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Abstract 
We study actions of countable discrete groups which are Monotileable ame-
nable groups in the sense that there exists a mean on X which is invariant 
under the action of G. Assuming that G is nonamenable, we obtain structural 
results for the stabilizer subgroups of amenable actions which allow us to re-
late the first 2

 -Betti number of G with that of the stabilizer subgroups. 
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1. Introduction 

In this paper, it has been conjectured on the basis of current knowledge that the 
class of Monotileable amenable groups consists precisely of all groups G which 
do not possess a subgroup isomorphic to the free group on two generators. In 
this paper, we will not settle this conjecture. However, this work is motivated by 
a desire to give an algebraic description of the class of all amenable groups. In an 
attempt to determine which varieties of groups consist entirely of amenable 
groups, the notion of a uniformly amenable group is introduced. We derive re-
sults indicating the relationships between varieties and uniformly amenable 
groups. An action of a discrete group G on a set X is said to be amenable if there 
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exists a finitely additive probability measure: ( ) [ ]0,1X → , henceforth called a 
mean, defined on the power set of X, which is invariant under the action of G [1] 
[2].  

1.1. Varieties of Groups 

We present here some of the ideas and results necessary in the sequel. Further 
information can be obtained by consulting [3]. 

Let X {xi: i is a positive integer} be an alphabet. Let Xm be the free group of 
rank n generated by { }:1ix i n≤ ≤  and let X∞  be the free group generated by 
X. If nw X∈ , we will often write ( )1, , nw x x  to denote w. 

If G is any group and al, as 1 2, , , na a a G∈ , then by ( )1 2, , , nw a a a  for 

nw X∈ . We mean ( )wα  where a is the unique homomorphism from nX  
into G with 

( )i ix aα  for 1 i n≤ ≤ . 

A word ( )1 2, , , nw x x x  is called an identical relation or a law for a group G 
if and only if ( )1 2, , , 1nw a a a =  for every 1 2, , , na a a  in G. A law is called 
trivial if it is satisfied by all groups and this happens if and only if 1w = . 

A variety of groups is the class of all groups satisfying each law in a given set 
of laws. If L X∞⊆  then we denote by ( )V L  the variety of all groups for 
which the words in L are laws. 

We mention few examples of varieties. The class of all abelian groups is ob-
viously ( )1 1

1 2 1 2V x x x x− − . For any positive integer t the class of all solvable groups 
of derived length ≤ t form variety, the variety ( )mV x  is called the Burnside va-
riety of exponent m. The class of all groups is variety we will denote by  . A 
reduced free group in variety is group with a set of generators S such that any 
map from S into group in V can be extended to homomorphism. 

For any cardinal number h, V contains reduced free group with h generators. 
For every natural number n, ( )nF V  will denote reduced free group with n ge-
nerators. A reduced free group with countably infinite set of generators will be 
denoted by ( )F V∞  [1] [3]. 

The Cartesian product of { }| ΛAλ λ ∈  of groups will be denoted by 

ΛΠC Aλ λ λ∈  and the direct product will be denoted by Aλ λ∈ΛΠ . The direct prod-
uct of a countably infinite number of groups isomorphic to a group G will be de-
noted by GΠ . 

Let V be a variety of groups. A set of groups V⊆D  is said to discriminate V 
if and only if for every finite set of words W in X∞  which are not laws for V 
there exists G∈D  and elements 1 2, , , ng g g G∈  such that 

( )1 2, , , 1nw g g g ≠  

for any w W∈ . (n is some integer for which nW X⊆ .) Put another way any 
finite set of nonlaws for V can be simultaneously falsified. 

The set of all varieties of groups is partially ordered under inclusion. It is a 
complete lattice where U V U V∧ =  . The variety generated by u class of 
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groups   is denoted by ( )V   and defined by ( ) VV V⊇  . 
Multiplication can be defined on varieties where UV is the variety of all exten-

sions of groups in U by groups in V [2] [3]. 

1.2. Lemma 

Let V be a variety of groups and let D  be a set of groups contained in V. Let M 
be a full structure whose individuals include all elements of all groups in D  all 
elements of X∞  and all natural numbers. Let M∗  be an enlargement of M. 
Then D  discriminates V if and only if ( )F V∞  is isomorphic to a subgroup of 
a group *D D∈ . 

Proof. Suppose D  discriminates V.  
If W is a finite set of nonlaws for V and nW X⊆  then there exists D∈D  

and 1 2, , , nd d d D∈  such that ( )1 2, , , 1nw d d d ≠  for any w W∈ . 
Now let Y X∞⊆  consist of all nonlaws for V. Let E be a *-finite subset of Y∗  

such that Y E⊆  and let e N N∗ −  be chosen so that E X∞⊆ . 
Since every element of Y is a nonlaw for V so is every element of E. We get: 
There exists *D D∈  and 1 2, , , wd d d D∈  such that  

( )1 2, , , 1we d d d ≠  

for every e E∈ . In particular the only relations on the elements id  are identi-
ties for V and so the group they generate is free reduced on an infinite set of ge-
nerators and so ( )F V∞  is certainly isomorphic to a subgroup of D. 

On the other hand suppose D  does not discriminate V. Then there is a finite 
set W of nonlaws for V which cannot be simultaneously falsified in any D∈D . 
Suppose nW X⊆ . We have: 

If D∈D  and 1 2, , , nd d d D∈  then there exists w W∈  with  

( )1 2, , , 1.nw d d d =  

So, if D ∗∈ D  and 1 2, , , nd d d D∈  then there exists w W∈  with 

( )1 2, , , 1.nw d d d =  

That is, every n element in any group in ∗D  satisfies a relation which is not a 
law for V. So ( )F V∞  is not isomorphic to a subgroup of D for any D ∗∈ D  
and the proof is complete [3]. 

2. How to Build Amenable Groups 

( ) ( )\ \A B A B B A∆ =  . Groups are assumed countable and discrete. 

2.1. Definition 

(Fϕlner, 1955) A group Γ is amenable if and only if there exists a Fϕlner se-
quence, i.e. a sequence of finite sets { } 1n n

F
≥

 such that for all [4] γ ∈Γ , 

Δ
lim 0n n

n
n

F F
F
γ

→∞ = . 
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2.2. Example 

Here are a few basic examples: 
 A finite group is amenable, take nF = Γ  for all n. Then n nF Fγ =  and 

Δ
0n n

n

F F
F
γ

= . 

 A direct union of finite groups is amenable n iG∈Γ = ⊕  . An element γ ∈Γ  
is a sequence i iGγ ∈ , so that for some 0n  (depending on γ ), 0n n∀ ≥ , 

n ieGγ = . Take 0
n

n i iF G== ⊕ , then for any , n nF Fγ γ∈Γ =  for n large 

enough. So 
Δ

0n n

n

F F
F
γ

=  for n large enough. 

   is amenable. Take [ ]1,nF n= . Without loss of generality, one can 
comp-ute only 0γ > . Then 

[ ] [ ]Δ 1 1, 1, 2 0n n

n

F F
n n n

F n
γ

γ γ γ= + + = → . 

When the graph is finitely generated by a set for S between  

{ }edges between an :d Γc
s n n n nF F F Fδ == . A first useful lemma that reduces 

some computation is [1] [4]. 

2.3. Lemma 

Assume Γ is finitely generated. A sequence { }nF  is Fϕlner if and only if 

lim n
n

n

F
F→∞

∂
. 

The proof is left as an exercise. An isoperimetric profile for the group is an 
increasing function 0 0: R R> >→  such that 0C∃ >  so that for any finite set 

( ),F F F≤ ∂ . Amenable groups are groups with sub linear  . 
In L. Saloff-Coste’s lectures it was shown that growth of balls which is ≥ dC n′  

implies ( ) ( )2d dx x −=  works. However, putting d = ∞  is a risky business: 
there are groups which are amenable but have growth faster than any polynomi-
al (e.g. ( )1,2BS  from C. Pittet’s lecture). It’s an easy exercise to show  

( ) ( )1d dx x −=  is optimal for d  [2]. 
Actually one can easily show that groups with “slow” volume growth are 

amenable. Recall a group is of sub exponential growth if 

( ) ( ) ( ): e f n
s n B nβ = =  for some (increasing) function 0:f >→   satisfying 

( )
lim 0n

f n
n→∞ = . 

2.4. Proposition 

Let Γ be a [finitely generated] group of sub exponential growth, then Γ is amena-
ble. 

Proof: The number of edges in nB∂  is at most the number of vertices in the 
sphere of radius 1n +  times the maximal degree of a vertex, S .  
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( ) ( )( )11 e 1 .f n f nn n n

n n

B B B
S S

B B
+ −+∂ ∂ −

≤ = −  

The claim is that there is some sequence of integers { } 0k k
n

≥
 so that  

( ) ( )1k kf n f n+ −  tends to 0. If this is the case, then k nkF B=  would be a 
Fϕlner sequence. So assume there are no such sequences, or, in other words that 

0∃ >  such that 0n∀ > , ( ) ( )1f n f n+ − >  . This implies that 

( ) ( ) ( ) ( )( )10 1k
if k f f t f i k
=

= + − − >∑  . 

This a contradiction with 
( )

lim 0n

f n
n→∞ = . Hence the desired subsequence 

exists and Γ is amenable.  
Note that it is highly non-trivial to see whether the sequence of all balls works. 

This turns out to be true in nilpotent groups. It is open in a group of interme-
diate growth. 

The converse of proposition 1.4 is not true: ( )1,2BS  is amenable but has 
exponential growth.  

Proposition 1.4 gives many groups without too much effort. The next theorem 
is useful to build groups out of known amenable groups [4]. 

2.5. Theorem  

(“The closure properties” 3) 
Let Γ, N and { } 0i i≥

Γ  be amenable groups. 
1) If H is a subgroup4 of Γ then H is amenable “Subgroup”. 
2) If H is an extension N by Γ (1 1N H→ → →Γ→ ) is an exact sequence) 

then H is amenable “Extension”. 
3) If N ∆ Γ  then H N= Γ  is amenable “Quotient”. 
4) If H is a direct limit of the 0iΓ ≥  then H is amenable “Direct limit”. 
It’s perfectly possible to prove these properties from the current definition of 

amenability. It turns out to be much easier to use the most convenient of the 
many equivalent definition of amenability to do this. But before moving to these 
considerations, it’s nice to wander a bit [3]. 

2.6. Definition 

A group is called elementarily amenable (short notation: EA) if it is obtained by 
(many) applications of the closure properties 1)-4) starting from the following 
class of groups: finite groups and Z. F Day asked whether “amenable” = EA 
(“Day’s conjecture”). Here are two important facts about EA groups [3] [5]. 

3. Assumption 

Since H denotes a Lie group, the ideas here are important even in the special 
case where H is discrete [5]. 

3.1. Definition [4] 

A group Γ is amenable is there exists a state µ  on ( )l∞ Γ  which is invariant 

https://doi.org/10.4236/oalib.1107012
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under the left translation action: for all s∈Γ  and ( )f l∞∈ Γ ,  
( ) ( ):s f fµ µ= . 
Hence we can construct further examples from finite and abelian groups.  

3.2. Example 

Suppose Γ is finitely generated by { }1, , dS s s=  . One can then consider the 
Cayley graph of Γ where vertices are group elements and edges connecting two 
group elements imply they differ by one of the generators in S. We place a me-
tric on this graph by letting ( ),d s t  by counting the “word length” of 1s t− . A 
property of interest is how ( ),B e r , the ball centered at the identity element of 
radius r, varies with r; that is, the growth rate of the group [5]. 

It turns out that groups with sub exponential growth are always amenable. 

3.3. Example 

2Γ =   is non-amenable: let 2,a b∈  be the two generators then let A+  is the 
set of all words starting with a. 1A−  is the set of all words starting with 1a− , 
and we define B±  similarly. Lastly, we set { }21, , ,C b b=  . We note that we 
can decompose 2  in the three following ways: 

( ) ( )

( ) ( )

1
2

1

1 :

A A B C B C

A aA

b B C B C

+ − + −

+ −

− + +

=

=

=





   





 

If we had a state µ  on ( )l∞ Γ  which was invariant under left translation 
then we would obtain: 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )

1

1

1 1

1 1 2 1 ,

A A B C B C

A A B C B C

A a A b B C B C

A a A b B C B C

µ µ χ χ χ χ

µ χ µ χ µ χ µ χ

µ χ χ µ χ µ χ

µ χ χ µ χ χ

µ µ µ

+ − + −

+ − + −

+ − − + −

+ − − + −

= = + + +

= + + +

= + ⋅ + ⋅ +

= + + +

= + =







 

a contradiction [3] [5]. 
Our goal is to prove the following theorem: 

3.4. Theorem [5] 

For Γ+ a discrete group, the following are equivalent: 
1) Γ is amenable; 
2) Γ has an approximate invariant mean; 
3) Γ satisfies the Fϕlner condition; 
4) The trivial representation 0τ  is weakly contained in the regular represen-

tation λ  (i.e., there exist unit vectors ( )2
i lξ ∈ Γ ) such that ( )

2
0s i iλ ξ ξ− →  

for all Γs∈ ), 
5) There exists a net (φ) of finitely supported positive definite functions on Γ, 

https://doi.org/10.4236/oalib.1107012


A. M. A. Gaweash et al. 
 

 

DOI: 10.4236/oalib.1107012 7 Open Access Library Journal 
 

with ( ) 1i eϕ =  for each i, such that 1iϕ →  point wise; 
6) ( ) ( )* *Γ ΓC Cλ= ; 

7) ( )* ΓCλ  has a character (i.e., one-dimensional representation); 

8) for any finite subset E ⊂ Γ , we have 

1 1.ss EE
λ

∈
=∑                        (1) 

The main obstacle to proving this theorem is that we don’t understand what 
most of it is saying. Consequently we’ll parse the theorem as we go (rather than 
drowning the reader in definitions). The plan is to prove the cycle (1 2 3 4 5 6 7) 
and then (4 8). We shall additionally prove (4) ⟹ (6) in case the reader finds 
condition (5) distasteful [4]. 

3.5. Definition [4] 

For a discrete group Γ, let Prob(Γ) be the space of all probability measures on Γ: 

( ) ( ) ( ){ }1
ΓProb : : 0 and 1t tµ ι µ µ

∈
Γ = ∈ Γ ≥ =∑ .           (2) 

Then we say Γ has an approximate invariant mean if for any finite subset 
E ⊂ Γ  and 0ε > , there exists ( )Probµ ∈ Γ  such that 

1max
s E

s µ µ ε
∈

⋅ − <                        (3) 

Proof of (1) ⟹ (2). Let μ be an invariant mean on ( )l∞ Γ . We claim there is 

a net ( ) ( )Probiµ ⊂ Γ  which converges to μ weak* as elements of ( )*l∞ Γ . Sup-

pose not, then ( )
*

Prob
ω

µ ∉ Γ  and since Prob(Γ) is convex the Hahn-Banach se-

paration theorem implies there is some ( )f l∞∈ Γ  and t s< ∈  such that 

( ) ( ) ,Re v f t s Re fµ< < <        

for all ( )Probv∈ Γ . Upon replacing f with 
2

f f+ +
 we obtain  

( ) ( )v f t s fµ< < < . Then replacing f with f f
∞

+  ensures that 0f ≥ . 

Consequently ( ) ( ){ }sup : Probv f v f
∞

∈ Γ =  and yet 

( ) ( ){ } ( )sup : Prob ,f v f v t s f fµ
∞ ∞
= ∈ Γ ≤ < < ≤          (4) 

a contradiction. 
Hence we can find a net ( )iµ  in Prob(Γ) which converges to μ in the weak* 

topology. Thus for each s∈Γ  and ( )f l∞∈ Γ  we know  
( ) ( ) ( ) ( ) ( ) ( ) 0i is f f s f f f fµ µ µ µ µ µ⋅ − → ⋅ − = − = . But since the 
( )1

i lµ ∈ Γ , this is equivalent to saying they converge weakly to zero in ( )1l Γ . 
Thus for any finite E ⊂ Γ , the weak closure of the convex subset  

( ){ }: Probs E s µ µ µ∈⊕ ⋅ − ∈ Γ  contains 0. As a convex set, the weak and norm 
closures coincide by the Hahn-Banach theorem. Hence given 0ε >  we can 
find ( )Probv∈ Γ  such that 

https://doi.org/10.4236/oalib.1107012
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10 .s E s v v ε
∈

⋅ − − <∑                        (5) 

Hence we have an approximate invariant mean [3].  

3.6. Definition [5] 

We say Γ satisfies the Fϕlner condition if for any finite E ⊂ Γ  and 0ε > , 
there exists a finite subset E ⊂ Γ  such that 

max .s E

sF F
F

ε∈

∆
<                        (6) 

That is, the action of E does not move F around “too much.” Furthermore, a 
sequence of finite sets nF ∈Γ  such that 

0n n

n

sF F
F
∆

→                           (7) 

is called a Fϕlner sequence. 
Proof of (2) ⟹ (3). Fix a finite subset E ⊂ Γ  and 0ε > . Since we have an 

approximate invariant mean we can find ( )Probµ ∈ Γ  such that  

1 .s E s µ µ ε
∈

⋅ − <∑                        (8) 

Given a positive function ( )1 Γf l∈  and 0r ≥ , we define a set  

( ) ( ){ }; : :F f r t f t r= ∈Γ > . Now, note that for a pair of positive functions 

( )1,f h l∈ Γ  and t∈Γ , ( ) ( ) ( ) ( ), ; 1F f r F h rt tχ χ− =  if and only if r lies between 

the numbers ( )f t  and ( )h t . Furthermore, if f and h are bounded above by 1 
then it follows that 

( ) ( ) ( ) ( ) ( ) ( ), ;0

1
dF f r F h rf t h t t t rχ χ− = −∫                (9) 

We apply this to µ  and s µ⋅  to get 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, ,1 0

, ,

1

1 1

0 0

d

d , , d

F s r F r
t t

F s r F rt

s s t t t t r

t t r sF r F r r

µ µ

µ µ

µ µ µ µ χ χ

χ χ µ µ

⋅
∈Γ ∈Γ

⋅∈Γ

⋅ − = ⋅ − = −

= − = ∆

∑ ∑∫

∑∫ ∫
 (10) 

Also, we have 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1

, ,0 0 0

0

, d d d

1d 1

F r F rt t

t

t t

F r r t r t r

r t

µ µ

µ

µ χ χ

µ

∈Γ ∈Γ

∈Γ ∈Γ

= =

= = =

∑ ∑∫ ∫ ∫

∑ ∑∫
       (11) 

Thus 

( ) ( ) ( ) ( ) ( )1 1

10 0
, d , , ds E s EF r r s t t sF r F r rµ µ µ µ µ

∈ ∈
= > ⋅ − = ∆∑ ∑∫ ∫   (12) 

So for some r we must have  

( ) ( ) ( ), , , .
s E

sF r F r F rµ µ µ
∈

∆ <∑   

Letting ( ): ,F F rµ=  we are done. 
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For the next implication we will ignore the first version of the statement and 
instead focus on the later, equivalent condition. We only need to understand the 
left regular representation. This is a homomorphism ( )( )2: Γ Γu lλ →  where 
the image of s∈Γ  is denoted sλ  and for ( )( )( ) ( )2 1

sf l f t f s tλ −∈ Γ = . 
Proof of (3) ⇒ (4). From the Fϕlner condition build a Fϕlner sequence ( iF ) 

(by letting 
1 11, , ,
2 3

=  ) set 1 2:i i iF Fξ χ−= . Then ( )2lξ ∈ Γ  are unit vectors 

and 

( ) ( )( ) ( )

( ) ( )

( ) ( )

2 2

2
2

1
1 2 1 2

2

1 1

Δ1 0.
i i

s i i s i it

i it
i i

i i
sF Ft

i i

t t

F s t F t
F F

sF F
t t

F F

λ ξ ξ λ ξ ξ

χ χ

χ χ

∈Γ

−
∈Γ

∈Γ

− = −

= −

= − = →

∑

∑

∑

            (13) 

3.7. Definition [6] 

A function : Γϕ →   is called positive definite if the matrix 

( ) ( )1

,
,F Fs t F

s t Mϕ −
×∈

  ∈    

is positive for every finite set F ⊂ Γ . 
Proof (4) ⟹ (5). For a unit vector ( )2lξ ∈ Γ , define ( )2( ) : ,s lsϕ λ ξ ξ

Γ
= . 

Then we claim that φ is positive definite. Indeed, 

( ) 1
1 *, , , ,s t t ss t

s tϕ λ ξ ξ λ λ ξ ξ λ ξ λ ξ−
−       = = =               (14) 

Let { }1, , , nn F F t t= =  , and fix ( )1, , n
nv z z= ∈  . It suffices to show: 

1 1 1

1

1 1 1

1 1

1 1 1

1 1 1

1

1

1

1

1

, ,

,

, ,

, ,

, ,

, ,

, ,

n

n n n

n

n n

n

n

t t t t

t s

nt t t t

t t t t n

t t t t n

t t n t t

t t n t t

z
v

z

z z

z z

z z

z z

λ ξ λ ξ λ ξ λ ξ

λ ξ λ ξ

λ ξ λ ξ λ ξ λ ξ

λ ξ λ ξ λ ξ λ ξ

λ ξ λ ξ λ ξ λ ξ

λ ξ λ ξ λ ξ λ ξ

λ ξ λ ξ λ ξ λ ξ

         =      
   

 + +
 
 =
 
 + + 
 + +


=

+ +



   















1

1

1

1

,

,

i

i

n
i t ti

n
i t ti

z

z

λ ξ λ ξ

λ ξ λ ξ

=

=




 
 
 


 
 
 =
 
 
 

∑

∑


         (15) 

and so 
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[ ]
1

1

1 1

1

1 1 1 1

2
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∑

∑ ∑ ∑ ∑
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  (16) 

Hence ϕ  is positive definite. So letting ( )iξ  be the unit vectors from con-
dition (4) and setting ( ) : ,i s i isϕ λ ξ ξ=  we know ( ) 1i eϕ =  and from our 
above work that these functions are positive definite. From condition (4) we also 
know that they converge pointwise to 1. In order to make them finitely sup-
ported we need merely replace the iξ  with finitely supported elements.  

Starting with a discrete group Γ we can consider the group algebra  
[ ] { }1 : , ,n

i i t ii t n tα α
=

Γ = ⋅ ∈ ∈ ∈Γ∑    with addition and multiplication de-
fined in the obvious ways and an involution defined by 

( )* 1
1 1

n n
i i i ii it tα α −

= =
= ⋅⋅∑ ∑ .                   (17) 

We want to extend this into a C*-algebra, but there are multiple norms we 
use. On the one hand we can extend the left regular representation λ to a 
*-representation of [ ]Γ  on ( )2l Γ , still denoted by λ, by 

( ) ( )( )
*

2
1 1 i

n n
i i i ti it B lλ α α λ

= =
⋅ ⋅= ∈ Γ∑ ∑ .             (18) 

The reduced C*-algebra is then what we obtain by taking the closure of 

[ ]( )λ Γ  with respect to ( )( )2. l∈ Γ
, we denote it by ( )*Cλ Γ . On the other hand, 

the left regular representation ( )( )2: u lλ Γ → Γ  is merely one representation 

of our group. Hence we can consider the norm 

( ) ( ) ( ){ }sup : : is a -representation .u B H
x x uπ π= Γ → ∗  

This easily satisfies the C*-identity. The full (or universal) C*-algebra of Γ is 
the closure of [ ]Γ  with respect to . u  and is denoted ( )*C Γ  [2]. 

Thus assuming (5) we’ll need to show that these two C*-algebras coincide. But 
we first note that since ( ) ux xλ ≤  for [ ]x∈ Γ , λ  extends to ( )*C Γ . It 
is clear that this is onto ( )*Cλ Γ  [7]. 

3.8. Definition [6] 

Let :ϕ Γ →   be a function. The associated multiplier [ ] [ ]:mϕ Γ → Γ   is 
defined by 

( ) ( ):t tt tm t t tϕ α ϕ α
∈Γ ∈Γ

=⋅ ⋅∑ ∑ .               (19) 

We also define [ ]( ) [ ]( ):mϕ λ λΓ → Γ    by 

( )( ) ( ) ( )t t t t tt t tm t m tϕ ϕλ α α λ ϕ α λ
∈Γ ∈Γ ∈Γ

= =⋅∑ ∑ ∑  .      (20) 
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3.9. Lemma 

Suppose ϕ  is finitely supported, positive definite, and ( ) 1eϕ = . Then mϕ  
extends to a continuous map on ( )*C Γ  and mϕ  extends to a continuous map 
on ( )*Cλ Γ . both with norm one. 

Proof. First consider the case when eϕ δ=  (i.e. ( ) 1tϕ =  if t e=  and 
( ) 0tϕ =  otherwise). Let ( ) ( ) ( )2,e e l

x xτ λ δ δ
Γ

=  for ( )*x C∈ Γ , then τ is a 
tracial state. For [ ]x∈ Γ  we compute: 

( ) ( ) ( ) ( )u uuu
m x x e x e x xϕ τ τ τ= ⋅ = = ≤ .           (21) 

Hence we can extend mϕ  to ( )*C Γ  with norm one. 
Let ( ) ( )2,e e lT Tτ δ δ

Γ
=  for ( )( )*T B C∈ Γ , then τ  is a tracial state. For 

[ ]x∈ Γ  we compute: 

( )( ) ( )( ) ( )( ) ( )( )e em x x x x xϕ λ τ λ λ τ λ λ τ λ λ= = = ≤    .      (22) 

so that mϕ  extends to ( )*Cλ Γ  with norm one. 
Next consider the case tϕ δ=  for t∈Γ . Since 

( ) ( ) ( )

( ) ( )
( )

1
1

1 1

, ,

,

,

e t e tu u u

e et uu

u uu

m x x t x t

x t t x t

t x t t x x

ϕ λ δ δ λ δ λδ

λ λ δ δ τ

τ

−
−

− −

= =

= =

= ≤

⋅

≤

⋅

⋅ ⋅            (23) 

we see that mϕ  again extends to ( )*C Γ  with norm one. A similar computa-
tion for mϕ  involving τ  yields an extension in the reduced C*-algebra case as 
well. 

Thus for a finitely supported ϕ  we can write ( ) tt tϕ ϕ δ
∈Γ

= ∑  and so 
( )

ttm t mϕ δϕ
∈Γ

= ∑ . Extending each of the finitely many 
t

mδ  yields an exten-
sion for mϕ . But since ϕ  is positive definite, mϕ  is positive and hence at-
tains its norm at the identity: ( ) ( ) 1m m e eϕ ϕ ϕ= = = . A similar argument 
applies in the reduced C*-algebra case.  

Proof of (5) ⟹ (6). By our previous comments, we know  
( ) ( )* *: C Cλλ Γ → Γ  is onto and hence it remains to show λ is injective. 

Let ( )iϕ  be the net in condition (5). By the above lemma, we can define mul-
tipliers 

i
mϕ  and 

i
mϕ  on ( )*C Γ  and ( )*Cλ Γ  respectively, each with norm 

one. We note that 
i i

m mϕ ϕλ λ=    on ( )*C Γ  since both functions are con-
tinuous and agree on the dense subspace [ ]Γ . Now, since 1iϕ →  pointwise 
on Γ, ( )

i
m x xϕ →  for [ ]x∈ Γ . Since the norms of the 

i
mϕ  are uniformly 

bounded by one and [ ]Γ  is dense in ( )*C Γ , this limit holds for ( )*x C∈ Γ  
as well. 

Now, suppose ( )*x C∈ Γ  and ( ) 0xλ = . Then  

( )( ) ( )( ) 0
i i

m x m xϕ ϕλ λ= = ,                   (24) 

for every i. But since iϕ  is finitely supported we know ( ) [ ]
i

m xϕ ∈ Γ  and 
hence ( )( ) 0

i
m xϕλ =  implies ( ) 0

i
m xϕ = . Hence ( )lim 0

iix m xϕ= =  and so 
λ  is injective.  
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Proof of (6) ⟹ (7). ( )*C Γ  always has a one-dimensional representation 
since the trivial representation [ ] t tt ttα α⋅Γ ∈∑ ∑    is always subor-
dinate to . u . Hence ( ) ( )* *C Cλ Γ = Γ  has a character.  

We require a lemma: 

4. Definition [6] 

Suppose H acts continuously on a locally convex topological vector space  . 
Every H-invariant, compact, convex subset of   is called a compact, convex 
H-space. 

4.1. Definition 

H is amenable if and only if H has a fixed point in every nonempty, compact, 
convex H-space. This is just one of many different equivalent definetions of 
amenability. The equivalence of these diverse definitions is a testament to the 
fact that this notion is very fundamental [6]. 

4.2. Remarks 

1) All locally convex topological vector spaces are assumed to be Hausdorff. 
2) In most applications, the locally convex space V is the dual of a separable 

Banach space, with the weak* topology [6].  
In this situation, every compact, convex subset C is second countable, and is 

therefore metrizability. With these thoughts in mind, we feel free to assume me-
trizability when it eliminates technical difficulties in our proofs. In fact, we could 
restrict to these spaces in the definition of amenability, because it turns out that 
this modified definition results in exactly the same class of groups.  

3) The choice of the term “amenable” seems to have been motivated by two 
considerations: 

a) The word “amenable” can be pronounced “a-MEAN-able,” and we will see 
that a group is amenable if and only if it admits certain types of means. 

b) One definition of “amenable” from the Oxford American Dictionary is ca-
pable of being acted on a particular way. “In other words, in colloquial English, 
something is \amenable” if it is easy to work with. Classical analysis has averag-
ing theorems and other techniques that were developed for the study of func-
tions on the group Rn. Many of these methods can be generalized to all amena-
ble groups, so amenable groups are easy to work with [6]. 

5. Examples of Amenable Groups 

1) Abelian groups are amenable. 
2) Compact groups are amenable. 
3) Solvable groups are amenable, because the class of amenable groups is 

closed under extensions. 
4) Closed subgroups of amenable groups are amenable. 
On the other hand, however, it is important to realize that not all groups are 
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amenable. In particular, we will see that: 
a) nonabelian free groups are not amenable, and 
b) ( )2;SL R  is not amenable. 
We begin by showing that Z is amenable [8]. 

5.1. Proposition 

Cyclic groups are amenable. 
Proof. Assume H T=  is cyclic. Given a nonempty, compact, convex 
H-space C, choose some 0c C∈ . For n∈ , let 

( )0

1
1

n k
n kc T c

n =
=

+ ∑                      (25) 

Since C is compact, the sequence { }nc  must have an accumulation point. 
c C∈ . It is not difficult to see that c is fixed by. Since T generates H, this 

means that c is a fixed point for H.  

5.2. Corollary 

(Kakutani-Markov Fixed Point Theorem). Every abelian group is amenable. 
Proof. Let us assume ,H g h=  is a 2-generated abelian group. [5] If C is 

any nonempty, compact, convex H-space, then Proposition 2.1 implies that the 
set gC  of fixed points of g is nonempty. It is easy to see that gC  is compact 
and convex, and, because H is abelian, that gC  is invariant under h. Hence, 

gC  is a nonempty, compact, convex h -space. Therefore, Pro-position2.1 
implies that h has a fixed point c in gC . Now c is fixed by g, and c is fixed by h, 
so c is fixed by ,g h H=  [8].  

Compact groups are also easy to work with. 

5.3. Proposition 

Compact groups are amenable. 
Proof. Assume H is compact, and let μ be a Haar measure on H. Given a 

nonempty, compact, convex H-space C, choose some 0c C∈ . Since μ is a prob-
ability measure, we may let probability measure, we may let 

( ) ( )0 d .
H

c h c h Cµ= ∈∫                     (26) 

The H-invariance of μ implies that c is a fixed point for H).  
It is easy to show that amenable extensions of amenable groups are amenable 

here, Let 1 1N G Q→ → → →  be an extension of (discrete) groups, where N 
and Q are amenable [9]. 

6. Invariant Probability Measures 
6.1. Definitions 

Let X be a complete metric space. 
1) A measure μ on X is a probability measure if ( ) 1Xµ = . A probability 
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measure is a measure with total measure one, ( ) 1Xµ = . A probability space is 
a measure space with a probability measure. For measure spaces that are also 
topological spaces various compatibility conditions can be placed for the meas-
ure and the topology. 

2) Prob(X) denotes the space of all probability measures on X. Any measure 
on X is also a measure on the one-point compact fication X+ of X, so, if X is lo-
cally compact, then the Riesz Representation Theorem tells us that every finite 
measure on X can be thought of as a linear functional on the Banach space 

( )C X +  of continuous functions on X+. This implies that Prob(X) is a subset of 
the closed unit ball in the dual space ( )*C X + , and therefore has a weak* topol-
ogy. If X is compact, then the Banach-Alaoglu Theorem (B7.4) tells us that 
Prob(X) is compact [9]. 

6.2. Example 

If a group H acts continuously on a compact, metrizable space X, then Prob(X) 
is a compact, convex H-space [9]. 

6.3. Remark 

Recall that a compact, Hausdorff space is metrizable if and only if it is second 
countable, so requiring a compact, separable, Hausdorff space to be metrizable is 
not a strong restriction [9]. 

6.4. Proposition (1⇔3) 

H is amenable if and only if for every continuous action of H on a compact, me-
trizable space X, there is an H-invariant probability measure μ on X. 

Proof. (⟹)If H acts on X, and X is compact, then Prob(X) is a nonempty, 
compact, convex H-space. So H has a fixed point in Prob(X); this fixed point is 
the desired H-invariant measure. (⇐) Suppose C is a nonempty, compact, con-
vex H-space. By replacing C with the closure of the convex hull of a single 
H-orbit, we may assume C is separable; then C is metrizable. Since H is amena-
ble, this implies there is an H-invariant probability measure μ on C. Since C is 
convex and compact, the center of mass 

( )d
c

p c cµ= ∫                          (27) 

belongs to C. Since μ is H-invariant, a simple calculation shows that p is 
H-invariant [9]. 

7. Invariant Means 
7.1. Definition 

Suppose   is some linear subspace of ( )H∞ , and assume   contains the 
constant function 1H  that takes the value 1 at every point of H. A mean on   
is a linear functional λ  on  , such that ( )1 1Hλ∗ = , and λ∗  is positive, i.e., 
( ) 0fλ ≥  whenever 0f ≥ . 
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7.2. Remark 

Any mean is a continuous linear functional; indeed, 1λ = . 
It is easy to construct means. 

7.3. Example 

If φ  is any unit vector in ( )1 H , and µ  is the left Haar measure on H, then 
defining 

( ) ( )d
H

f fλ φ µ= ∫                     (28) 

produces a mean (on any subspace of ( )H∞  that contains 1H ). Means con-
structed in this way are (weakly) dense in the set of all means. Compact groups 
are the only ones with invariant probability measures, but invariant means exist 
more generally [10]. 
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