
Journal of Quantum Information Science, 2021, 11, 1-12 
https://www.scirp.org/journal/jqis 

ISSN Online: 2162-576X 
ISSN Print: 2162-5751 

 

DOI: 10.4236/jqis.2021.111001  Feb. 5, 2021 1 Journal of Quantum Information Science 
 

 
 
 

Approximate Private Quantum Channels on 
Fermionic Gaussian Systems 

Kabgyun Jeong 

Research Institute of Mathematics, Seoul National University, Seoul, Korea 

 
 
 

Abstract 
The private quantum channel (PQC) maps any quantum state to the max-
imally mixed state for the discrete as well as the bosonic Gaussian quantum 
systems, and it has fundamental meaning on the quantum cryptographic 
tasks and the quantum channel capacity problems. In this paper, we primally 
introduce a notion of approximate private quantum channel (ε-PQC) on 
fermionic Gaussian systems (i.e., ε-FPQC), and construct its explicit form of 
the fermionic (Gaussian) private quantum channel. First of all, we suggest a 
general structure for ε-FPQC on the fermionic Gaussian systems with respect 
to the Schatten p-norm class, and then we give an explicit proof of the state-
ment in the trace norm case. In addition, we study that the cardinality of a set 
of fermionic unitary operators agrees on the ε-FPQC condition in the trace 
norm case. This result may give birth to intuition on the construction of 
emerging fermionic Gaussian quantum communication or computing sys-
tems. 
 

Keywords 
Fermionic Private Quantum Channel, Approximate FPQC, Isotropic  
Measure, ε-Net Analysis, McDiarmid’s Inequality 

 

1. Introduction 

In general, we can classify two intrinsic physical systems known as a bosonic 
system and a fermionic system. Each physical system undergoes a certain unitary 
transformation known as a state evolution or a quantum channel, which is ma-
thematically completely positive and trace-preserving (CPT) map in quantum 
information theory, from a quantum state to another one [1] [2] [3]. Besides, the 
bosonic quantum states and (bosonic) channels are familiar in quantum infor-
mation theory [4], the fermionic systems and its informational properties are 

How to cite this paper: Jeong, K. (2021) 
Approximate Private Quantum Channels 
on Fermionic Gaussian Systems. Journal of 
Quantum Information Science, 11, 1-12. 
https://doi.org/10.4236/jqis.2021.111001 
 
Received: December 14, 2020 
Accepted: February 2, 2021 
Published: February 5, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jqis
https://doi.org/10.4236/jqis.2021.111001
https://www.scirp.org/
https://doi.org/10.4236/jqis.2021.111001
http://creativecommons.org/licenses/by/4.0/


K. Jeong 
 

 

DOI: 10.4236/jqis.2021.111001 2 Journal of Quantum Information Science 
 

relatively unknown [5] [6]. In this reason, we try to investigate a fermionic 
quantum channel in the Gaussian regime, and then construct a (Gaussian) fer-
mionic private quantum channel (FPQC) in the sense of quantum information 
theory (QIT) [7] [8] [9]. The notion of private quantum channel is very useful in 
the quantum cryptographic protocols as well as the channel capacity problems 
in quantum information theory. For example, two conjugate pairs of private 
quantum channels give rise to an additivity violation of the classical capacity 
for quantum channels [10] [11], so we naturally expect that FPQC also has the 
non-additive property in quantum channel capacity problems. 

The private quantum channel (PQC), first introduced by Ambainis et al. [12], 
is a quantum communication primitive for secure transmission of a quantum 
information, and already has been proved not only the informational-security 
including its optimality [13] [14] but also reported several asymptotic secure 
transmission rates [15] [16] [17]. After applying the PQC on any quantum state, 
the output of the channel is always equivalent to the maximally mixed state, 
which has the highest entropy for a given dimension of the state, thus any wire-
tappings are fundamentally impossible. Owing to cryptographic importance of 
PQC, it has several names such as quantum one-time pad, random unitary 
channel, ε-randomizing map and so on, here we call the map as ε-private quan-
tum channel (ε-PQC) in the approximate consideration. While the conventional 
PQC is required exactly 2d  unitary operations to encrypt a d-dimension quantum 
state to the perfect maximally mixed state, ε-PQC (i.e., approximate PQC) is only 
sufficient to use the number of unitary operations being less than ( )logO d d  [18], 
even ( )O d  [19]. 

Here, let us formally define the ε-PQC in the general-setting through the 
Schatten p-norm class [20] [21]: For every quantum state ( )d∈  B  and any 

0ε > , if a quantum channel ( ) ( ): d dΛ → B B  satisfies the following in-
equality of  

( )
1

1l ,
p p

pd d

ε
−

Λ − ≤                       (1) 

then we call the map Λ  as ε-private quantum channel with respect to the 
Schatten p-norm (for all 1p ≥ ) [22] [23]. Notice that ( )dB  denotes the 
bounded linear operator on the d-dimensional Hilbert space d , and the 
Schatten p-norm is defined as follows: For any matrix ( )dA∈ B  and for all 
1 p≤ ≤ ∞ , it has in the form of trace class as  

( )
12†Tr .

pp

pA A A =   
 

For convenience, we only consider 1p =  case below, i.e., the trace norm 
given by †

1 TrA A A= , however, we formulate the fermionic ε-PQC for arbi-
trary 1p ≥  (see Proposition 1). The operator norm and the Hilbert-Schmidt 
norm are given similar ways [18] [22]. Thus the ε-PQC in this trace class is taken  

in the form of ( )
1

1l
d

ρ εΛ − ≤ . Also, there are several variants of the PQC in  
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continuous-variable regimes [24] [25] [26] [27] and the multi-qubit protocol [28] 
[29]. 

We also remark on the possibility of certain relations between the approx-
imate fermionic private quantum channel (ε-FPQC) and other informa-
tion-theoretic settings. For examples, Clifford group nC  for n-qubit states is a 
subgroup of the unitary group ( )dU  for a qudit (that is, d-dimensional quan-
tum state). Thus, we can easily observe that the above construction (i.e., ε-FPQC) 
has very similar structure to the n-qubit secure protocol for quantum sequential 
transmission [29], magic-state construction [30], and an operator system in ma-
thematics for the error correction schemes in qubit levels [31]. 

Now it is natural to ask how we can characterize the PQC in fermionic Gaus-
sian systems and their impact on quantum information sciences such as the 
channel-capacity problem. At first, we briefly review the basic concepts of fer-
mionic Gaussian systems and the channels. 

This paper is organized as follows. In Sections 2.1 and 2.2, we review the basic 
of fermionic Gaussian systems and its representation of private quantum chan-
nels, respectively. In Section 3, we describe our main result on approximate pri-
vate quantum channels on the fermionic system with explicit construction and 
proof over the trace norm. Finally we conclude our result in Section 4. 

2. Preliminary 
2.1. Fermionic Gaussian States 

Generally, M-mode fermionic systems are associated with a tensor product of 
Hilbert space 1

MM
jj

⊗
==⊗H H , where M pairs of fermionic annihilation and  

creation operators { }†

1
ˆ ˆ,

M

j j j
f f

=
 correspond to each mode of the total Hilbert 

space. The operators in the form of ( )T ? †
1 1
ˆ ˆ ˆ ˆˆ : , , , , ,M Mf f f f=f    satisfy the ca-

nonical anti-commutation relation (CAR) such that { }† † †ˆ ˆ ˆ ˆ ˆ ˆ, 1lk k k kf f f f f f δ= + =
   

.  

It was known that CAR algebra of M-mode fermionic system can be described 
by a set of the M-mode Majorana operators { }1 2ˆ ˆ, , Mc c  such that  
{ }ˆ ˆ, 2 1lk kc c δ=

 

 as well as †ˆ ˆk kc c= , and those operators in the Clifford algebra 
have the explicit forms of  

2 1 1 1 2 2

2 1 1 2 2

ˆ 1l 1l
ˆ 1l 1l ,

z z x
k k k

z z y
k k k

c

c

σ σ σ

σ σ σ
− −

−

 = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗


= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

 

 

              (2) 

where 2

1 0 0 1 0
1l , ,

0 1 1 0 0
x y
k k

i
i

σ σ
     

= = =     −     
, and 

1 0
0 1

z
kσ

 
=  − 

 are Pauli  

matrices on the k-th qubit. We notice that, for each k-mode,  
( )†

2 1 2
1ˆ ˆ ˆ ˆ0 0 1
2k k k kkf f ic c−= = − , ( )†

2 1 2
1ˆ ˆ ˆ ˆ1 1 1
2k k k kkf f ic c−= = + , and  

( )T
1 2ˆ ˆ ˆ: , , Mc c=c  . 

By exploiting the ingredients, let us define a fermionic Gaussian state as fol-
lows. 

Definition 1 (Fermionic Gaussian state). A fermionic state Fρ  is Gaussian, 
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if it can be defined by  

( )

ˆelim ,
H

F Z

β

β
ρ

β→±∞
=                         (3) 

where β  is the inverse temperature, ( ) ( )ˆTr e HZ ββ =  the normalization fac-
tor, and the second order Hamiltonian Ĥ  is given by  

T Tˆ ˆ ˆ ˆ .
2
iH = Γ +c c c x                         (4) 

Here, ( )T
2MΓ = −Γ ∈ M  is a real skew-symmetric matrix and 2M∈x  . 

For convenience, we will set the temperature parameter as 1β = .  
Now, we only consider the quadratic term of the Hamiltonian Tˆ ˆ ˆ

2
iH ′ = Γc c , 

i.e., fermionic “even” Gaussian states. For M-mode fermionic cases, a Gaussian 
unitary is naturally given by ( )ˆe 2iH M∈U , which can be decomposed in the 
form of ( )1 2ˆ ˆ

ei H H+  through the Lie theory. Then it was known that there exist a 
fermionic Gaussian unitary and 2 2M M×  orthogonal matrix ( )e SO 2MΓ ∈  
satisfying  

ˆ ˆˆ ˆe e e .iH iH− Γ=c c                           (5) 

For any (M-mode fermionic) even Gaussian states Fρ , note that there exists 
a Gaussian unitary operator ˆeiH ′  and an orthogonal matrix ( )SO 2O MΓ ∈  
such that  

T Tˆ ˆˆ ˆ ˆ2

,
1 1

1 1e e e e

1 1
0 0 1 1 ,

2 2

i O AOH iH iH
F

M M
k k

F kk k
k k

Z Z
ρ

λ λ
ρ

Γ Γ′ ′ ′−

= =

= = ⋅ ⋅

+ − = + ≡ 
 

⊗ ⊗

c c

          (6) 

where 1

0
0

jM
k

j
A

λ
λ=

 
=  − 
⊕  with its spectrum [ ]0,1kλ ∈ . Furthermore, for any  

k, if 1kλ = , then ( )2M
Fρ ∈ H  is said to be a pure state, i.e., pure fermionic 

Gaussian state is given by 
10 0 1 1F Mρ = ⊗ ⊗ . In those cases, the entropy 

of the M-mode fermionic Gaussian state is defined by 

( ) ( ),
1

,
M

F F k
k

S Sρ ρ
=

= ∑                        (7) 

where ( ),
1 1 1 1

: log log
2 2 2 2

k k k k
F kS

λ λ λ λ
ρ

+ + − −
= − −  is the von Neumann en-

tropy of the fermionic system. 
As mentioned above, it is useful to study a private quantum channel in quan-

tum information science, because the output of PQC gives birth to a maximally 
mixed state (MMS) at the end of the channel. This output state of the channel 
directly corresponds to a maximally entangled state (MES) as in Ref. [32] [33] 
via a quantum purification method [34]. However, an explicit concept of “ap-
proximate” fermionic private quantum channel does not exist, so for. In this 
reason, our main purpose of this work is to introduce such a notion (i.e., 
ε-FPQC) at first. 
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2.2. Representation of Fermionic Gaussian Quantum Channels:  
The Fermionic Private Quantum Channel 

In 2005, Bravyi first introduced the notion of fermionic Gaussian quantum 
channels as follows [5]: For any completely positive and trace-preserving map, 
the fermionic Gaussian channel FΛ  is given by  

( ) ( )( ) ( )
; 1

ˆ ˆˆ ˆ , 1, , 2 and ,
k

F k k k F k
k b

c c k M b bξ ξ
=

Λ = ∀ = Λ = ∏c c
 


   (8) 

where ( ) 1 2 2
1 2 2ˆ ˆ ˆ ˆ Mb b b

Mb c c c=c


  with a binary string ( )1 2, , Mb b b=


 . Here we note 
that 1 20 , , 1Mξ ξ≤ ≤  are real parameters characterizing the fermionic quan-
tum channels and it is called the attenuation coefficient. Now, we are ready to 
define the fermionic private quantum channel in the form of Kraus representa-
tion. For any fermionic Gaussian state Fρ , the fermionic Gaussian channel 

FΛ  is described by  

( ) †
1

1 ,F F FU Uρ ρ
=

Λ = ∑
 



U

U
                 (9) 

where ˆU i cπ=
 

 such that ( )ˆ ˆ1 m
m mU c c Uδ= − 

 

 with  
( ) 1 2ˆ ˆ1 , 1, , 2M

mc c m Mπ = − ∀ =  . Note that U  denotes the cardinality of 
the unitaries on the unitary group ( )2MU . In the optimal case, the cardinality 
of U is given by ( )22M=U  (See Figure 1). 

Definition 2 (Fermionic ε-private quantum channel). For any fermionic 
(Gaussian) state Fρ  and any 0ε > , if a fermionic Gaussian quantum channel 

: M M
F

⊗ ⊗Λ →H H  satisfies  

( )
1

1l ,
2F F p p

pM d

ερ
−

Λ − ≤                 (10) 

then the channel ( )FΛ ⋅  is said to be approximate fermionic private quantum 
channel (or ε-FPQC) with respect to the Schatten p-norm (for all 1p ≥ ).  

For the case of 1p = , ε-FPQCs are taken in the form of ( )
1

1l
2F F M

ρ εΛ − ≤ . 

Here, we shortly introduce an isotropic measure, which preserves a symmetry of 
a set of quantum states. To intuitively obtain the relationship between FPQCs 
and symmetries, we need to take the notion of an isotropic measure (or Haar 
measure) on the unitary group ( )2MU . The isotropic measure for any quan-
tum states is formally defined as follows [19]. 
 

 
Figure 1. Schematic diagram for M-mode fermionic private quantum channel FΛ . For 

any fermionic Gaussian state Fρ , if an output of the channel is 
1l

2M
, then we call the 

channel as perfact fermionic PQC. Otherwise, i.e., the channel’s output is almost close to 
1l

2M
, then the channel is called as approximate FPQC or ε-FPQC. 
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Definition 3. For any fermionic quantum state ( )2M
Fρ ∈ H , a probability 

measure µ  on the unitary group ( )2MU  is said to be isotropic, if it satisfies 
that  

( )
†

2

1ld .
2FM

U U
M

ρ µ =∫U                   (11) 

Moreover, a random vector v generated by ( )2U M∈U  is known to be iso-
tropic if its law is isotropic. Conceptually, this implies that the integration over 
all random vectors (generated by U) equals to zero (that is, it forms a maximally 
mixed state). 

Then, we are ready to state our main result of the approximate fermionic pri-
vate quantum channel for randomizing fermionic Gaussian quantum states. 

3. Main Results 

We have briefly reviewed the concrete notions on fermionic Gaussian systems 
and the definition of the approximate private quantum channels on fermionic 
systems, so now we will introduce our main results. While the proposed results 
are simple, the proofs are subtle complicated. However, the statements have a 
fundamental meaning in quantum communication theory on whether the fer-
mionic Gaussian systems are tractable in quantum channel capacity problems or 
not. If we find an explicit form of the fermionic PQC similar to the bosonic 
PQCs, e.g., in Refs. [24] [25], we can further argue on the topic of the quantum 
channel capacity problems as well as its non-additive properties. 

According to the Hayden et al.’s [18], Dickinson and Nayak’s [23], and also 
our previous result [20] [21], we suggest a following proposition. 

Proposition 1 (Approximate fermionic PQC). Let Fρ  be an M-mode fer-

mionic Gaussian state, and ( ) †
1

1
F F FU Uρ ρ

=
Λ = ∑

 



U

U
 be an ε-FPQC satisfy-

ing the isotropic measure with respect to the Schatten p-norm. Then, for any  
0ε >  and for sufficiently large M, there exists a set of fermionic unitary opera-

tors { } 1
ˆU i cπ

=
=

 



U  in ( )2MU  with the cardinality at least  

( )( )110 2
2 log ,

p pM
Mκ

ε

−

≥U                  (12) 

where κ  is an absolute constant.  
Here, we present a proof only on the case of 1p =  as mentioned in Introduction. 

In this case, we can fix the logarithmic factor as 10log
ε

, and from the indepen-
dence of the mode M, it can be omitted. Also, notice that the cardinality could be 
reduced by 24M  to ( )2 log 2O M M  by the proposition 1. 

Proposition 2 (ε-FPQC for p = 1 case). Let ( ) ( )†
1

1 ˆ ˆF F Fc cρ π ρ π
=

Λ = ∑
 



U

U
  

be an ε-FPQC satisfying the isotropic measure with respect to the trace norm. 
Then, for any 0ε >  and 1M  , there exists a set of Majorana operators 
{ } 1

ˆi cπ
=



U  in ( )2MU  with the cardinality of  
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2 ,Mκ≥U                         (13) 

where κ  is also an absolute constant as in Proposition 1.  
For the proof we are required two technical lemmas. Below Lemma 1 states 

that pure quantum states on Bloch sphere on any dimension can be discretized 
into net points forming a regularized polyhedron in the given dimension, and 
Lemma 2, which is a variant of the famous Lévy’ theorem [35], endows us to es-
timate an exponentially decaying of the tale probability distribution on a ran-
dom variable. Those lemmas are universal not only in the bosonic Gaussian sys-
tem but also in the fermionic Gaussian one. 

Lemma 1 (ε-net [18]). Let 0ε >  and the Majorana mode 1M  . For any 
fermionic pure Gaussian states M

Fϕ ∈H , we can choose a net point F Nϕ ∈  
such that 

1F Fϕ ϕ ε− ≤ . Then there exists a net N of pure fermionic states satis-
fying  

( )45 .MN ε≤                         (14) 

Lemma 2 (McDiarmid inequality [36]). Let { } 1

m
k k

X
=
⊂ S  be independent ran-

dom variables chosen uniformly at random. Let a measurable function  
: mF → S  satisfy ( ) ( )ˆ kF x F x c− ≤ , called the bounded difference, where 

the vectors x and x̂  differ only in the k-th position. If we define a random va-
riable ( )1, , mY F X X=  , then ( 0t∀ ≥ )  

( )
2 2

12Pr 2e ,
m

kkt cY Y t =− ∑ − ≥ ≤ E                 (15) 

where ( )YE  denotes the expectation value for the random variable Y.  
In the fermionic Gaussian regime, suppose that the fermionic PQC FΛ  is 

realized by a sequence of the Majorana operators ( ) 1
ˆk k

i cπ
=

U , and the other map 

F′Λ  is given by ( )1̂ ˆ ˆ, , , ,ki c i c i cπ π π′
  U , respectively. Then we have the bounded 

difference as  

( ) ( )

( ) ( )

( ) ( )

1 1

1

† †

1

1l 1l
2 2

1 ˆ ˆ ˆ ˆ

2 ,

F F F F

F F F F

k F k k F k

M M

c c c c

ϕ ϕ

ϕ ϕ

π ϕ π π ϕ π

′Λ − − Λ −

′≤ Λ −Λ

′ ′= −

≤

U

U

 

where we make use of the norm convexity and the fact of 
1 2φ φ′− ≤  for any 

quantum states. From the McDiarmid inequality (on the positive part), we esti-
mate that  

2 22 1Pr e ,
2F

tMY t
Mϕ

−  
≥ + + ≤      

U

U
              (16) 

where ( )
1

1l:
2F F FY

Mϕ ϕ= Λ − . 
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Now, we are ready to prove the Proposition 2. That is, ε-FPQC can be fulfilled 
when we take the fermionic unitary operators as in the order of the cardinality 
U . 

Proof. Let the set of Majorana operators { } 1
ˆk k

i cπ
=

U  be an i.i.d. random varia-
ble distributed according to the Haar measure. We can prove that the fernionic 
map FΛ  is the ε-FPQC in high probability. 

If we fix the net N in Lemma 1, and define Fϕ  to be a net point on the fer-
mionic pure Gaussian states Fϕ . Then, by the unitary invariance, we can con-
clude that  

( ) ( ) 11
.

2F F F F F F
εϕ ϕ ϕ ϕΛ −Λ = − ≤               (17) 

Thus, from the ε-net lemma, we can obtain the net with the cardinality 
( )420 MN M ε≤ . This implies that  

( )

( ) ( ) ( )

( ) ( )

1

, 1
1

1

1lPr
2

1lPr
2

1lPr ,
2 2

F

F F

F

F F

F F F F F F

F F

M

M

M

ϕ

ϕ ϕ

ϕ

ϕ ε

ϕ ϕ ϕ ε

εϕ

∀

∀

∀

 
Λ − ≥ 

 
 

≤ Λ −Λ + Λ − ≥ 
 

 
≤ Λ − ≥ ∗ 

 





 



    (18) 

where we have used the triangle inequality and Equation (17). 
Finally, by using the union bound and the net construction above, we can de-

rive following inequalities:  

( ) ( )
( )( )

( )

1
1

1

21 24

1l
2 2

220 12 exp .
4 2

F
F F

MM

N Pr
M

MM
M M

ϕ

εϕ

ε
ε

∀

 
∗ ≤ ⋅ Λ − ≥ 

 
      ≤ − − −        





U
U

     (19) 

This completes the proof if the probability is bounded by 1 (see Lemma 3 be-

low), and 2 Mκ≥U  with 2

1 10: log
c

κ
εε

 =  
 

 for a constant c.  

Lemma 3. For sufficiently large M, if we take the cardinality as in the form of  

2

1 102 log ,M
c εε

 ≥  
 

U                   (20) 

then the probability we required in Equation (19) is upper bounded by 1. 
Proof. For sufficiently large U  satisfying ( )22 2M M< <U , we can take 

the bound as  

( )
21 24 220 12 exp 1.

4 2

MM MM
M M
ε

ε

      − − − <        

U
U

      (21) 

By the straightforward calculation, this bound gives rise to 24M≤U  we 
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expected. Here, if we fix the mode M and choose 2M so that  

( ) ( )
21 2

22 2
2

MM
oε ε

 
 − =
 
 U

, then we have 

2102 log .M c ε
ε

  < 
 

U  

This construction shown to be that it is possible to construct an approximate 
fermionic private quantum channel using the fermionic unitaries only within 
cardinality 2 Mκ≥U , beside ( )2O M  in the optimal case. If we take a quan-
tum purification, which describes that any mixed state can be transformed into a 
higher dimensional pure state, then we can always create a pure entangled state 
on fermionic Gaussian systems, for example in Ref. [37]. 

4. Conclusions 

In this paper, we have firstly proposed an approximate private quantum channel 
for the fermionic Gaussian systems namely, ε-FPQC, and we make a useful for-
mula to construct the quantum channel explicitly including its cardinality of 
needing unitary operations. While the fermionic PQC is needed exactly 4M2 
fermionic unitary operations to encrypt an M-mode fermionic Gaussian state, 
our ε-FPQC is only sufficient to consume the number of unitary operations 
about ( )logO M M  in Proposition 2. 

Beyond the bosonic Gaussian quantum channels, we expect that this kind of a 
research on fermionic channels will be meaningful for deep understanding of the 
quantum channel capacity problems i.e., the additivity violations for general ca-
pacities in broad Gaussian regimes. That is if we know the exact form of a quan-
tum purified state, which has a fermionic maximal entanglement, a research on 
the channel capacity problems could be also useful. 

A few interesting questions remain for the fermionic private quantum channel 
itself or beyond. The first one is that how those channels can be applied on fer-
mionic Gaussian systems such as a quantum communication or computing in-
volving a certain condition of security issues. The second one is a question of 
that the approximate FPQCs can connect to a geometric shape, as in the case of 
the discrete PQCs relating regular polyhedra. Finally, this work is expected to 
contribute to establishing contact with physicists who are well acquainted on the 
fermionic theory with the quantum information soiciety. 
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