.org/
https://doi.org/10.4236/jamp.2021.92018
http://creativecommons.org/licenses/by/4.0/


Md. A. Hossain et al. 
 

 

DOI: 10.4236/jamp.2021.92018 243 Journal of Applied Mathematics and Physics 
 

especially in large cities. A number of researchers have been working toward 
finding a solution, and various traffic flow models have been developed. In gen-
eral, traffic flow models can be classified into two types [1]: 1) the macroscopic 
model or continuum model, in which traffic flow is regarded as a stream of a 
compressible fluid and lows of conservation on mass that means what-is-called 
continuity law, and velocity or flux are established [2] [3] [4] [5] [6], and 2) the 
microscopic model or discrete model, in which every vehicle is treated as a 
self-driven particle composing a stream, and the main focus is to formulate the 
interactions between a vehicle and a vehicle, and a vehicle to road infrastructures 
[7] [8] [9] [10] [11]. As a general trend in the field, the microscopic model has 
been given more attention than the macroscopic model. The most investigated 
microscopic model is the car-following model, which presumes single-lane traf-
fic flow [12]-[18]. A set of models as variants have been proposed to improve the 
car-following model, including the optimum velocity model (OVM), generalized 
force model (GFM), full velocity difference model (FVDM), multiple velocity 
difference model (MVDM), gas kinetic model, hydrodynamic lattice model, and 
cellular automated (CA) model [19]-[28].  

Most of the car-following traffic flow models only concentrate on the forward 
direction of the focal vehicle. However, they do not completely and realistically 
represent traffic scenarios. If we simply consider the forward optimal velocity, 
the driver is considered to focus only on the preceding car and is never influ-
enced by the following car. For example, Bando et al. [29] and Jiang et al. [30] 
[31] developed OVM and FDVM considering this presumption. In such types of 
model, the traffic system is fully controlled by the leading vehicles. Although, the 
traffic flow system is leaded by the leading car in real life traffic flow system, the 
following car can urge its focal for some space using the horn effect when 
following driver has not enough space to go forward. This realistic scenario has 
been absent in those models. In recent years, some studies have been undertaken 
in which the backward optimal velocity is considered along with the forward op-
timal velocity. Accordingly, the driver is considered to continuously monitor the 
following car as well as the preceding car, since the driver of the following car 
may honk the horn to encourage them to drive faster if they are frustrated by the 
velocity of the focal vehicle. Considering the backward-looking effect, Ge et al. 
[32] proposed a lattice hydrodynamic traffic flow model, and this kind of traffic 
flow model has since been universally studied [33] [34] [35] [36] [37]. At present, 
a number of models are being studied to account for the backward-looking effect 
based on various foundational models, including the lattice hydrodynamic mod-
el, continuum model, and car-following model. In these models, the back-
ward-looking effect is introduced by a negative sign with the forward optimal 
velocity function except an excellent model proposed by Kuang et al. [38]. From 
the mathematical point of view, we think something different from this idea be-
cause velocity never be negative whether it is forward optimal velocity or back-
ward optimal velocity. The main objective of our study is to introduce a honked 
effect by a non-negative backward optimal velocity function for generalized 
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backward maximum speed which much more realistic than others proposed 
model.  

In this study, we improved the car-following model to consider the back-
ward-looking effect via the introduction of modified backward optimal velocity. 
To achieve this, we extended a conventional car-following model by introducing 
the concept of optimal velocity for the backward-looking effect in the form of 
the model. Herein, the backward optimal velocity is not defined as directly op-
posite (negative value) to the forward optimal velocity, but the backward and 
forward optimal velocities are instead considered to collaterally change in an in-
versely proportional manner with respect to the headway and backward gaps.  

The rest of the paper is organized as follows. Conventional traffic flow models 
are introduced in Section 2. The proposed model is described in Section 3. A 
linear stability analysis of the present model is discussed in Section 4, and a non-
linear investigation is presented in Section 5. Numerical results of the model are 
provided in Section 6. Finally, Section 7 presents the conclusions. 

2. Background of Car-Following Models 

Traffic flow analysis is a special branch of mathematics and transportation engi-
neering, which has been accelerated by the contribution of M. Bando. In 1995, 
Bando et al. [29] proposed a new model called OVM, the governing equation for 
which is as follows: 

( ) ( )( ) ( )
d

d
n

n n

v t
a V x t v t

t
 = ∆ −  ,                  (1) 

where a represents the sensitivity of the driver, ( )nv t  denotes the velocity of car 
n at time t, and ( )( )nV x t∆  is the optimal velocity function of the nth car, 
which depends on the headway distance between the nth car and the n + 1th car, 
represented by ( ) ( ) ( )1n n nx t x t x t+∆ = − .  

In OVM, unrealistic representations of acceleration and deceleration have 
been discovered. Helbing and Tilch [39] thus developed a traffic flow model 
called GFM to overcome the limitations of OVM. GFM is as follows: 

( ) ( )( ) ( ) ( ) ( )
d

d
n

n n n n

v t
a V x t v t v t H v

t
λ = ∆ − + ∆ −∆  ,          (2) 

where H is the Heaviside function, λ is the sensitivity coefficient (different from 
a), and ( ) ( ) ( )1n n nv t v t v t+∆ = −  is the velocity difference between n + 1th and 
nth car.  

In 2001, Jiang et al. [30] [31] developed FVDM, which removed the negative 
velocity difference of the car that was introduced into GFM. The governing equ-
ation of FVDM is as follows: 

( ) ( )( ) ( ) ( )
d

d
n

n n n

v t
a V x t v t v t

t
λ = ∆ − + ∆  ,             (3) 

where all the notations have the same meaning as in the original model. This 
FVDM is regarded as a standard model that is capable of assisting the investi-
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gation of a traffic flow field. Our main aim was to develop an extended 
car-following model based on FVDM by introducing the backward-looking ef-
fect in a modified form. 

3. Proposed Model 

Based on the FVDM [30], we propose an extended car-following model called 
the forward-backward velocity difference (FBVD) model, in which the backward 
optimal velocity is introduced in a modified form as follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( )1

d
1

d
n

F n B n n n

v t
a p V x t p V x t v t v t

t
λ− = ⋅ ∆ + − ∆ − + ⋅∆  .   (4) 

Here, p is the weighted parameter for the forward optimal velocity. In other 
words, p & ( )1 p−  means the driver concentration value for forward & back-
ward optimal velocity respectively. In case of real-life driving, the value back-
ward concentration of a driver must be less than the forward concentration. So, 
we presumed the range of p from 0.5 to 1.0. In Equation (4), VF and VB are the 
forward and backward optimal velocities, respectively. In fact, there have been 
several works than Ref. [40] accounting the backward optimal velocity function 
besides the forward one [41] [42] [43]. All of those pioneer works, despite being 
admirable, did presume the backward optimal velocity as a negative function, 
which seems unrealistic. It is because that when decreasing a gap with a 
following vehicle the focal vehicle would feel be urged by that following vehicle. 
Thus, the backward optimal velocity (OV) function should be defined as a posi-
tive as the forward one does. Unlike those studies, one brilliant work by Kuang 
et al. [38] previously posed a seminal model being analogous to what we intro-
ducing as below, which did not give, however, a general form as ours as below.  

To this end, in this work, the forward and backward optimal velocities are de-
fined by the following functions: 

( )( ) ( )( ) ( )max tanh tanh
2

F

F n n c c
v

V x t x t h h ∆ = ∆ − +  ,           (5) 

( )( ) ( )( ) ( )max
1 1tanh tanh

2

B

B n c n c
v

V x t h x t h− − ∆ = − ∆ +  ,          (6) 

where max
Fv  and max

Bv  denote the forward and backward maximum velocities, 
respectively, and ch  is the safety distance. In general, max max

F Bv v≠  is presumed. 
However, for the sake of simplicity, herein we studied two cases: case 1. 

max max 2F Bv v= =  and case 2. max max2, 1F Bv v= =  whereas that safety distance 
4ch = . 

Figure 1 shows the characteristic behaviors of the forward and backward op-
timal velocities in the proposed model. The backward optimal velocity can be 
seen to reach its apex value when the forward optimal velocity is at its bottom 
value. The line graph of the forward optimal velocity increases with the decrease 
of the backward optimal velocity, and the forward and backward optimal veloci-
ties interchange at the position of the maximal slope of their respective functions  
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Figure 1. The optimal velocity profiles for forward and backward optimal velocities with 
respect to headway. The solid lines for persuming max max 2F Bv v= =  while dotted red line 
for max 1Bv = . 

 
due to the assumption we introduced above. Altogether, the forward and back-
ward optimal velocities will evidently be equally balanced at any headway. In 
generally, forward and backward maximum velocities are integral part of 
forward and backward OV functions respectively and it has an important role. 
In this work we discussed forward and backward OV functions for both equal 
and unequal values of forward and backward maximum velocities. In Figure 1, 
the solid lines (red and blue) for equal value ( max max 2F Bv v= = ) of forward and 
backward maximum velocities whereas that the red dotted and solid blue lines 
for unequal value ( max max2, 1F Bv v= = ). 

4. Linear Stability Analysis 

A linear stability analysis was conducted to investigate the stability of the 
steady-state flow of the extended car-following model described in Equation (4) 
with Equations (5) and (6). The steady-state flow can be defined as a situation in 
which vehicles move with uniform headway b with the forward and backward 
optimal velocities ( ( )FV b  and ( )BV b , respectively). Therefore, the steady-state 
solution of uniform flow is given by 

( ) ( ) ( ) ( )( )0 1 andn F Bx t bn pV b p V b t b L N= + + − = ,         (7) 

where L indicates the length of the road when presuming a cyclic boundary con-
dition, and N denotes the total number of cars. 

Let us introduce a perturbed solution considering ( )ny t , defined as a small 
deviation from the steady-state solution ( )0

nx t : 

( ) ( )0
n n nx t x y t= + .                         (8) 

Substituting Equations (7) and (8) into Equation (4), we then obtain the linea-
rized formulation shown below: 

https://doi.org/10.4236/jamp.2021.92018


Md. A. Hossain et al. 
 

 

DOI: 10.4236/jamp.2021.92018 247 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

12

d d d
1

d dd
n n n

F n B n

y t y t y t
a pV b y t p V b y t

t tt
λ−

∆ 
′ ′= ∆ + − ∆ − + 

 
.(9) 

Here, ( ) ( ) ( )1n n ny t y t y t+∆ = − , ( ) ( )d
d

n

F n
F

n x b

V x
V b

x
∆ =

∆
′ =

∆
, and  

( ) ( )

1

1

1

d
d

n

B n
B

n x b

V x
V b

x
−

−

− ∆ =

∆
′ =

∆
. Expanding ( ) ( )expny t ikn zt= + , we obtain the fol-

lowing equation: 

( )( ) ( ) ( )( ) ( )2 e 1 1 1 e e 1ik ik ik
F Bz a pV b p V b z zλ− ′ ′= − + − − − + −  .    (10) 

Suppose that ( ) ( )2
1 2z z ik z ik= + + . Substituting this value into Equation 

(10), the first- and second-order terms of ik are as follows: 

( ) ( ) ( )1 1F Bz pV b p V b′ ′= + − ,                     (11) 

( ) ( ) ( )12
2

1
1 1 1

2 F Bz z z pV b p V b
a

λ    ′ ′= − + − − + −    
.           (12) 

For a small disturbance, the traffic flow becomes unstable if the following 
condition is satisfied: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
2 1 2 1

1
F B F B

F B

pV b p V b pV b p V b
a

pV b p V b
λ′ ′ ′ ′+ − − + −      <

′ ′− −
.      (13) 

Hence, the neutral stability condition can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
2 1 2 1

1
F B F B

F B

pV b p V b pV b p V b
a

pV b p V b
λ′ ′ ′ ′+ − − + −      =

′ ′− −
.      (14) 

This neutral stability condition [Equation (14)] is controlled by the parame-
ters p and λ . These parameters p and λ  are determined by concentration of 
the driver and sensitivity (which determined by the driver’s reaction capability 
for velocity difference) of the driver.  

Figure 2 shows the results of the stability analysis presented above. Panel (a) 
illustrates a basic comparison of OVM, FVDM, and the FBVD model for 

0.1λ = . The backward-looking effect is influenced by the value of max
Bv , as a 

result the linear stability curves of FBVD model varied for different value of 

max
Bv . But these curves never go beyond the neutral stability curve of conven-

tional OV and FVD models that means the OV and FVD models always 
resurved more unstable region than the proposed FBVD model, which reveals 
that our extended car-following model demonstrated better performance than 
the other two models with respect to mitigating the instability of traffic flow. 
Panel (b) shows stability plots of the FBVD model for p = 0.9, 0.8, 0.7, and 0.6, 
presuming a fixed 0.1λ = . For the fixed 0.1λ = , the neutral stability curve 
gradually turns downwards as p decreases, which represents a reduction of the 
unstable region due to the modified backward optimal velocity function. Panel 
(c) shows the neutral stability graphs for a fixed 0.2λ =  with varying p. Here, 
the same tendency can observe for different λ .  
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Figure 2. Comparison of the neutral stability diagrams among (a) OVM, 
FVDM, and the FBVD model for λ = 0.1 with different max

Bv ; (b) FVDM with 
λ = 0.1 and the FBVD model for p = 0.9, 0.8, 0.7, and 0.6 with λ = 0.1; and (c) 
FVDM with λ = 0.2 and the FBVD model for p = 0.9, 0.8, 0.7, and 0.6 with λ = 
0.2. In both panals (b) & (c), max max 2F Bv v= =  are presumed. 
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Since the backward-looking effect as well as the traffic flow stability may vary 
with max

Bv , despite that, the backward-looking effect plays a significant role in 
mitigating the instability of traffic flow. Moreover, compared to the conventional 
FVDM under the same conditions, the FBVD model better realizes a stable flow 
for any trivial value of max

Bv . 

5. Nonlinear Analysis 

In this section, a nonlinear analysis is performed, and a modified Korteweg-de 
Vries (mKdV) equation is derived to describe the kink-antikink wave solution. 

First, let us introduce the headway form of Equation (4): 

( ) ( )( ) ( )( )( ) ( ) ( )( )(

( )( )) ( ) ( ) ( )

2

12

1
1

d
1

d

d d d
d d d

n
F n F n B n

n n n
B n

x t
a p V x t V x t p V x t

t

x t x t x t
V x t

t t t
λ

+

+
−


= − + −


  

− − + −  
 

∆
∆ ∆ ∆

∆ ∆ ∆


∆

  (15) 

Equation (15) leads us to the reductive perturbation method. Around the crit-
ical point ( ),c ca h , a small positive scaling parameter ε is introduced. Let us 
then define the slow scales X and T [44] [45], where the space variable n and 
time variable t are transformed as follows: 

( )X n btε= +  and 3T tε=  with 0 1ε< ≤ ,               (16) 

where b is a constant to be determined. The headway distance ( )nx t∆  can be 
defined as follows:  

( ) ( ),n cx t h R X Tε∆ = + .              (17) 

We next substitute Equations (16) and (17) into Equation (15), and then, we 
expand the equation using a Taylor expansion of ε up to the fifth order. We thus 
obtain the following nonlinear partial differential equation: 

( )( )

( )( ) ( )( )

( )( )

( )( )

2
2 3 2

4 3 3

5 4

2 3

11
2 2

1 11 1
6 2 2

2 1 1
24 6

3 1 0
4

F B X F B X

T F B X F B X

X T F B X

F B X

b b p pb pV p V R V V R
a a

bR pV p V R pV p V R
a

b bR pV p V R
a a

pV p V R

λε ε

λε

λ λε

 −′ ′ ′ ′− − − ∂ + − − − ∂ 
 

  ′ ′ ′′′ ′′′+ ∂ − + − + ∂ − + − ∂    
 −  ′ ′+ ∂ ∂ − + − + ∂   

′′′ ′′′− + − ∂ =

(18) 

where ( ) ( )d
d

n

F n
F

n x b

V x
V b

x
∆ =

∆
′ =

∆
, ( ) ( )d

d
n

F n
F

n x b

V x
V b

x
∆ =

∆
′ =

∆
 and  

( ) ( )3

3

d
d

n

F n
F

n x b

V x
V b

x
∆ =

∆
′′′ =

∆
, ( ) ( )

1

3
1

1
3

d
d

n

B n
B

n x b

V x
V b

x
−

−

− ∆ =

∆
′′′ =

∆
.  

Now, let us introduce ( )21ca a ε= +  as the neighbor to the critical point 

( ),c ca h  and consider ( ) ( ) ( )1F Bb pV b p V b′ ′= + − . The terms in Equation (18) 
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containing second and third orders of ε should be neglected; this allows us to 
simplify the equation as follows: 

( ) ( )4 3 3 5 2 4 2 3
1 2 3 4 5 0T X X X X XR g R g R g R g R g Rε ε∂ − ∂ + ∂ + ∂ + ∂ + ∂ = ,    (19) 

where the values of ig  are given in Table 1. 
To derive the regularized equation, the following transformations are applied 

to Equation (19): 

1

1T T
g

′=  and 1

2

gR R
g

′= .                  (20) 

The standard mKdV equation with a correction term ( )O ε  is given as fol-
lows: 

[ ]3 3 0T X XR R R M Rε′ ′ ′ ′ ′∂ − ∂ + ∂ + = ,                (21) 

where [ ] 2 4 2 31 5
3 4

1 2

1
X X X

g g
M R g R g R R

g g
 

′ ′ ′ ′= ∂ + ∂ + ∂ 
 

.  

By eliminating the term ( )O ε  from Equation (21), we obtain the 
kink-antikink solution of the mKdV equation: 

( ) ( )0 , tanh
2
cR X T c X cT

 
′ ′ ′= − 

 
.              (22) 

To determine the selected value of the propagation velocity c for the kink so-
lution in Equation (22), satisfying the following solvability condition is necessary 
[44]: 

[ ]( ) [ ]0 0 0, d 0R M R XR M R
−∞

∞
′ ′ ′ ′= =∫ ,                (23) 

where [ ] [ ]0M R M R′ ′= . To obtain the selected velocity c, we perform the inte-
gration of Equation (23):  

2 3

2 4 1 5

5
2 3

g g
c

g g g g
=

−
.                      (24) 

Hence, the kink-antikink solution of the mKdV equation can be derived as 
follows: 

( ) ( )1
1

2

, tanh
2

g c cR X T X cg T
g

= − .              (25) 

Thus, the kink-antikink soliton solution of the headway for the original Equa-
tion (15) is 

 
Table 1. The coefficients ig  of the FBVD model. 

( )( )1

1 1
6 2F B

bg pV p V
a
λ′ ′= + − +  ( )( )2

1 1
2 F Bg pV p V′′′ ′′′= − + −  3 0g =  

( )( )4

1 1
24 6F B

bg pV p V
a
λ′ ′= + − +  ( )( )5

3 1
4 F Bg pV p V′′′ ′′′= − + −  
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1
1

2

1 tanh 1 1 1
2

c c c
n c

a a ag c cx h n cg t
g a a a

       ∆ = + − − + − −       
       

.   (26) 

The amplitude A of the solution is given by 

1

2

1cag cA
g a

 = − 
 

.                      (27) 

The kink-antikink wave solution represents a coexisting phase that includes 
both free flow and congestion. The headway space is described by n cx h A∆ = ± .  

6. Numerical Simulations 

To prove the realistic characteristics of the proposed extended car-following 
traffic flow model, this section provides a number of numerical results. The 
fourth-order Runge-Kutta method [46] is used to solve Equation (4) to compute 
the numerical results of the FBVD model. 

We ran a series of numerical simulations under a periodic boundary condition 
(cyclic boundary condition) with the following initial disturbance: 

( ) ( ) 00 1 4.0, for 50,51n nx x x n∆ = ∆ = ∆ = ≠ , 

( )0 4.0 0.5, for 50nx n∆ = − = , 

( )0 4.0 0.5, for 51.nx n∆ = + =  

Here, we assumed that the total number of cars was N = 100, the length of the 
road was L = 200, the sensitivity was a = 1, and b = L/N. 

Figure 3 shows a comparative analysis of the velocity fluctuations of all cars at 
time t = 1000 s for different models given several parameters sets of p and λ. The 
amplitudes of the velocity fluctuations for (i) OVM, (ii) FVDM with λ = 0.1, and 
(iii) FVDM with λ = 0.2 were extremely high. At the same time, in the headway 
profile diagrams (panels (iv)-(ix)) of FBVD model for p = 0.9 and 0.85, the am-
plitudes of the velocity variations were significantly relaxed compared to the 
previous cases. The latter part (panels (vii)-(ix)) of Figure 3 demonstrated the 
stop-and-go phenomena heavily shrink for max 2Bv =  with compare to max 1Bv =  
(panels (iv)-(vi)). But, in both cases ( max 2Bv =  and max 1Bv = ) amplitude of 
stop-and-go phenomena always less than the conventional OV and FVD model, 
that means FBVD model performed a more stable traffic flow than these tradi-
tional models. Comparing panels (iv) with (vi) (for max 1Bv = ) and (vii) with (ix) 
(for max 2Bv = ), note that a larger p ensured oppressing velocity fluctuation very 
much. In summary, Figure 3 proves that the FBVD model realizes a smoother 
traffic flow field compared to the cases presuming the conventional model OVM 
or the accepted FVDM. This is due to the introduction of the modified backward 
optimal velocity effect for generalized backward maximum speed, which suc-
cessfully emulates the likely situation in which the vehicle following the focal ve-
hicle honks its horn to urge the focal vehicle onwards, and the focal vehicle ad-
justs its velocity to the optimal one by considering not only the preceding gap 
but also the following gap. 
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Figure 3. The velocity profile of all traffic at time t = 1000 s of (i) OVM, (ii) FVDM for λ = 0.1, (iii) FVDM for λ = 0.2, (iv)-(vi) 
FBVD model for max 1Bv =  with p = 0.9 & λ = 0.1, p = 0.9 & λ = 0.2, and p = 0.85 & λ = 0.1 rspectivly and (vii)-(ix) FBVD 
model for max 2Bv =  with p = 0.9 & λ = 0.1, p = 0.9 & λ = 0.2, and p = 0.85 & λ = 0.1 rspectivly. 

 
To discuss the above numerical results from another viewpoint, the local ve-

locity (shown in Figure 4) and local density (shown in Figure 5) are presented 
in a two-dimensional position-vs-time phase diagram for the same parameter 
settings (Figure 3). In the case of OVM and FVDM with λ = 0.1 and 0.2 (panels 
(i)-(iii) in Figure 4 and Figure 5), spatially frequent stop-and-go waves, which 
can be detected as strap-like zones with quite a low velocity (Figure 4) and high 
density (Figure 5), were generated, and regions with relatively high velocity and 
low density emerged between the strap-like zones. Needless to say, such spati-
otemporal concentrations of vehicles, which constitute a traffic jam, devastate 
the efficiency of traffic flow. Turning to our proposed model (panels (iv)-(ix)), 
although the combination of a higher p and lower λ was still present due to a 
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traffic jam, we observed that the flow field was supported by moderate velocity 
and density over the entire domain. This was due to the introduction of our 
modified backward optimal velocity by considering the genaralized backward 
maximum speed into the backward-looking effect in the FBVD model, which 
ensured the dissolution of traffic jams and the realization of average velocity and 
density in spatiotemporal directions over the entire domain. 

 

 
Figure 4. Car postion-vs-time diagram for the velocity of all cars of (i) OVM, (ii) FVDM for λ = 0.1, (iii) FVDM 
for λ = 0.2, (iv)-(vi) FBVD model for max 1Bv =  with p = 0.9 & λ = 0.1, p = 0.9 & λ = 0.2, and p = 0.85 & λ = 0.1 
rspectivly and (vii)-(ix) FBVD model for max 2Bv =  with p = 0.9 & λ = 0.1, p = 0.9 & λ = 0.2, and p = 0.85 & λ = 
0.1 rspectivly. 
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Figure 5. Car postion-vs-time diagram for the local density of all cars of (i) OVM, (ii) FVDM for λ = 
0.1, (iii) FVDM for λ = 0.2, (iv)-(vi) FBVD model for max 1Bv =  with p = 0.9 & λ = 0.1, p = 0.9 & λ = 
0.2, and p = 0.85 & λ = 0.1 rspectivly and (vii)-(ix) FBVD model for max 2Bv =  with p = 0.9 & λ = 0.1, 
p = 0.9 & λ = 0.2, and p = 0.85 & λ = 0.1 rspectivly. 

 
Figure 6 displays the hysteresis loops of velocity and headway for the above 

discussed cases. The changes in color represent the passing time. Each of the 
conventional models (panels (i)-(iii)) attained a very large hysteresis loop, indi-
cating a locally concentrated situation at an equilibrium flow state, which entails 
a poor efficiency in terms of traffic flow. In contrast, the FBVD model realized a 
much more relaxed situation in both cases for max 2Bv =  and max 1Bv =  showed 
in panels (iv)-(ix). To compare, panel (iv)-(vi) with (vii)-(ix), the FBVD model 
performed batter for max 2Bv =  than max 1Bv = . In particular, panels (v) and (vi) 
demonstrate that the FBVD model enabled a highly stable flow field from the in-
itial state. 
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Figure 6. Hysteresis loop for the headway-vs-velocity of all cars of (i) OVM, (ii) FVDM for λ = 0.1, (iii) FVDM 
for λ = 0.2, (iv)-(vi) FBVD model for max 1Bv =  with p = 0.9 & λ = 0.1, p = 0.9 & λ = 0.2, and p = 0.85 & λ = 0.1 
rspectivly and (vii)-(ix) FBVD model for max 2Bv =  with p = 0.9 & λ = 0.1, p = 0.9 & λ = 0.2, and p = 0.85 & λ = 
0.1 rspectivly. 

7. Conclusions 

In this study, an improved car-following model called the FBVD model derived 
from the conventional OVM and FVDM is proposed to account for the back-
ward-looking effect via the introduction of a modified backward optimal veloci-
ty function for generalized backward maximum speed. The FBVD model con-
siders the likely situation in which the focal vehicle adjusts its velocity in re-
sponse to not only the forward gap between it and the preceding vehicle but also 
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the backward gap created by the following vehicle. This is justified by the reality 
that a driver tends to alter his velocity when being honked at by the following 
driver, who might be frustrated with the relatively low velocity of the focal ve-
hicle. 

Based on the formulation of the FBVD model, we explored a linear stability 
analysis and drew up a nonlinear analytic solution deriving the mKdV equa-
tion, and we also displayed numerical results generated by the model. All the 
results presented here indicate that the FBVD model affords a more stable 
flow field compared to OVM and FVDM. Thus, we can conclude that the back-
ward-adjusting effect for velocity, as well as the forward one, plays a significant 
role in stabilizing the flow field.  

Furthermore, please note that this finding may provide some hints in the de-
sign of automated vehicle control systems, which is a promising technology that 
will be developed over the next decade. In particular, this is because platoon 
running (a vehicle-cluster driving at relatively high speed) presumes simultane-
ous cooperative and mutual communication among both forward and backward 
vehicles. 
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