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Abstract 
In this paper, we extend matrix scaled total least squares (MSTLS) problem 
with a single right-hand side to the case of multiple right-hand sides. Firstly, 
under some mild conditions, this paper gives an explicit expression of the 
minimum norm solution of MSTLS problem with multiple right-hand sides. 
Then, we present the Kronecker-product-based formulae for the normwise, 
mixed and componentwise condition numbers of the MSTLS problem. For 
easy estimation, we also exhibit Kronecker-product-free upper bounds for 
these condition numbers. All these results can reduce to those of the total 
least squares (TLS) problem which were given by Zheng et al. Finally, two 
numerical experiments are performed to illustrate our results. 
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1. Introduction 

Consider the overdetermined linear system Ax b≈ , where m nA ×∈  and 
mb∈ , and the total least squares (TLS) problem can be formulated as (see [1])  

[ ] ( )
,

min , subject to .
FE f

E f A E x b f+ = +               (1) 

However, in many linear parameter estimation problems, the error of data 
matrix A on the left side of the approximate system may be scaled. In order to 
maximize the accuracy of the estimated parameters x, the case where the scaling 
factor is used to weight some columns of error matrix in data matrix A is natu-
rally considered when estimating parameters x using the TLS approach. From 
the point of view, Liu, Wei and Chen [2] proposed the concept of the ma-
trix-scaled total least squares (MSTLS) problem with single right-hand side in 
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2019. Inspired by [3], Liu, Wei and Chen [2] transformed the MSTLS problem 
with single right-hand side into the weighted TLS (WTLS) problem. 

As a continuation of their work, we extend the MSTLS problem with single 
right-hand side to multiple right-hand sides as follows.  

( ) ( )1 2 1 1 1 2 2 2,
min , subject to ,FE F

E E F A E X A E X B Fγ γ+ + + = +   (2) 

where [ ]1 2
n dX X X ×= ∈ , 1

1
m nA ×∈ , 2

2
m nA ×∈ , 1 2n n n+ =  and 

( )m dB m n d×∈ ≥ + . 
When 1d = , our model (2) degenerates to the single right-hand case. 
The condition number is a measure of the sensitivity of the solution to input 

data perturbation. Therefore, condition numbers play an important role in nu-
merical analysis. Many scholars have studied the TLS problem with multiple 
right-hand sides: [4] [5] [6] [7] [8] studied the sufficient conditions or/and ne-
cessary conditions for its solvability. When the TLS problem is solvable, Huang, 
Yan and Yu discussed the solution set and minimal norm solution of the TLS 
problem, see [4] [9]. Recently, based on singular value decomposition (SVD) of 
augmented matrix, many scholars have discussed the solution set and minimal 
norm solution of the TLS problem. In [10], Hnětynková et al. proposed the TLS 
problem with multiple right-hand sides, and gave the conditions for the exis-
tence and expression of the solutions. In [11], Hnětynková et al. extended the 
concept of the core problem of the TLS problem with single right-hand side 
proposed by Paige and Strakoš in [12] to the TLS problem with multiple 
right-hand sides. The perturbation analysis of the solution of the TLS problem 
with multiple right-hand sides can be found in references [7] [8] [13] [14] [15]. 
Zheng, Meng and Wei gave the exact expressions and their upper bounds of 
normwise, mixed and componentwise condition numbers of TLS problem with 
multiple right-hand sides in [16] [17]. These results extend the condition num-
ber theory of TLS problem with single right-hand side. In addition, by making 
use of the perturbation results in the above references, Liu et al. [18] [19] derived 
closed formulae for condition numbers of the total least squares problem with 
linear equality constraint problem. 

As far as we know, the perturbation analysis of the MSTLS problem has not 
been systematically performed in literature. In this paper, we consider the per-
turbation analysis of the MSTLS problem (2). The relative normwise condition 
number, the mixed condition number and the componentwise condition num-
ber are derived. Our analysis can be seen as a unified treatment of the mentioned 
approaches in [3] and [16]. 

Throughout this paper, for given positive integers m and n, we denote by m n×  
the space of all m n×  real matrices, and nI  stands for the identity matrix of order 
n. 

2⋅ , 
∞
⋅  and 

F⋅  denote the 2-norm, ∞-norm, and Frobenius norm of  
their arguments, respectively. Given a matrix ( ) m n

ijX x ×= ∈ , 
maxX , TX , 

†X  and ( )i Xσ  denote the “max” norm given by max ,
max iji j

X x= , the 

transpose, the Moore-Penrose inverse and the i-th largest singular value of X, 
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respectively. X  is the absolute value of the matrix X, whose entries are ijx . 

Moreover, for ( )ijY y= , ( ) m n
ijZ z ×= ∈ , 

Y
Z

 is an entry-wise division; that is, 

( )ij ij
Y y z
Z
= , or Y./Z in Matlab notation. Here, ξ/0 is interpreted as zero if 

0ξ =  and ∞  otherwise. For matrices [ ] ( )1
m n

n ijA a a a ×= = ∈  , 

( )
TT T 1

1vec mn
nA a a × = ∈    and ijA B a B ⊗ =    denotes the Kronecker 

product of A and any matrix B. Let ( )
T

, 1 1
m n

ij ijm n i j E E
= =

Π = ⊗∑ ∑ , where 
m n

ijE ×∈  has an entry 1 in position ( ),i j  and all other entries are zeros. 

The organization of this paper is as follows. In Section 2, we present some ne-
cessary preliminaries, including the explicit expression for minimum 2Wγ

− -norm 
MSTLS solution under some mild conditions and some important lemmas. In 
Section 3, we derive the normwise, mixed and componentwise condition numbers 
and their computable upper bounds of the MSTLS solution. All these results can 
reduce to those of the TLS problem which were given in [16]. Two numerical ex-
amples are tested in Section 4 to demonstrate the tightness of the derived upper 
bounds. Some concluding remarks are given in Section 5. In the appendix, we 
present a power method for calculating the normwise condition number of the 
MSTLS solution MSTLSX  similar to the one in [20].  

2. Preliminaries 

In this section, we give an explicit expression for the minimum 2Wγ
− -norm so-

lution of the MSTLS problem with multiple right-hand sides (2) under some 
mild conditions. 

Along the similar lines as in [2] [3], we can see that (2) is equivalent to the 
following WTLS model:  

[ ] ( ) ( ) 1
1 2 1 2 1 2,

min , subject to , , ,
FE F

E E F A A E E W X B Fγγ −+ = +     (3) 

where 1

2

n

n

I
W

Iγ

γ 
=  
  

0

0
. Let  

[ ] with ,
d

W
A A B W W

I
γ

γ γ γ
 

= =  
 

0
0

 

and the SVD of Aγ  be  

[ ]
T

1T 1
1 2 T

2 2

,
V

A U V U U
Vγ

Σ   
= Σ =   Σ   

0
0

              (4) 

where 1
m pU ×∈ , ( )

2
m m pU × −∈ , ( )11

1
21

n d pVn
V

Vd
+ × 

= ∈ 
 

 ,  

( ) ( )12
2

22

n d n d pVn
V

Vd
+ × + − 

= ∈ 
 

 , ( )1 1 2diag , , , p p
pσ σ σ ×Σ = ∈   and  

( ) ( ) ( )
2 1 2diag , , , m p n d p

p p n dσ σ σ − × + −
+ + +Σ = ∈  . 
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The following theorem gives the minimum 2Wγ
− -norm solution of (2).  

Theorem 2.1 Let the SVD of Aγ  be given as in (4). If  

( )1 22, and rank ,p pp n V dσ σ +≤ > =                (5) 

then the MSTLS problem with multiple right-hand sides (2) has the minimum 
2Wγ
− -norm solution:  

†
MSTLS 12 22 ,X W V Vγ= −                        (6) 

where the weighted 2Wγ
− -norm is defined by ( )2

T 2traceWX X W X
γ γ−

−= .  

Proof. By ([8], (2.3)), we can get the minimum F-norm solution to (3) under 
the condition (5):  

1 ?
MSTLS 12 22 ,W X V Vγ

− = −  

which leads to the minimum 2Wγ
− -norm solution of (2)  

†
MSTLS 12 22 .X W V Vγ= −  

Therefore, we complete the proof.  
In this paper, all discussions are based on the solvability conditions (5). Next 

we give some lemmas which will be used in the next analysis.  
Lemma 2.1 ([21], Chapt. 2) Let m nB ×∈ , p qC ×∈ , n pX ×∈ . Then  

( )T T T
2 2 2, ,B C B C B C B C⊗ = ⊗ ⊗ =  

( ) ( ) ( )Tvec vec ,BXC C B X= ⊗  

( ) ( ) ( )T
,vec vec ,m nB B= Π  

( ) ( ) ( ) ( ), , .p m n qC B B CΠ ⊗ = ⊗ Π  

If an orthogonal matrix of size n is partitioned into a 2 2×  block form, some 
interesting connections and properties among these four submatrix blocks are 
provided in the lemma below.  

Lemma 2.2 ([16], Lemma 2.1) Let 11 12

21 22

Q Q
Q

Q Q
 

=  
 

 be an n-by-n orthogonal 

matrix with a 2-by-2 partitioning. Then 
1) 11Q  has full column (row) rank if and only if 22Q  has full row (column) 

rank; 

2) † †
11 222 2

Q Q= , ( )†T ?
11 11 12 22 21Q Q Q Q Q= − , ( )†T T ?

11 21 12 22Q Q Q Q= − .  

Since the MSTLS solution is closely related to the matrix V of right singular 
vectors of augmented matrix, the first-order perturbation analysis of V will play 
an important role in next discussions. The next lemma gives the first-order per-
turbation analysis of V.  

Lemma 2.3 ([16], Lemma 2.2) Let Aγ  have the SVD in (4) with 1p pσ σ +>  
and 

2E  be sufficiently small. Define  

( )( ) 12 T T
1 2 2 2 1= ,n d p p p n d pR I I I I

−

+ − + − Σ ⊗ − ⊗ Σ Σ ⊗Σ Σ ⊗   
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( ) ( )
T T

1 2

T T
2 1,

.
p n d p

V U
S

V U+ −

 ⊗
 =
Π ⊗  

 

Then the matrix 1 2V V V =  
    of right singular vectors of A A Eγ γ= +  sa-

tisfies  

( )( ) ( )( )
1 1

T T T2 2
1 1 2 2 2 1, ,V V V P I P P V V V P I PP

− −
= + + = − +   

where ( )n d p pP + − ×∈  is given by  

( ) ( ) ( )2

2vec vec .P RS E E= +  

Moreover, if 22V  has full row (column) rank, then 22V  has full row (column) 
rank.  

3. Condition Numbers of XMSTLS 

Let 1 2A A A A A = = + ∆ 
    and B B B= + ∆ , where [ ]1 2A A A∆ = ∆ ∆  and 

B∆  are the perturbations of the input data A and B, respectively. 
Consider the perturbed MSTLS problem with multiple right-hand sides  

( ) ( ) ( )1 2 1 1 1 2 2 2,
min , subject to .

FE F
E E F A E X A E X B Fγ γ+ + + = +     (7) 

Similarly, (7) is also treated as a perturbed WTLS problem. Let A A B Wγ γ =  
   , 

and the SVD of Aγ
  be  

T
T 1 11 12

1 2
2 21 22

,
V V

A U V U U
V Vγ

  Σ
 = Σ =     Σ   

 

    

 

0
0

            (8) 

where U , Σ  and V  are partitioned as in U, Σ  and V in (4), respectively. 
When the norm [ ] F

A B∆ ∆  of the perturbations is sufficiently small, then 
perturbation analysis of singular values can ensure that the perturbed MSTLS 
problem with multiple right-hand sides (7) has the minimum 2−

γW -norm solu-
tion:  

†
MSTLS 12 22 .X W V Vγ= −                         (9) 

Let MSTLS MSTLSX X X∆ = − . Now we introduce definitions of the normwise, 
mixed and componentwise condition numbers for MSTLSX  as follows.  

Definition 3.1 The absolute normwise condition number for MSTLSX  is de-
fined by  

( )abs
MSTLS MSTLS 0

, : lim lim ,
F F

F

A A
F

X
X A

Aγ γ
γ ε ε

γ

κ
→ ∆ ≤

∆
=

∆
          (10) 

the relative normwise condition number for MSTLSX  is defined by  

( )rel
MSTLS MSTLS 0

MSTLS

, : lim lim ,
F F

F

A A
F

X
X A

Xγ γ
γ ε ε

κ
ε→ ∆ ≤

∆
=         (11) 

the mixed condition number for MSTLSX  is defined by  
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( )mix max
MSTLS MSTLS 0

MSTLS max

, : lim sup ,
AW AW

B B

X
X A

Xγ γ
γ ε ε

ε

κ
ε→ ∆ ≤

∆ ≤

∆
=           (12) 

and the componentwise condition number for MSTLSX  is defined by  

( )com
MSTLS MSTLS 0

MSTLS max

1, : lim sup .
AW AW

B B

XX A
Xγ γ

γ ε ε
ε

κ
ε→ ∆ ≤

∆ ≤

∆
=          (13) 

Definition 3.1 only provides general descriptions of the various condition 
numbers. It is usually hard to give their exact computable formulae. However, if 

MSTLSX  is a differentiable function with respect to the data, the condition num-
bers defined in Definition 3.1 can be exactly expressed in derivatives. We start 
from the differentiability of MSTLSX . 

Let the SVD of the matrices Aγ  be given as in (4). To derive the exact for-
mulae of the condition numbers of †

MSTLS 12 22X W V Vγ= − , we define the mapping 
( ): m n d ndφ + →   by  

( ) ( )MSTLSvec ,c Xφ =  

where ( )vecc Aγ= . It follows from Lemma 2.3 that φ  is continuous in a 
neighborhood of c. Using the definitions of the condition numbers of the map-
ping φ  at a fixed point c [22] [23] [24], and following [23] [24] [25], if φ  is 
Fréchet differentiable in a neighborhood of c, we have  

( ) ( ) ( )abs abs
MSTLS MSTLS MSTLS 2

, , ,X A c cγκ κ φ φ′= =            (14) 

( ) ( )
( )
( )

2rel rel 2
MSTLS MSTLS MSTLS

2

, , ,
c c

X A c
cγ

φ
κ κ φ

φ

′
= =          (15) 

( ) ( )
( )
( )

mix mix
MSTLS MSTLS MSTLS, , ,

c c
X A c

cγ

φ
κ κ φ

φ
∞

∞

′
= =          (16) 

( ) ( )
( )
( )

com com
MSTLS MSTLS MSTLS, , ,

c c
X A c

cγ

φ
κ κ φ

φ
∞

′
= =          (17) 

where ( )cφ′  denotes the Fréchet derivative of φ  at point c. 
Before deriving the explicit expression for condition numbers, we give a useful 

lemma which proves that φ  is Fréchet differentiable in a neighborhood of 
( )vecc Aγ=  and gives the explicit expression for ( )cφ′ .  

Lemma 3.1 Under conditions (5), the mapping φ  defined above is conti-
nuous and Fréchet differentiable at ( )vecc Aγ= . Moreover, its Fréchet deriva-
tive has the expression  

( ) ( )1 2c H H RSφ′ = +                    (18) 

in which R and S are defined as in Lemma 2.3, and  

( )( ) ( ) ( ) ( )( ) ( )22

1 TT ?
1 22 22 21 12 2 22 11 ,,V n d p pH V V V W V F H V W Vγ γ

−

+ −= ⊗ = ⊗ Π
†

 

with 
22

†
22 22VF I V V= − .  
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Proof. We only prove the second statement since the first part is trivial. Ac-
cording to Lemma 2.3, it follows that there exists a proper matrix P such that  

( )( ) ( )( )
1 1

T T T T2 2
12 12 11 22 22 21, .V V V P I PP V V V P I PP

− −
= − + = − +   

Since 22V  has full row rank by Lemma 2.3, we have  

( )
( )( ) ( )

( )( ) ( )( )

1† T T
MSTLS 12 22 12 22 22 22

1 TT T T
12 11 22 21

11 TT T T
22 21 22 21 .

X W V V W V V V V

W V V P I PP V V P

V V P I PP V V P

γ γ

γ

−

−

−−

= − = −

= − − + −

× − + −

      

 

Using Lemma 2.2 and only retaining the first-order terms give  

( ) ( )
( ) ( )

( )
( ) ( )

22

1T T
MSTLS MSTLS 12 22 22 21 22 22

2T
11 12 22 21 22 2

1T T
MSTLS 12 21 22 22

2T T
11 22 2

,

V

X X W V I V V PV V V

W V V V V P V A

X W V F PV V V

W V P V A

γ

γ γ

γ

γ γ

−

−

= + −

+ − + ∆

= +

+ + ∆







†

† †

† †

 

which together with Lemma 2.1 and Lemma 2.3 leads to 

( )( ) ( )( )
( )

( )( ) ( )

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )

22

MSTLS MSTLS

1T
22 22 21 12

T 2T
22 11 , 2

2
1 2 2

vec vec

vec

vec

vec .

V

n d p p

A A

X X

V V V W V F

V W V P A

H H RS A A

γ γ

γ

γ γ

γ γ

φ φ

−

+ −

−

= −

= ⊗


+ ⊗ Π + ∆


= + ∆ + ∆









††

 

Consequently, the Fréchet derivative of φ  at 
TT Tc a b =    is given by  

( ) ( )1 2 ,c H H RSφ′ = +  

which gives the desired result.  

3.1. Normwise Condition Numbers 

Next, we present the absolute and relative normwise condition numbers of 

MSTLSX .  
Theorem 3.1 Let R be defined as in Lemma 2.3, and 1 2,H H  be defined as in 

Lemma 3.1. Under conditions (5), we have  

( )abs
MSTLS 1 2 2

,H H Rκ = +                    (19) 

( )1 2rel 2
MSTLS

MSTLS

.F

F

H H R A

X
γ

κ
+

=                  (20) 

Proof. By (14), (15), Lemma 3.1 and the fact that ( )
T

n m d nSS I + −= , the desired 
results are easily obtained.  
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Remark 3.1 Taking 1γ = , our results in (19) and (20) reduce to those of the 
solution to TLS problem with multiple right-hand sides in ([16], Theorem 3.3), 
respectively.  

Computing abs
MSTLSκ  and rel

MSTLSκ  reduces to computing the spectral norm of 
matrix ( )1 2H H R+ . It should be noted that the Kronecker product enlarges the 
size of the matrix when m and n are large, so it impossible to explicitly form and 
store the high dimensions matrix. Along the similar lines as in ([26], Algorithm 
1), we also adopt the iterative technique based on the power method ([27], p. 289) 
to eliminate the influence of the Kronecker product. We include it as an appen-
dix. 

In many applications, an upper bound would be sufficient to estimate the 
normwise condition number of the MSTLS solution. We next present the upper 
bounds for abs

MSTLSκ  and rel
MSTLSκ , which only involve the singular values pσ  

and 1pσ +  of Aγ . Such bounds are particularly appealing for large-scale MSTLS 
problem.  

Theorem 3.2 Using the notation above, we have the upper bounds for the 
absolute and relative normwise condition numbers of MSTLSX  as follows:  

( )
2 2

12abs abs
MSTLS MSTLS MSTLS2 22 2

1

1 : ,p p

p p

X Wγ

σ σ
κ κ

σ σ
+

+

+
≤ + =

−
          (21) 

and  

( )
2 2

12rel rel
MSTLS MSTLS MSTLS2 22 2

MSTLS1

1 : ,p p F

p p F

A
X W

X
γ

γ

σ σ
κ κ

σ σ
+

+

+
≤ + =

−
     (22) 

where pσ  and 1pσ +  are singular values of Aγ .  
Proof. According to Lemma 2.1 and Theorem 3.1, we use the CS decomposition 

([28], Theorem 2.6.3) and the property of 2-norm to follow a path similar to the 
proof in ([16], Theorem 3.6), the corresponding results can be proved.  

Remark 3.2 Taking 1γ = , our result (21) reduces to that of the TLS problem 
with multiple right-hand sides in ([16], Theorem 3.6).  

Note that T 1
22

n pV + −∈  and 
T

† 22
22 2

22 2

VV
V

=  when 1d = , and we can get the 

following corollary about the normwise condition numbers and their upper 
bounds for the MSTLS problem with single right-hand side by Theorems 3.1 and 
3.2.  

Corollary 3.1 Consider the MSTLS problem with single-hand side, if 

1p pσ σ +>  and 22 0V ≠ , we have  

( ) ( )( )

( )

abs
MSTLS 21 12 22 11 21 222 2

22 2

2 2
12 abs

MSTLS2 22 2
1

1

1 : ,p p

p p

V W V xV W V xV V R
V

x W

γ γ

γ

κ

σ σ
κ

σ σ
+

+

= ⊗ + + + ⊗

+
≤ + =

−

    (23) 

and  
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( ) ( )( )

( )

21 12 22 11 21 22rel 2
MSTLS 2

22 2

2 2
12 rel

MSTLS2 22 2
1

1 : ,

F

F

p p F

p p F

V W V xV W V xV V R A

V x

A
x W

x

γ γ γ

γ
γ

κ

σ σ
κ

σ σ
+

+

⊗ + + + ⊗
=

+
≤ + =

−

    (24) 

where x is the minimum 2Wγ -norm solution of the MSTLS problem with single 
right-hand side.  

Remark 3.3 Taking 1γ = , our results in (23) reduce to those of the TLS 
problem with single right-hand side in ([16], Corollaries 3.4 and 3.8).  

3.2. Mixed and Componentwise Condition Numbers 

When the data are badly scaled and sparse, normwise condition numbers allow large 
relative perturbations on small entries and may give overestimated bounds. Instead 
of measuring perturbations by norms, a componentwise condition number is more 
suitable because it measures perturbation errors for each component of the input 
data [24]. Therefore, the mixed, componentwise condition numbers for the MSTLS 
problem are worth studying. In the following theorem, we present the mixed and 
componentwise condition numbers of the MSTLS problem.  

Theorem 3.3 Using the notation above, we have the mixed and componentwise 
condition numbers of the MSTLS solution as follows:  

( )
mix
MSTLS

MSTLS max

vec
,

KN AW B

X

γ
κ ∞

  
=                (25) 

and  

( )
( )

com
MSTLS

MSTLS

vec
,

vec

KN AW B

X
γ

κ

∞

  =                (26) 

where  

( ) ( )( ) 12 T
1 2 1 2 2 ,n d p pK H H I I

−

+ −= + Σ ⊗ − ⊗ Σ Σ  

( ) ( ) ( )( )T T T T T
1 2 2 2 1 1, .n d p pN V U V U+ −= ⊗ Σ +Π ⊗ Σ  

Proof. The proof can easily be obtained by (16), (17) and Lemma 3.1, so we 
omit it here.  

Remark 3.4 Taking 1γ = , our results in Theorem 3.3 reduce to those of the 
TLS problem with multiple right-hand sides in ([16], Theorem 3.11).  

The expressions of the condition numbers in Theorem 3.3 involve permutation 
matrix ( ),n d p p+ −Π  (or ( ),p n d p+ −Π ) and extensive computation of Kronecker 
products, so it is not easy to use these expressions to calculate the condition num-
ber directly, which is impractical for large-scale problem. Similarly, we also give 
upper bounds for the mixed and componentwise condition numbers of the 
MSTLS problem, respectively.  
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Theorem 3.4 Using the notation above, we have the upper bounds for the 
mixed and componentwise condition numbers of the MSTLS solution as follows:  

( ) ( )22

1T T T T
11 22 12 21 22 22

mix mixmax
MSTLS MSTLS

MSTLS max

ˆ ˆ
: ,

VW V K V W V F K V V V

X

γ γ

κ κ

−
+

≤ =

† †

(27) 

( ) ( )22

1T T T T
11 22 12 21 22 22

com com
MSTLS MSTLS

MSTLS

max

ˆ ˆ
: ,

VW V K V W V F K V V V

X

γ γ
κ κ

−
+

≤ =

† †

(28) 

where ( )ˆ n d p pK + − ×∈  has the i-th column  

( ) (
)

12 T T T
2 2 2 2 1

TT
2 1 1

ˆ

.

i i n d p

i

k I U AW B V

V AW B U e

γ

γ

σ
−

+ −
 = −Σ Σ Σ  

 + Σ 

 

Proof. According to Theorem 3.3 and Lemma 2.1, we have 

( )
( ) ( )( ) ( )

( )( )
( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )
( )

22

T T T T T
1 2 2 2 1 1,

12 2
1 2 1 1

TT T T
2 2 1 2 1 1

T 1T T
22 11 22 22 21 12,

T T
11 2

vec

vec

vec vec

ˆvec

ˆvec

n d p p

n d p p p n d p

Vn d p p

KN AW B

K V U V U AW B

H H I I

U AW B V V AW B U AW B

V W V V V V W V F K

W V K V

γ

γ

γ γ γ

γ γ

γ

σ

+ −

−

+ − + + −

−

+ −

  

 ≤ ⊗ Σ +Π ⊗ Σ ×  

= + Σ ⊗ −

     × Σ + Σ     

= ⊗ Π + ⊗

≤

††

† ( )22

1T T
2 12 21 22 22

ˆ ,VW V F K V V Vγ

− + 
 

†

 

which together with (25), (26) leads to (27) and (28), respectively.  
Remark 3.5 Taking 1γ = , our results in Theorem 3.4 reduce to those of the 

TLS problem with multiple right-hand sides in ([16], Theorem 3.12).  

4. Numerical Experiments 

In this section, we present three numerical experiments to illustrate that the 
tightness of the upper bound estimates on the absolute normwise, mixed and 
componentwise condition numbers of the MSTLS solution and the operability of 
Algorithm 1, respectively. All of the following numerical experiments are per-
formed via MATLAB R2014b in a laptop with AMD A10-7300 Radeon R6, 10 
Compute Cores 4C + 6G by using double precision. Each figure in the following 
tables is the average of 500 experiments. 

Example 4.1 Let 

3

,W
Iγ

γ 
=  
 

0
0

 

and Aγ  be given by its SVD decomposition 
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[ ] ( )

T1 1 1 1
1 1 1 11diag 3,2,1,1 ,
1 1 1 12
1 1 1 1

A A B W Uγ γ

 −   −  = =   −   − − −  

 

where 4 2,A B ×∈  and U is an arbitrary 4-by-4 orthogonal matrix. This exam-
ple is inspired by ([16], Example 3.7). 

We partition the unitary matrix V: 

11 12

21 22

1 1 1 1
1 1 1 11 .
1 1 1 12
1 1 1 1

V V
V

V V

 −  
  −    = =    −     − − −  

 

We know 1 2σ σ>  and ( )22rank 2V d= = . Hence the approximate linear 
system (2) has the MSTLS solutions and the normwise condition number of its 
minimum 2Wγ

− -norm solution MSTLSX  satisfies Table 1, which means that the 
upper bound abs

MSTLSκ  can be reached and therefore is optimal. 
Example 4.2 Let  

( )( ) T 50 10
0 7 0diag 10,7,7,3,2,1, ,0.0005,0.0001,0.00005A W U A Vγ σ ×= ∈  

with 50 50U ×∈  and 10 10V ×∈  being arbitrary orthogonal matrices and 
4

6

I
W

Iγ

γ 
=  
 

0
0

. We choose 50 4
0B ×∈  such that 0 0 1 2B A W Y Yγ= +  and 

[ ]0 0A A W B E Fγ γ = +  , where 1Y , 2Y , E, and F have entries from the stan-

dard normal distribution such that 1p pσ σ +>  and ( )22rank 4V =  with 4p = .  

This example is a modification from [14] and Zheng et al. ([16], Example 5.2) 
used the similar example to compare the mixed and componentwise condition 
numbers with their corresponding upper bounds of the TLS problem with mul-
tiple right-hand sides. Next, we will show the exact condition numbers of 

MSTLSX  and its upper bounds when  
1e 15,1e 10,1e 5,1e 5,1e 10,1e 15γ = + + + − − − , respectively. 

We compute the mixed condition number mix
MSTLSκ , the componentwise con-

dition number com
MSTLSκ  of MSTLSX  and their corresponding upper bounds 

mix
MSTLSκ  and com

MSTLSκ  with ( )7 0 0.001Aσ = , 0.01, 0.1 and 1, and report the re-
sults in Table 2, Table 3. 

As shown in Table 2 and Table 3, we can see that the upper bounds are at most 
two orders of magnitude larger than the corresponding exact condition number. 
That is, the upper bounds in Theorem 3.4 can estimate their corresponding condi-
tion numbers well.  

Example 4.3 Let Aγ  be given as in Example 4.1. Take 1e 5γ = + , and 
( ) ( )7 0 0.0005 1e 9Aσ = + − , ( )0.0005 1e 7+ − , ( )0.0005 1e 4+ − , respectively.  

The quantity 1p pσ σ +−  measures the distance of our problem to nongenericity, 
and we have in exact arithmetic 1p pσ σ +− . Then by varying 1pσ + , we can generate 
different MSTLS problems, and by considering values of ( )7 0Aσ , it is possible 
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to study the behavior of the MSTLS condition number in the context of 
close-to-nongeneric problems. Firstly, we compare in Table 4 the exact condi-
tion number abs

MSTLSκ  given in Theorem 3.1, the upper bound abs
MSTLSκ  given in 

Theorem 3.2. We also report the condition number computed by Algorithm 1, 
denoted by pκ , and the corresponding number of power iterations (the algo-
rithm terminates when the difference between two successive values is lower 
than 10−12).  

 
Table 1. Comparison of condition number abs

MSTLSκ  and its upper bound abs
MSTLSκ  with 

different γ . 

γ  0.5 1 1.5 
abs
MSTLSκ  1.1718 1.4422 1.8617 
abs
MSTLSκ  1.1736 1.4422 2.8394 

 
Table 2. Comparison of condition number mix

MSTLSκ  and its upper bound mix
MSTLSκ  with 

different γ . 

( )7 0Aσ   0.001 0.01 0.1 1 

mix
MSTLSκ  

1e 15γ = +  6.7129e+17 7.6102e+18 1.9920e+17 3.1622e+18 

1e 10γ = +  4.2371e+14 8.9770e+12 3.9206e+13 1.0434e+13 

1e 5γ = +  1.5691e+08 2.1368e+08 1.7712e+08 8.8681e+08 

1e 5γ = −  5.2829e+03 1.5826e+04 1.3489e+03 5.8180e+03 

1e 10γ = −  9.2655e+04 1.2145e+04 1.3753e+03 3.5899e+03 

1e 15γ = −  1.2206e+04 8.0902e+03 7.2886e+03 4.2309e+03 

mix
MSTLSκ  

1e 15γ = +  4.1110e+19 6.6307e+19 4.4879e+19 1.2715e+20 

1e 10γ = +  3.7871e+15 4.0999e+14 3.1015e+14 2.6480e+15 

1e 5γ = +  4.2784e+10 8.8389e+09 3.2535e+09 1.6245e+09 

1e 5γ = −  1.1334e+05 3.6742e+05 2.4497e+05 4.9073e+05 

1e 10γ = −  1.2192e+06 2.1819e+05 4.9021e+05 7.2344e+05 

1e 15γ = −  8.4475e+04 6.7574e+05 6.0260e+05 3.7168e+05 

 
Table 3. Comparison of condition number com

MSTLSκ  and its upper bound com
MSTLSκ  with 

different γ . 

( )7 0Aσ   0.001 0.01 0.1 1 

com
MSTLSκ  

1e 15γ = +  1.4087e+18 1.4928e+19 4.0529e+17 6.8811e+18 

1e 10γ = +  1.0018e+15 2.1440e+13 7.9413e+13 2.6345e+13 

1e 5γ = +  3.5060e+08 6.5257e+08 4.1271e+08 1.7704e+08 

1e 5γ = −  1.3046e+04 2.9954e+04 3.5703e+03 1.0531e+04 

1e 10γ = −  1.9387e+04 1.7551e+04 2.4648e+03 9.4511e+03 

1e 15γ = −  1.4245e+04 1.4636e+04 2.6126e+04 1.1497e+04 

com
MSTLSκ  

1e 15γ = +  4.0154e+20 9.9512e+21 2.9894e+19 1.1469e+20 

1e 10γ = +  2.9632e+15 1.3232e+15 1.2025e+15 9.5760e+15 

1e 5γ = +  2.4263e+10 5.0428e+10 2.2189e+10 2.0530e+10 

1e 5γ = −  3.4501e+05 1.1939e+06 7.7596e+05 3.2096e+06 

1e 10γ = −  2.3797e+06 3.0595e+05 1.0039e+05 2.7426e+05 

1e 15γ = −  1.1552e+05 3.9220e+06 1.7344e+06 1.0533e+06 
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Table 4. MSTLS conditioning for several values of ( )7 0Aσ . 

( )7 0Aσ  abs
MSTLSκ  abs

MSTLSκ  pκ  #iter 

0.0005 + (1e − 9) 2.9662e+04 7.7366e+05 2.9645e+04 4 

0.0005 + (1e − 7) 1.3200e+04 5.9384e+05 1.3182e+04 5 

0.0005 + (1e − 4) 2.3485e+04 8.6505e+06 2.3424e+04 4 

 
From Table 4, we observe that the upper bounds of the condition numbers 

are sharp although there may be a factor ( )210  between the exact absolute 
normwise condition number abs

MSTLSκ  and its upper bound abs
MSTLSκ  sometimes. 

pκ  is always equal or very close to abs
MSTLSκ .  

5. Conclusion 

In this paper, we are concerned with the matrix-scaled total least squares 
(MSTLS) problem with multiple right-hand sides. To our best knowledge, the 
condition numbers of the MSTLS problem have so far not been considered sys-
tematically. Based on this view, we focus on the normwise, mixed and compo-
nentwise condition numbers of the MSTLS problem under some mild conditions, 
respectively. Then the tight and computable upper bound estimates are provided. 
Numerical examples are given to illustrate the tightness of these bounds. In ad-
dition, large-scale problems are more interesting, we can make efforts on com-
putational issues associated with these problems, possibly with additional struc-
tures (like sparseness) for the defining matrices. This will be a good research di-
rection in the future.  
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Appendix A 

Denote ( )1 2H H H R= + . This algorithm involves, however, the computation 
of the products of H by a vector ( )2p m n d pf + + −∈  and TH  by a vector 

ndg ∈ . We describe now how to perform the two operations. 
Let ( )T 2T T

1 2
p n m d pf f f + + − = ∈    with ( )

1
p m pf −∈ , ( )

2
p n d pf + −∈ , 

( )1 1reshape , ,F f m p p= −  and ( )2 2reshape , ,F f n d p p= + − . It follows from 
Lemma 2.2 that  

( )T
11 11 12 22 21 11 MSTLS 21,W V W V W V V V W V X Vγ γ γ γ= − = +

† †  

which together with Lemma 2.1 and the fact that  
( )22

†
12 12 22 22 12 MSTLS 22VW V F W V I V V W V X Vγ γ γ= − = +  gives  

( ) ( )( ) ( )
( )

( ) ( )( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
22

1 12 T T
1 2 1 2 2 2 1

2

12 T T
1 2 1 2 2 2 1 2 1

1 TT T
22 22 21 12 22 11 ,

1T T
12 MSTLS 22 21 22 22 11

vec
vec

vec

vec

vec

n d p p p n d p

n d p p

V n d p p

F
Hf H H I I I I

F

H H I I F F

V V V W V F V W V T

W V X V TV V V W V X

γ γ

γ γ

−

+ − + −

−

+ −

−

+ −

−

 
 = + Σ ⊗ − ⊗ Σ Σ ⊗Σ Σ ⊗   

 

= + Σ ⊗ − ⊗ Σ Σ Σ + Σ

 = ⊗ + ⊗ Π 
 

= + + +

††

( )( )T
MSTLS 21 22 ,V T V †

(29) 

where ( )n d p pT + − ×∈  with the i-th column  

( ) ( )
( ) ( ) ( )( )

12 T T
2 2 2 1 2 1

12 T T
2 2 2 1 2:, :, .

i i i n d p i

i n d p i

t Te I F F e

I F i F i

σ

σ σ

−

+ −

−

+ −

= = −Σ Σ Σ + Σ

= −Σ Σ Σ +
 

Similarly, let ndg ∈  and ( )reshape , ,G g n d= . Then we have 

( )( ) ( )

( ) ( )( ) ( ) ( )

( )( )

( ) ( ) ( )( )
( ) ( )

( )

22

1T T T
22 22 21 12

TT T
22 11 ,

12 2 T
1 2 2

1

1T T T
12 MSTLS 22 22 22 21 22 11 MSTLS 21

2 2

1 1

vec

vec

vec
vec

vec

V

n d p p

p
n d p p

n d p

p

n d p

H g R V V V W V F

V W V G

I
I I

I

W V X V G V V V V G W V X V

I Z
Z

I Z

γ

γ

γ γ

−

+ −

−

+ −
+ −

−

+ −

= ⊗


+ ⊗ Π 


⊗Σ 
= Σ ⊗ − ⊗ Σ Σ Σ ⊗ 

× + + +

⊗Σ  Σ  
= =  Σ ⊗ Σ  

††

†

,


(30) 

where ( )n d p pZ + − ×∈  with the i-th column  

( ) ( ) ( )(
( ))

( ) ( ) ( )( ( )

( ) ( )( ))

1 1T2 T T
2 2 12 MSTLS 22 22 22 21

† T
22 11 MSTLS 21

1 1T2 T T
2 2 12 MSTLS 22 22 22 21

† T
22 11 MSTLS 21

:,

:, :, .

i i n d p

i

i n d p

z I W V X V G V V V

V G W V X V e

I W V X V G V V V i

V G W V i X V i

γ

γ

γ

γ

σ

σ

− −

+ −

− −

+ −

= −Σ Σ +

+ +

= −Σ Σ +

+ +

 

Using (29) and (30), we can now write in Algorithm 1 the iteration of the 
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power method ([27], p. 289) to compute the absolute and relative normwise 
condition numbers abs

MSTLSκ  and rel
MSTLSκ  of MSTLSX . In this algorithm we as-

sume MSTLSX  and the SVD of Aγ  are available. 
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