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Abstract 
This study demonstrates mathematical analysis of biodegradation processes 
of xenobiotic polymers. A model for microbial population is based on the fact 
that growth rate of microorganisms is proportional to the microbial popula-
tion and consumption rate of parts of carbon sources. The model is paired 
with a model for weight distribution. Those models lead to inverse problems 
for a molecular factor and a time factor of degradation rate. Solution of the 
inverse problems allows us to simulate the biodegradation process. 
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1. Introduction 

Microbial depolymerization processes are classified into exogenous type and 
endogenous type. Molecules liberate their parts to reduce in an exogenous type 
depolymerization process. Polyethylene (PE) and polyethylene glycol (PEG) are 
polymers subject to exogenous type depolymerization processes. Studies showed 
utilization of PEG of average molecular weight 20,000 by Psedomonas aerugino-
sa [1], degradation of PEG 20,000 by anaerobic bacteria isolated from sludge of a 
municipal anaerobic digester [2], and efficient biodegradation of PEG by Pseu-
domonas stutzeri was documented [3]. A mathematical model was proposed and 
numerical techniques were developed for PE biodegradation [4]. The mathe-
matical techniques were reapplied to a biodegradation process of PEG [5]. 

Random breakdown of molecules is the primary factor of endogenous type 
depolymerization processes. Polyvinyl alcohol (PVA) and polylactic acid (PLA) 
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are polymers subject to endogenous depolymerization processes. A mathemati-
cal model was proposed and numerical techniques were developed for an enzy-
matic degradation of PVA [6]. Those mathematical techniques were reapplied to 
an enzymatic hydrolysis of polylactic acid (PLA) [7]. Techniques originally de-
veloped for endogenous type processes were replied to exogenous type depoly-
merization processes of PE and PEG [8]. 

This study revisits an exogenous type depolymerization process of PEG to 
demonstrate mathematical techniques. Experimental outcomes before and after 
cultivation of microbial consortium E-1 in culture media were incorporated into 
a computational analysis based on a mathematical model. Inverse problems for a 
molecular factor and a time factor of a degradation rate were formulated. Solu-
tions of those inverse problems allow us to simulate a biodegradation process of 
PEG. 

2. Formulation of Exogenous Type Depolymerization  
Process 

Consider an exogenous type depolymerization process in a culture medium. Let 
w(t, M) [mg] be the weight distribution of a polymer with respect to the mole-
cular weight M at time t, and v(t) [mg] be the total weight of polymer molecules 
with molecular weight between A and B at time t. The total weight v(t) over the 
interval [A, B] is expressed in terms of the integral 

( ) ( ),
B

A
v t w t M dM= ∫                        (1) 

The total weight v(t) of the residual polymer at time t is expressed in terms of 
the integral 

( ) ( )
0

,v t w t M dM
∞

= ∫                        (2) 

Integral (1) well approximates the integral (2) with suitable choices of A and 
B. In this study, integrals with the lower limit were replaced with integrals with 
the lower limit A = 103.0, and integrals with the upper limit ∞ were replaced with 
integrals with upper limit B = 104.2. 

Let σ(t) be the population of viable cells at time t. Equations (3) for the weight 
distribution w(t, M) and the microbial population σ(t) was proposed in previous 
studies [8] [9] [10]. 
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Parameter L is the molecular weight of a monomer unit, e.g. PE: 28 (CH2CH2), 
PEG: 44 (CH2CH2O), and k and h are positive parameters. The function ( )Mλ  
corresponds to a molecular factor of degradation rate. 

This study proposes the equation 
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( ) ,d ku t h
dt
σ σ σ= −                         (4) 

where ( ) ( )u t v t′= − . Note that ( )u t  is the rate of consumption of total weight. 
System of Equations (3), (4) is associated with the initial conditions 

( ) ( )00,w M f M= ,                        (5) 

( ) 00σ σ= ,                           (6) 

where ( )0f M  and 0σ  are the initial weight distribution and the initial mi-
crobial population, respectively. 

3. Numerical Solutions of Inverse Problems for Molecular  
Factor and Time Factor 

The initial value problem (3), (4), (5) (6) is solvable for ( ),w t M  and ( )tσ  
provided the molecular factor ( )Mλ  and values of parameters 0σ , k, and h 
are given beforehand. In order to obtain the function and values of parameters, 
consider change of variables from t to τ  defined by the equation 

( )
0

.
t

s dsτ σ= ∫                          (7) 

Denote by by ( ),w Mτ , ( )S τ , and ( )V τ  functions that correspond to w(t, 
M), ( )tσ , and v(t) according to the change of variables (7), respectively.  

Note that 

( ) ( ) ( )
1 1 1, ,W dt w w dS dt d d dV dt dv dv

d t t t d d dt t dt d d dt t dt
σ σ

τ τ σ τ τ σ τ τ σ
∂ ∂ ∂

= = = = = =
∂ ∂ ∂

 

and that Equations (3) and (4) lead to 

( ) ( ) ( ) ( ) ( ), ,
M

W M W c M K d K W K dKλ λ τ
τ

∞∂
= − +

∂ ∫          (8) 

( ) ,dS kU S h
d

τ
τ
= −                          (9) 

respectively, where ( ) ( )U Vτ τ′= − . 
Suppose that F1(M) is the weight distribution for 1Tτ = , that is, 

( ) ( )1 1, ,W T M F M=                       (10) 

and that F2(M) is the weight distribution for 2Tτ = , that is, 

( ) ( )2 2, .W T M F M=                       (11) 

Equation (8), the initial condition (10), and the final condition (11) form an 
inverse problem for the molecular factor ( )Mλ , for which the solution of the 
initial value problem (8), (10) also satisfies the final condition (11). 

Numerical techniques to solve the inverse problem for ( )Mλ  were devel-
oped in previous studies. Weight distributions of PEG 6000 before and after cul-
tivation of microbial consortium E-1 for one day, three days, five days, seven 
days, and nine days f0(M), f1(M), f2(M), f3(M), f4(M), and f5(M) were introduced 
into analysis. Note that w(ti,M) = fi(M) for i = 0, 1, 2, 3, 4, and 5, where t0 = 0, t1 
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= 1, t2 = 3, t3 = 5, t4 = 7, and t5 = 9. Weight distributions after cultivation of the 
microbial consortium E-1 for one day and three days were the functions F1(M) 
and F2(M), respectively, and the inverse problem (8), (10), (11) was solved nu-
merically for T1 = 0 and T2 = 1.0 [10]. Note a positive scalar multiple of a mole-
cular factor is also a molecular factor. 

Once the molecular factor ( )Mλ  was obtained, Equation (10) was solved for 
( ),W Mτ  with the initial condition 

( ) ( )00, .W M f M=                        (12) 

A previous study shows the exponential function 

( ) ( )( )0 0 00
,V v e v f M dMµττ

∞−= = ∫                (13) 

well approximates function ( )V τ  so that ( ) 0V v e µττ µ −′ = − . In this study, 
function ( )V τ  was approximated by the exponential function (13) with  

0.878µ ≈ . 
Once the function ( )V τ  was obtained, Equation (9) was solved with the ini-

tial condition 

( ) 00 .S σ=                           (14) 

Denote by ( )0, , ,S k hτ σ  the solution of the initial value problem (9), (14). In 
view of the Formula (7), ( )0, , ,t q k hτ σ= , where 

( ) ( )0 0
0

, , , .
, , ,

drq k h
S r k h

τ
τ σ

σ
= ∫  

Given m pairs of values of t and τ, ( ) ( ), 1, 2,3i it iτ = , consider the system of 
equations 

( ) ( )0 , , 0 1,2,3ig k h iσ = =                    (15) 

where ( ) ( )0 0, , , , ,i i ig k h q k h tσ τ σ= − . Here iτ  is the value of τ that satisfy 
( ) ( )i iv t V τ= . In particular, 

1 2 3321, 0.024275, 3, 0.288317, 5, 2.62864.it t tτ τ τ= = ≈=≈ ≈  

Intervals 0,0 0,1,σ σ   , [ ]0 1,k k , [ ]0 1,h h  were divided into 1 2,n n  and 3n  
intervals, respectively, and the initial value problem (9), (14) was solved for 

0,1 0,0
0 0,0 0 0 1

1

, , 0,1,..., ,i i n
n

σ σ
σ σ σ σ

−
= + ∆ ∆ = =  

1 0
0 2

2

, , 0,1,..., ,
k k

k k j k k j n
n
−

= + ∆ ∆ = =  

1 0
0 3

3

, , 0,1,... ,,
h h

h h l h h l n
n
−

= + ∆ ∆ = =  

0,0 0,10.0015, 0.0016,σ σ= =  

0 10.0045, 0.0055,k k= =  

0 10.35, 0.45,h h= =  

1 2 3100, 1 10000,n n n == = . 
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The value of 0σ , k, and h that minimize the error 

( )
5 2

0
1

, ,i
i

g k hσ
=

  ∑  

were approximately 0.00156, 0.00518, and 0.404, respectively. 
Given ( )Mλ  and ( )tσ , the initial value problem (3), (5) was solved nu-

merically. Figures 1-5 show some numerical results. Figures 1-4 show compar-
ison between experimental results and numerical results for weight distribution 
after cultivation of microorganisms for one day, three days, five days, and seven 
days, respectively. Figure 5 shows the graph of the function ( )tσ . 
 

 
Figure 1. Weight distribution after cultivation of microbial consortium E-1 for one day. 
An experimental result and numerical results are shown. 
 

 

Figure 2. Weight distribution after cultivation of microbial consortium E-1 for three 
days. An experimental result and numerical results are shown. 
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Figure 3. Weight distribution after cultivation of microbial consortium E-1 for five days. 
An experimental result and numerical results are shown. 
 

 

Figure 4. Weight distribution after cultivation of microbial consortium E-1 for seven 
days. An experimental result and numerical results are shown. 
 

 

Figure 5. Transition of microbial population over seven days. 
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4. Discussion 

Equation (4) is based on the fact that the increasing rate of the microbial popula-
tion is proportional to both the consumption rate and the microbial population. 
Parameter k is the conversion rate from the carbon source to the microbial pop-
ulation per unit population, It is also based on the fact that the decreasing rate of 
the microbial population is proportional to the microbial population. Parameter 
h is the rate of loss of active microorganisms. Our analysis shows that the mi-
croorganisms convert approximately 0.5% of carbon source consumed per day 
to their growth, and that approximately 40% of microorganism loses degradabil-
ity per day. The numerical results show that our model is appropriate. 
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