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Abstract

This paper deals with a class of n-degree polynomial differential equations. By
the fixed point theorem and mathematical analysis techniques, the existence
of one (22is an odd number) or two (22is an even number) periodic solutions
of the equation is obtained. These conclusions have certain application value
for judging the existence of periodic solutions of polynomial differential equ-
ations with only one higher-order term.
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1. Introduction

Consider the following one element n-degree polynomial differential equation:

n

Ya (t)x,(neN*)

i=0

dx
i (1.1)
here, & (t)(i=0,1,2,---,n) are w-periodic continuous real functions on R.

When n=1, Equation (1.1) is a linear periodic differential equation, if
J'Ow a (t)dt # 0, then Equation (1.1) has a unique w-periodic continuous solution
(see [1]).

When n =2, Equation (1.1) is Riccati’s equation, Riccati’s equation plays an
important role in fluid mechanics and the theory of elastic vibration, there are
many studies on this equation [2]-[7]. In [2], the author considered the nonli-

near Riccati type first-order differential equation as follows:

g—)t(=a(t)x2+b(t),
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by the fixed point theory, the existence of two periodic continuous solutions of
Riccati type Equation (1.2) was obtained, and the ranges of the size of the two
periodic continuous solutions of Equation (1.2) were also given. One is positive,
another is negative, they are symmetrical about X =0, we can see below for de-
tails:

Proposition 1.1 (see [2]) Consider Equation (1.2), a(t),b(t) are w-periodic
continuous functions on R, suppose that the following condition holds:

(H) a(t)b(t)<0,vte[0,0]

then Equation (1.2) has exactly two w-periodic continuous solutions y; (t),
7,(t),and

(=

(t) b(t)

—sup ——= <y (t)< |- inf —=,

te[O,w] a(t) te[O,w] a(t)

__b(t) b(t)
— |- inf =L <y, (t)<— |- sup ——=.

Mam <705

When n =3, there are also many studies on the existence of periodic solu-
tions of Equation (1.1) (see [8] [9] [10] [11] [12]).

So we wonder if there is a similar conclusion when 2 is a large positive integer?

In this paper, we are devoted to generalize Equation (1.2) to the n-th power of
x and find the sufficient conditions for the existence of periodic solutions of the
new equation, that is, we consider a special kind of polynomial differential Equ-
ation (1.1) as follows:

dx n N

E=a(t)x +b(t),(neN") (1.3)
Equation (1.3) contains only an n-th power of x and a term unrelated to x, we
get some similar results as Proposition 1.1 about the existence of the periodic
solutions of Equation (1.3), these conclusions generalize the relevant conclusions
of paper [1] and paper [2].

The rest of the paper is arranged as follows: In Section 2, some lemmas and
abbreviations are introduced to be used later; In Section 3 and Section 4, the ex-
istence of periodic solutions on Equation (1.3) is obtained; In Section 5, we ex-
tend the results of Section 3 and Section 4; we end this paper with a short con-

clusion.

2. Preliminaries

In this section, we give some definitions, lemmas and abbreviations which will
be used later.

Definition 2.1 (see [13]) Suppose f(t) is an w-periodic continuous func-
tion on R, then

a(f,2)=[f(t)e dt, (2.1)

must exist, a( f ,/1) is called the Fourier coefficient of f (t), the A such that
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a(f,2)#0 is called the Fourier index of f(t); there is a countable set A,
when AeA,, a(f,A)#0, as long as A¢A,, there must be a(f,1)=0,
A, is called the exponential set of f (t) .

Definition 2.2 (see [13]) A set of real numbers composed of linear combina-

tions of integer coefficients of elementsin A, is called a module or a frequency
module of f (t), which is denoted as mod( f ), that is

N
mod(f):{mﬂ:znjzj,nj,Nez+,N21,,1jeAf} (2.2)
j=1

Lemma 2.1 (see [1]) Consider the following equation:

dx
E_a(t)x+b(t), (2.3)

where a(t),b(t) are w-periodic continuous functions on R, if jowa(t)dt %0,
then Equation (2.3) has a unique w-periodic continuous solution n(t) ,
mod () = mod(a(t),b(t)),and 7(t) can be written as follows:

j; eﬁa(f)drb(s)ds, jowa(t)dt <0

+o j;a(r)d‘r @
[ e* 7 b(s)ds, [ "a(t)dt >0

7(t)

(2.4)

Lemma 2.2 (see [13]) Suppose that an w-periodic sequence {fn (t)} is con-
vergent uniformly on any compact set of R, f(t) is an w-periodic function,
and mod(f )cmod(f)(n=12,-), then { f (t)} is convergent uniformly
on R.

Lemma 2.3 (see [14]) Suppose Vis a metric space, Cis a convex closed set of
V, its boundary is oC, if T:V —V is a continuous compact mapping, such
that T (GC) c C, then Thas a fixed point on C.

For the sake of convenience, suppose that f (t) is an w-periodic continuous

function on R, denote

f = sup f(t), f = inf f(t). (2.5)

te[0,0] te[0,0]

3. A Unique Periodic Solution

If nis an odd number and a(t)>0(<0),b(t)=0, it is easy to know that Equa-
tion (1.3) has a unique periodic continuous solution X(t) =0; Following we
discuss the case b(t) #0, and get two results about the existence of the periodic
solution of Equation (1.3).

Theorem 3.1 Consider Equation (1.3), z is an odd number, a(t),b(t) are
w-periodic continuous functions on R, suppose that the following conditions
hold:

(#) a(t)>0,
(H) b(t)#0,

then Equation (1.3) has a unique w-periodic continuous solution 7/('[), and
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(3] o).

L M

Proof (1) By (H), (/) and nis an odd number, according to the factorization
of polynomials, we can get

_q xww x”‘l—x”‘znw+x"‘3n wz
a (‘){ B][ 150 =6

- . (3.1)
J{m}” -xJ[@J . J[@]" }
a(t) a(t) a(t)
Suppose
S :{(p(t)eC(R,R)l(p(t+a)):(p(t)}. (3.2)
Given any go(t) W (t) € S, the distance is defined as follows:
plow)= sup lo(t) -y (1)) (3.3)

thus (S, p) is a complete metric space. Take a convex closed set B of S as fol-

Bz{(p@)éﬂ[@] S(p(t)s{ﬁlﬂ ,mod((p)gmod(a,b)} (3.4)

Given any (p(t) € B, consider the following equation:

dx b)) v wag ) s (DO
aa(t)[ﬁnm][w - O30 (t)n[mJ

lows:

L

(3.5)
oy [ 2O b(t) |, @)
s 04 ) ‘”‘)J(@J *J[WJ J
Let
f(t)a(t)[w (CRACHEOTROR
(3.6)
i b(t) 3 n wn-z-“] w 1
o) (‘)J(amj J[am] ]
then (3.5) becomes
3—):=f(t)[x+n%J=f(t)x+f(t)n%. (3.7)
By (3.4) and (3.6), we have
mod( f ) = mod(a,b). (3.8)
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By (H), (), (3.4) and (3.6), we get that
0<naL{n(B)_ J < f(t)<na, {n(gj_ ] : (3.9)
a a

[ ()dt>o0. (3.10)

thus we have

Since a(t), b(t), ¢(t) are w-periodic continuous functions on R, f(t),

t
f(t) —% are w-periodic continuous functions on R, by (3.10), according to
a

Lemma 2.1, Equation (3.7) has a unique w-periodic continuous solution as fol-

lows:

n(t)=—["e "t (s), %ds, (3.11)
and

mod(n)gmod[f (t), f(t)n —%J. (3.12)

By (3.8) and (3.12), it follows
mod () < mod (a,b). (3.13)

By (H), (), (3.9) and (3.11), we get

w0 i ()dr bS) b +o (Y (r)dr
n(t)=—[ gh! (e f(s)nﬁdsz—h/;] ) el £ (5)ds
M

(oo (T
I R ]

p(t)=—] e  (5), %ds . _(\EJ [ eb e  (5)as
- ng [ eﬁf(r)drd(j: f (T)dr) = (n SJL [eﬁ”’)dfr
)

and

L

hence, 7(t)eB.

Define a mapping as follows:
To)(t)=- ol 1) ¢ (g nwds (3.14)
t

thus if given any w(t) e B, then (Tgo)(t) €B,hence T:B—>B.
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Now, we prove that the mapping 7'is a compact mapping.

Consider any sequence {g, (t)} = B(k =1,2,--), then it follows

[\/EJ g(pk(t)gng mod(p, ) mod(ab),(k=12-)  (3.15)

M
On the other hand, (T ?, )(t) = X, (t) satisfies

dx"ét(t)=a<t>{x¢k (0)+; b(t)j[;o;l(t)wpz Ot ar (| 20

L

a(t) a(t) a(t)

RAERUCREN
(3.16)
b(t) b(t)

thus we have
n-1
<2na,, {n %J [n a(t) J , (3.17)
M M

mod(x@K (t))g mod(a,b), (3.18)

dx,, (t)
dt

dx, (t)
hence ﬁt is uniformly bounded, therefore, {Xw (t)} is uniformly

bounded and equicontinuous on R. By the theorem of Ascoli-arzela, for any se-
quence {x@K (t)} < B, there exists a subsequence (also denoted by {ka (t)})
such that {ka (t)} is convergent uniformly on any compact set of R. By (3.18),
combined with Lemma 2.2, {Xw (t)} is convergent uniformly on R, that is to
say, T'is relatively compact on B.

Next, we prove that 7'is a continuous mapping.
Suppose {% (t)} cB,p(t)eB,and

? (t) > o (t),(k > o) (3.19)
Let

=

f(t)= a(t)[(pﬁl () -2 (t) b ol (01 [@j

a(t) a(t)
_ _ (320
SRR
then it follows
f (t)— f(t),(k > ) (3.21)
and
0<na, [n [gjnll < f (t)<nay, {n (g)nl] . (3.22)
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By (3.14), we have

(T ) (O -(To) ()|

=I[ ") f ( 22 ds—[ e gkt f(s)nwds

:‘rw(eﬁfk(r) SNAIC: ) £ ()2 g
t a(s)

F[TEEN (1 (5) - £ (s)), LIOM

:‘j (e‘fj ‘r) (s)r 2(_2)ds

[ (1, (5)- 1 () 2L

a(s)

b +0 (U ()dr b
j:dr|f(s)|n/ﬂds+jl gh (o) %ds}o(fk,f),

here, & isbetween .[f d‘[ and J. f( dz' thus & is between

na, {H(SJMJ (t—s) and na{@} (t—s), hence we have
(Te)(O)-(To)(v)
|f(s)|§/%ds

[ote

a(s)

fo

dSJp(fk, f)
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thus we can get

b

a

b

a

(L)
LT =)

By (3.21) and (3.23), it follows
(To ) ()= (Te)(t).(k > o) (3.24)

therefore, 7" is continuous. By (3.14), easy to see, T(9B)< B. According to

P(Te. Tp)< p(f. f). (3.23)

Lemma 2.3, T has at least a fixed point on B, the fixed point is the w-periodic

continuous solution }/(t) of Equation (1.3), and

(n _gl <y (1) S(\/EJ | (3.25)

M

(3) We prove that Equation (1.3) has a unique periodic solution.
Let us discuss the possible range of X(t) of Equation (1.3), we divide the ini-
tial value X(t,)=X, into the following parts:

[P e
g(tx)=a(t)x" +b(t)
pe G G
g5 (t.x)=na(t)x™". (3.28)

oo =(3))

dx
Consider Equation (1.3), we have —

dt

Let

Then we have

=0(t;, %) <0, thus X(t) may
(to.%)

stay at [—w,(qnf—EJ ], then z—)t( =9t X) <0, thus X(t) cannot be a periodic
a
L

solution of Equation (1.3).
(D) If X, e Hn/—g] ,(n/—EJ
a a
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tinuous solution X(t)=y(t) with initial value X(t,)=y(t,).

g;[t, %J 0
[n _gl < y(t)swgJ , (3.29)

M

By (3.28), we have

Since

by (3.28) and (3.29), it follows
g, (t.7(t))>0. (3.30)

Now, we suppose that there is another w-periodic continuous solution ‘I’(t)

of Equation (1.3) which satisfies

(n _g] sxp@)s(ﬁ} . (3.31)

M

Because ¢ (t, X) is a polynomial function with continuous partial derivatives
to x, Equation (1.3) satisfies the existence and uniqueness of solutions to initial

value problems of differential equations, thus
0<|r(t)—¥(t) < +o(VteR). (3.32)
By (3.28) and (3.31), it follows
g (¥ (1)) > 0. (3.33)

Consider the following equation:

d[r()-¥(v)]

™ =g(ty(t)-g(t. ¥ (1))
=g, [t ¥ (1) +0(r ()= (1)](r(t) ¥ (1)).(0< 0 <1)

thus we have

(3.34)

[ (0) = (1) =] (0) - w (0)] bl v (3.35)

By (3.29) and (3.31), it follows

[n _g] < \p(t)w(y(t)_\p(t))s(ﬁj . (3.36)

M

By (3.28) and (3.36), it follows
g [P (t)+0(r(t)-¥(1)]>0. (3.37)
By (3.35) and (3.37), it follows

[ (1) =7 (1) > +o0, (t > +0) (3.38)

By (3.32) and (3.38), this is a contradiction, thus ‘P(t) cannot be a periodic

solution of Equation (1.3), that is to say, Equation (1.3) has exactly a unique
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w-periodic continuous solution }/(l) which satisfies

[E] <y(t)< [Q/EJM . (3.39)
I If %, € [(EJM ,+ooj.

dx
Consider Equation (1.3), we have —

L

=0(t),%)>0,thus X(t) may stay

(to.%)

at [(ﬁlﬂ,m] or X(t)—>+oo(t—>+0), if X(t) stays at [[E]MHDJ

we have % =g(t,x)>0, then X(t) cannot be a periodic solution of Equation

(1.3), if X(t) - +00(t - +00) , then X(t) can also not be a periodic solution of
Equation (1.3).

To sum up, Equation (1.3) has a unique w-periodic continuous solution }/(t)

oot

M

which satisfies

This is the end of the proof of Theorem 3.1.

Similarly, we can get

Theorem 3.2 Consider Equation (1.3), n is an odd number, a(t),b(t) are
w-periodic continuous functions on R, suppose that the following conditions
hold:

(H) a(t)<0o,
(H) b(t)#0,

then Equation (1.3) has a unique w-periodic continuous solution 7(t) ,and

(B

4. Two Periodic Solutions

M

In this section, when n(n > 2) is an even number, we discuss the number of
periodic solutions of Equation (1.3). Since the factorization of polynomial
X" —y" varies with n when n is an even number, here we only prove the case
when n=2",meN"; When n is any other even number, the results are the
same as those of the following Theorem 4.1 and Theorem 4.2, the proofs are also
similar as those of Theorem 4.1 and Theorem 4.2, so we omit them here, in this
section, we get two results.

Theorem 4.1 Consider Equation (1.3), n(n =2"me N+) is an even num-
ber, a(t),b(t) are w-periodic continuous functions on R, suppose that the fol-

lowing conditions hold:
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(#) a(t)>0,
(#) b(t) <0,

then Equation (1.3) has exactly two w-periodic continuous solutions y; (t) and

7,(t),and
(o),

M

({73

L

Proof (1) By (H;) and (H), Equation (1.3) can be written as follows:

%:a(t)[xg(t)+ —%][Xz(t)+4—%]m

(4.1)
SEISEy
Suppose
S={p(t)eC(R.R)|p(t+m)=0p(t)}. (4.2)
Givenany ¢(t),w(t)€ S, the distance is defined as follows:
plpw)= tS[t(i|3]|(17(t)—l//(t)I, (4.3)

thus (S, p) is a complete metric space. Take a convex closed set B, of S as

follows:

B, = {w(t) €S I—[" —SJM <o(t)< —(\/EJ

Given any ¢(t)e By, consider the following equation:

§—f=a<t>[¢3(t)+ %][m%]

b(t) b(t)
'[””WJW‘”‘%}

f<t>=a<t>[<o3(t)+ —%J[¢3<t>+4—%}{¢<t>—n—%} (46)

then (4.5) becomes

%:f(t){x+n—b(t)J:f(t)x+f(t)n—m. (4.7)

,mod(¢) < mod(a, b)} (4.4)

L

(4.5)

dt a(t) a(t)

By (4.4) and (4.6), we have
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mod( f ) = mod(a,b). (4.8)

By (H,), (H,), (4.4) and (4.6), we get that

g (2] (L) f[B
a M a M a M
n b b b
< f(t) < —2"% i el N I
() aL( a] [4 a] [ aJ <0,
L L L

thus we have
jo”’f (t)dt<o0. (4.10)

Since a(t), b(t), ¢(t) are w-periodic continuous functions on R, f(t),

b(t)

(t)p _W are w-periodic continuous functions on &, by (4.10), according to
a

Lemma 2.1, Equation (4.7) has a unique w-periodic continuous solution as fol-

lows:
n(t)=[" et (s) —%ds, (4.11)
and
mod () < mod[f (t), f(t) —%} (4.12)
By (4.4), (4.6) and (4.12), it follows
mod(77) < mod(a,b). (4.13)

By (H.), (Hh), (4.9) and (4.11), we get

n(t)= .[; gls 1) ¢ (s)n —%ds > [Ej jjweféf(’)d’ f(s)ds

M

t t t
) el ]
M M
=—(n—2j [1—eﬁ°°f(7)df}(—oo <t<+oo):—(n —EJ :
a a
M M

and

hence, ﬂ(t) €B.

Define a mapping as follows:
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(To)(t)=]" eb o g (5),- 28y (@19)

a(s)

thus if given any ¢(t)e By, then (T¢)(t)eB,,hence T:B — B,.
Now, we prove that the mapping 7'is a compact mapping.

Consider any sequence {g, (t)} < B, (k =1,2,--), then it follows

_[n_gJM S(pk(t)g_“/gJ ,mod (¢, ) = mod (a,b),(k=1,2,-) (4.15)

L

On the other hand, (T ?, )(t) = X, (t) satisfies

dxﬁ—t(tla(t){wé(th —@}[é(t)ﬂ—@]---

a(t) a(t)
(4.16)
'{ka (t)+p —%][(ﬁk (t)—» —%],
thus we have
dx,, (t) < g plui+ b 4R 2
el L AR
mod(xq,k (t))g mod (a,b), (4.17)

dx, (t)
hence ﬁ—t is uniformly bounded, therefore, {Xw (t)} is uniformly

bounded and equicontinuous on R. By the theorem of Ascoli-arzela, for any se-
quence {ka (t)} c B,, there exists a subsequence (also denoted by {Xw (t)})
such that {Xw (t)} is convergent uniformly on any compact set of R. By (4.17),
combined with Lemma 2.2, {ka (t)} is convergent uniformly on R, that is to
say, 7'is relatively compact on B,.

Next, we prove that 7'is a continuous mapping.
Suppose {qok (t)} cB,,¢(t)eB,and

o (t) > o(t),(k > ) (4.18)

Denote

then it follows

f (t) > f(t).(k > ) (4.20)

en({312. 7
< 1, (t) < ~2log] aL[\/EMA —gl [ —gl <o.

By (4.14), we have

and
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YO AN LI C) PR S TR LI
=1l f(s) a(s)d [ f(s) a(s)d
I (el _ gt ¢ gy PO g rt gt ey g o)l 2 () g
-II' gt e () e

([ (e r)-f(r))dr sn_ﬁs
AP (L 0= o o)

|£( zl(mj(
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thus we can get

p(To Te)<

By (4.20) and the above inequality, it follows
(To)(t) = (Te)(t).(k > =) (4.21)

therefore, 7 is continuous. By (4.14), easy to see, T(B;)< B;. According to
Lemma 2.3, T has at least a fixed point on B, the fixed point is the w-periodic

continuous solution (t) of Equation (1.3), and

_[n _EJM syl(t)ﬁ—{dg] . (4.22)

(2) Suppose

S={p(t)eC(R.R)|o(t+m)=p(t)}. (4.23)
Given any g&(t) W (t) € S, the distance is defined as follows:
plow)= tS[L;p]I(p(t)—l//(t)I, (4.24)

thus (S, p) is a complete metric space. Take a convex closed set B, of Sas fol-

lows:

B, = {q)(t) €S |(§/€]L <p(t)< [EJM ,mod(¢) < mod(a,b)} (4.25)

Given any (o(t) € B,, consider the following equation:

%za(t){¢3(t)+ —%][(oz(t)+4—%}n

10 o0
(o3
g<t>:a<t)[(p3<t)+ —%J[J(t)w—%}-[ﬂt)w—%} (4.27)

dX—g<t>[x—n—ﬂ]:ga)x—g(t)n—@- (428)

(4.26)

a(t)
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By (4.25) and (4.27), we have

mod(g) < mod(a,b). (4.29)
By (H), (), (4.25) and (4.27), we get that
0< 2'093 aL( _EJ [4 _EJ [n _EJ
a a a
; ) L (4.30)
n b b b
< log _— _— v Nf——
e 372 (72,
M M M
thus we have
[“a(t)dt>o0. (4.31)
Since a(t) R b(t) s q)(t) are w-periodic continuous functions on &, g(t) ,
—-g(t)p —% are w-periodic continuous functions on &, by (4.31), according
to Lemma 2.1, Equation (4.28) has a unique w-periodic continuous solution as
follows:
+oo [t b(S)
Js9(z)dr
t)= s n[———=ds, 4.32
1(0)=] e a5 (432)
and
b(t
mod(77) = mod| g(t),g(t)p —L ) (4.33)
a(t)
By (4.29) and (4.33), it follows
mod(77) = mod(a,b). (4.34)

By (H), (H), (4.30) and (4.32), we get

n(t)zft*”eﬁg@”fg(s)n—w“z["‘g [ g (5)es
L

a(s)

_ B ghete g gt _ |k Lo(r)r |~
= [ aJLL e’ d(Lg(r)dr)_ (\/:) {eg l
b

and

hence, 77(’[) €B,.
Define a mapping as follows:
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# flo(e)or b(s)
To)(t)= s ———=ds, 4.35
(To)t)= [ (s)yf-Z o 439)
thus if given any ¢(t) € B,, then (Tg)(t)€B,,hence T:B, —>B,.
Now, we prove that the mapping 7'is a compact mapping.

Consider any sequence {g, (t)} < B, (k =1,2,--), then it follows

[n _SJL <o, (t)g[ﬁj mod(p, )< mod(ab),(k=1,2)  (436)

M

On the other hand, (T ?, )(t) = X, (t) satisfies

dxﬁ—t(tla(t){wé(th %}[m%}

0 0 7
b(t b(t
'[("k (t)+”_a(t)][x¢m (t)_"_a(t)]'
thus we have
dad |~ M a) a) a M'
mod x,, (t))<mod(a,b), (4.38)

dx, (t)
hence zt is uniformly bounded, therefore, {Xw (t)} is uniformly

bounded and equicontinuous on R. By the theorem of Ascoli-arzela, for any se-
quence {ka (t)} < B,, there exists a subsequence (also denoted by {Xw (t)})
such that {Xw (t)} is convergent uniformly on any compact set of R. By (4.38),
combined with Lemma 2.2, {ka (t)} is convergent uniformly on R, that is to
say, 7'is relatively compact on B,.

Next, we prove that 7'is a continuous mapping.
Suppose {(ok (t)} cB,,¢(t)eB,,and

o (t) > o(t),(k > ) (4.39)

Denote
gk(t)=a(t){¢g(t)+ —%J[wﬁn‘(t)ﬂ-%J-{%(t)ﬂ—%J, (4.40)

then it follows

9 (t) > g(t).(k > ) (4.41)

0<2°%a (E]L [4 _EJL ( _gl
sosn (LA

By (4.35), we have

and
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thus we can get

p(To, To)<

HEIEL

2
)
1 A (4.42)
P

+ 2w (9:.9)

£(9.,9).

2Iog'£a (PJ (4 _bj (P] k
- a a a
L L

By (4.41) and (4.42), it follows

(To)(t) = (Te)(t).(k > o) (4.43)

therefore, 7'is continuous. By (4.35), easy to see, T(dB,)< B,. According to
Lemma 2.3, T has at least a fixed point on B, the fixed point is the w-periodic

continuous solution 7, (t) of Equation (1.3), and

b b
Flooff]

(3) We prove that Equation (1.3) has exactly two periodic solutions.
Let us discuss the possible range of X(t) of Equation (1.3), we divide the ini-
tial value X(to) =X, into the following parts:

LD
(P L

h(t,x)=a(t)x" +b(t)

=a Xg+ —m x%+4_m X+n—w X—n—m (4'45)
- (t)[ a(t)j[ a(t)] { \/a(t)][ \/a(t)]

Then we have

n
L

h; (t,x)=na(t)x" ™. (4.46)

oef(F3)

dx
Consider Equation (1.3), we have pr
(to.%0)

/ b . b b . .
at | —oo,| —p|—— or enter into —n—=— ,| =0—— at some time ¢ if
a L a L a M
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X(t) stays at {—oo,[—nf—gj j, then % = h(t, x) >0, thus X(t) can not be a
L

periodic solution of Equation (1.3), if X(t) enters into H—n/_EJ '[_n _Ej ‘|
a a
L M

at some time ¢ then there is nota t (t1 > to) such that X(tl) = X(to) =X, , thus

X(t) can also not be a periodic solution of Equation (1.3).

(ID If x, e|:(—n/—RJ ,(—n —EJ :l, then Equation (1.3) has an w-periodic
a a
L M

continuous solution X(t)=y,(t) with initial value X(t,)=7,(t,).

b(t b(t
Since h(t,—n —QJ = h[t, n —QJ =0, by differential mean value theo-

a(t) a(t)
h! (t,f(t)) = O{—n/—% <£(t)< n,—%].
By (4.46), we have
: b(t)
h [t,—n —%] <0, (4.47)
h [t, n/—%J >0. (4.48)
ALl

M

rem, it follows

Since

by (4.46) and (4.49), it follows
hy (t.7(t)) <O. (4.50)

Now, we suppose that there is another w-periodic continuous solution ¥, (t)

of Equation (1.3) which satisfies
b b
—n—=| <Y, (t)<| 0= . 4.51
[ a] ) (V aj sy
L M

Because h(t, X) is a polynomial function with continuous partial derivatives
to x, Equation (1.3) satisfies the existence and uniqueness of solutions to initial

value problems of differential equations, thus

(1), (1) > 0(vteR). (4.52)

By (4.46) and (4.51), it follows
h; (t, %, (t)) <0. (4.53)

Consider the following equation:
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w =h(t.7 (1))~ (1, %, (1)) (4.59)
= h [t (1) +6, (72 (1) ¥, (1) ] (22 (1) - ¥ (1)) (0 < 6, <1)
thus we have
[ ()2, (6)] = [, (0) — ¥, (0) b MLt (g 55

By (4.49) and (4.51), it follows

[_\/EJ é‘{’l(t)+6'l(y1(t)—‘l’l(t))s(—ﬂ —g]M. (4.56)

L

By (4.46) and (4.56), it follows

h [t W, (1)+6,( (1) - ¥, (1)) ] <O0. (4.57)
By (4.55) and (4.57), it follows
|72 (t) =, (1) > 0,(t — +o0) (4.58)

By (4.52) and (4.58), this is a contradiction, thus ¥, (t) cannot be a periodic
solution of Equation (1.3), that is to say, Equation (1.3) has exactly a unique

w-periodic continuous solution y; (t) which satisfies

H/EJL < (t)< (_@JM . (4.59)
w247

dx
Consider Equation (1.3), we have —
(to.0)

o [R5 o [ 3L o
im0 s (2], ()

X(t) can not be a periodic solution of Equation (1.3), if X(t) enters into

=h(ty,%)<0, thus X(t) may

],wehave %:h(t,x)<0,then

M L

} at some time ¢ then there is not a '[1(t1 >t0) such

that X(ti) = X(to) =X, , thus X(t) can also not be a periodic solution of Equa-
tion (1.3).

e (]

continuous solution X(t)=7,(t) with initial value X(t;)=7,(t,)-

[n _SJL <7, (t)s(@} , (4.60)

M

], then Equation (1.3) has an w-periodic
M

Since
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by (4.46) and (4.60), it follows
hy (t.7,(t)) > 0. (4.61)

Now, we suppose that there is another w-periodic continuous solution
v, (t) of Equation (1.3) which satisfies

Flwodf

Because h(t, X) is a polynomial function with continuous partial derivatives
to x, Equation (1.3) satisfies the existence and uniqueness of solutions to initial

value problems of differential equations, thus

0<|r, (t) =¥, (t) < +=(VteR). (4.63)

By (4.46) and (4.62), it follows
h; (t, %, (t))>0. (4.64)

Consider the following equation:

d [7/2 (t)-V¥, (t)} _ h(t, Vs (t))— h(t, ¥, (t))

dt (4.65)
= [0, ()6, (72 (0¥ (1) (7. (- ¥ (). (0< &, <1)
thus we have
172 ()= ¥, (V)] = |1, (0) -, (0) ool 72(8)+62 (r2(5)-¥2 () s (4.66)

By (4.60) and (4.62), it follows

(n _gj <, (1)+6,(7, (t)_xpz(t))gwg} . (4.67)

M
By (4.46) and (4.67), it follows
h [t W, (t)+6, (7, (1) ¥, (t))] > 0. (4.68)
By (4.66) and (4.68), it follows

|72 (t)-¥, (t)| — 400, (t — +o0) (4.69)

By (4.63) and (4.69), this is a contradiction, thus ¥, (t) cannot be a periodic
solution of Equation (1.3), that is to say, Equation (1.3) has exactly a unique

w-periodic continuous solution 7, (t) which satisfies

{n_EJ Syz(t)g{n_EJ . (4.70)
a) a,

o8]

dx
Consider Equation (1.5), we have —

=h(ty, %) >0, thus X(t) may stay
(t0.%)
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at [[_g]m] or X(t) > 40, (t > +0),if X(t) staysat ([\/EJMJ

we have 3—1( =h(t,x)>0, then X(t) cannot be a periodic solution of Equation

(1.3),if X(t) > +o0,(t > +x), then X(t) can also not be a periodic solution of
Equation (1.3).

To sum up, Equation (1.3) has exactly two w-periodic continuous solutions
" (t) and 7, (t) which satify

Al e
(5

<7, (1)< (n/—BJ . (4.72)
a
This is the end of the proof of Theorem 4.1.

L M
Theorem 4.2 Consider Equation (1.3), N(nN>2) is an even number, a(t),

b(t) are w-periodic continuous functions on R, suppose that the following

conditions hold:
(H) a(t)<0o,
() b(t)>0,

then Equation (1.3) has exactly two w-periodic continuous solutions ¥, (t) and

7,(t),and
_(n _SJM <n(t)< _(E]L ,
(8] ),
Proof Let
X= U (4.73)

then Equation (1.3) can be turned into the following equation
du

E_—a(t)x —b(t). (4.74)

By (H)) and (), it follows that Equation (4.74) satisfies all the conditions of
Theorem 4.1, according to Theorem 4.1, Equation (4.74) has exactly two

w-periodic continuous solutions U, (t) and U, (t) ,and

(n —EJL <u(t)< (EJ : (4.75)

M

_(n _SJ <u, (1)< _[\/EJ (476)

By (4.73), it follows that Equation (1.3) has exactly two w-periodic continuous
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solutions 7l(t) and 7, (t),and

_[EJ S;/l(t)s—[n—gl, (4.77)
LR -

This is the end of the proof of Theorem 4.2.

5. Some Corollaries

Consider the following equation:

g_f:a t)(x+7(t)) +b(t), (5.1)

where a(t), }/(t) and b(t) are w-periodic continuous functions on R, and
}/(t) is derivable on R.

Let
u=x+y(t), (5.2)
then Equation (5.1) becomes
du dy
—=a(t)u" +b(t)+—=. 5.3
g = a(uT+b(t)+— (5.3)

According to Theorem 3.1 and Theorem 3.2 of section 3, Theorem 4.1 and
Theorem 4.2 of section 4, we can get:

Corollary 5.1 Consider Equation (5.1), zis an odd number, a(t),y(t),b(t)
are w-periodic continuous functions on &, and }/(t) is derivable on R, suppose

that the following condition holds:
() a(t)=0,(vteR)

then Equation (5.1) has a unique w-periodic continuous solution.

Remark 5.1 If b(t)+((jj_i/ =0, then Equation (5.1) has also a unique periodic

solution X(t) =0.
Corollary 5.2 Consider Equation (5.1), n is an even number, a(t), y(t),

b(t) are w-periodic continuous functions on R, and 7/(1) is derivable on R,

suppose that the following condition holds:
(H) a(t)[b(t)+z—}t/j <0,

then Equation (5.1) has exactly two w-periodic continuous solutions.

Consider the following equation:

Ha()(xer ) (5.4
where a(t) and 7('[) are w-periodic continuous functions on &, and }/(t) is

derivable on R.
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Let
u=x+y(t), (5.5)
then Equation (5.5) becomes
du dy
—=a(t)u" +—. 5.6
dt (t) dt 56
According to Theorem 3.1 and Theorem 3.2 of section 3, we can get
Corollary 5.3 Consider Equation (5.4), nis an odd number, a(t), y(t) are
w-periodic continuous functions on &, and »(t) is derivable on R, suppose that
the following condition holds:

(#) a(t)=0,

then Equation (5.4) has a unique w-periodic continuous solution.

Corollary 5.4 Consider Equation (5.4), 1 is an even number, a(t), y(t)
are w-periodic continuous functions on R, and }/(t) is derivable on R, suppose
that the following condition holds:

(#) a(t)#0,

then Equation (5.4) has a unique w-periodic continuous solution if and only if

7(t)=C holds.

6. Conclusions

In this paper, we get three results:

1) when n is an odd number, if a(t) #0, then Equation (1.3) has a unique
w-periodic continuous solution, and the range of the size of the periodic conti-
nuous solution of Eq.(1.3) is also given.

2) when nis an even number, if a(t)b(t) <0, then Equation (1.3) has exactly
two w-periodic continuous solutions, and the ranges of the size of the two periodic
continuous solutions of Equation (1.3) are also given, one is positive, another is
negative, they are symmetrical about x=0.

3) We extend conclusions 1) and 2) to Equation (5.1) and Equation (5.4).

These conclusions have certain application value for judging the existence
of periodic solutions of polynomial differential equations with only one high-

er-order term.
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