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Abstract 
Aquaponics are feedback and two player systems, in which fish and crops 
mutually benefit from one another and, therefore require close monitoring, 
management and control. Vast amount of data and information flow from 
the aquaponics plant itself with its huge amount of smart sensors for water 
quality, fish and plant growth, system state etc. and from the stakeholder, e.g., 
farmers, retailers and end consumers. The intelligent management of aqua-
ponics is only possible if this data and information are managed and used in 
an intelligent way. Therefore, the main focus of this paper is to introduce an 
intelligent information management (IIM) for aquaponics. It will be shown 
how the information can be used to create services such as predictive analyt-
ics, system optimization and anomaly detection to improve the aquaponics 
system. The results show that the system enabled full traceability and trans-
parency in the aquaponics processes (customers can follow what is going on 
at the farm), reduced water and energy use and increased revenue through 
early fault detection. In this, paper the information management approach 
will be introduced and the key benefits of the digitized aquaponics system will 
be given. 
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1. Introduction 

Fish rearing in aquacultures and Greenhouse cultivation of vegetables are today 
becoming increasingly important in human food production due to several fac-
tors. The most relevant include 1) Food price increases; 2) Reduced amount of 
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quality water to fish and irrigation; 3) Increased use of arable land for produc-
tion of raw materials for biodiesel; 4) Increased toxicity of arable land with heavy 
metals, excessive and or misuse of fertilizers as well as long-term contamination 
due to pesticides; 5) Global climate change; and 6) Overfishing. Global trends 
show that these conditions will continue to rise in the near future. 

In a recent study [1], authors investigated the feasibility of sustaining current 
and increased per capita fish consumption rates in 2050 based on extensive data: 
predictions of changes in global and regional climate, marine ecosystem and fi-
sheries production estimates, human population estimates, fishmeal and oil 
price estimations and projections of the technological development in aquacul-
ture technology. The authors concluded that the current and larger consumption 
rates can be meet, despite population growth and the impacts of climate change 
on fish production, only if the fish resources are managed intelligently, sustaina-
bly and effectively. Therefore, the demand for producing agricultural products 
that are as environmentally friendly and resource-saving as they are highly effi-
cient is increasing [2] [3]. Aquaponics technology is one of them and is defined 
as a food production technology that couples aquaculture (production of fish) 
and horticulture as hydroponics in one system [4]. Hereby, the fish and the 
crops can highly benefit from one another. 

Our previous research to this topic in the INAPRO project described in [5] [6] 
[7] focused on the technological innovations such as DRAPS (ASTAF-PRO 
technology), filtering systems, and optimal design of the aquaponics system. The 
technology was implemented in several demonstration sites e.g., in Spain, China, 
Germany, Belgium, etc. a model-based system for control and the management 
of water, energy and nutrients was developed based on the Classical automation 
pyramid (SCADA, MES, etc.) [7]. The modeling approach allowed the optimiza-
tion of all details in the design, construction, integration, and operation of the 
system, proving the technical and economic feasibility of INAPRO. 

From this previous study, several topics which needed research were identified 
as intelligent information utilization to create transparency in the aquaponics 
processes, optimize resources usage (water, energy and fertilizer) and system 
performance prediction for early warning. Therefore, the enhanced version of 
the INAPRO Project described in this paper aims to tackle these research topics. 
The new concept is information-based and connects demonstration aquaponic 
farms of the INAPRO Project from different parts of the world and collects all 
data in one central database and manages the data intelligently for added value. 
A web-based platform for different stakeholders contains such diverse informa-
tion as fish farm sensor data, environmental data, store standard operating pro-
cedures (SOPs), information on sustainability and online tracking information 
during delivery of fish. Data-based analysis of the aquaponics system can help to 
optimize workflows and increase productivity by allowing drastic reduction of 
water for the fish and irrigation, increased density of the products (fish and 
plants) per unit area, reduction in the impacts of climate change as well as al-
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lowing the application of biocontrol as an effective alternative to traditional me-
thods of plant protection. 

The project has three main objectives: 
1) Collection of data on fish culture in farms, as well as supply chain and cold 

chain monitoring. 
2) Data integration and modelling to optimize growth, farming practices and 

shelf life. 
3) Provide data to stakeholders (farmers, maintenance companies) and con-

sumers/end users (e.g. retailers, restaurants). 
This will help achieve the following outcomes which are in alignment with the 

Sustainable Development Goals (SDG) 2, 11, 13, 16. 
1) Improving conventional aquaponics to provide local, healthy and sustaina-

ble food. 
2) Producing high-quality food while saving water, energy, and nutrients, re-

ducing wastewater discharge and CO2 emissions. 
3) Support for renewable energy equipment and heating systems. 
4) Develop model-based modular and scalable regionalized aquaponic facili-

ties.   
5) Mobilize industry and stakeholders into promoting commercialization. 
The overarching IT structure will not only act as a repository for data but also 

as computational unit. It will connect all demonstration aquaponics farms and 
end-users by a web interface. In this way parameters affecting growth and envi-
ronment and other sensor data can be tracked and displayed online and utilized 
to make the prediction models robust. An additional calculation tool will even 
enable users to predict the shelf life of fish. In this way the project will provide 
more transparency on the rearing of fish and crops and environmental condi-
tions and better ex-change of good practices among different geographical re-
gions. This will allow customers to make a favorable buying decision. 

2. Methodology 

In order to be able to understand the reason of the enhancement with IoT, we 
will first describe the INAPRO concept, followed by the management system 
based on the classical automation pyramid and then the enhanced architecture. 

2.1. Brief Description of the INAPRO Aquaponics 

First, The EU-INAPRO aquaponics design is based on the double recirculation 
[5], where the Recirculation Aquaculture System (RAS) and the Greenhouse and 
Hydroponics systems are separated as shown in Figure 1. The main advantage 
of such a double recirculation aquaponic system is that optimum conditions can 
be set up independently in the aquaculture and in the hydroponic units. This 
gives the possibility to increase the productivity of both sectors without generat-
ing adverse interactions between the plants and the fish. 
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Figure 1. Concept of the double recirculation aquaponics system (DRAPS) (source: [5]). 
 

In Figure 1, the filtered, nitrate-rich fish water is transferred to the hydro-
ponics greenhouse section and buffered by the Nutrient solution tank. In con-
trast to conventional aquaponics, the amount of transfer water is automatically 
adjusted to the plant’s actual water requirements. After adding supplementary 
nutrients into the fish water it is used for the irrigation of the plants. In 
INAPRO, two irrigation systems were tested: NFT and drip irrigation. The nu-
trient solution not taken up by the plants is recollected and reconditioned in a 
storage tank and then pumped to the plants again. Evaporated water in the 
greenhouse is regained via cooling traps, stored and returned into the fish tanks. 
This reduces the daily need for freshwater to less than three percent of the sys-
tem‘s total volume. The CO2 exhaled by the fish is directed to the plants—thus 
increasing crop productivity. The INAPRO system solution has been integrated 
with cutting edge technologies for Intelligent Information Management, such as 
models for predictive analytics and optimization bio- and mechanical filtering, 
remote diagnosis and anomaly detection, and control technology, and innova-
tive one-way water supply for horticulture.  

Furthermore energy for the aquaponics system is supplied by a Hybrid Energy 
System (HES) previously described in [8] composed of the components illu-
strated in Figure 2. Under consideration is an aquaponics system that utilizes 
PV and micro Combined Heat and Power (μCHP) systems and is a participant 
of a smart grid. The electricity produced by the PV or μCHP can be used locally, 
stored, or exported to the grid according to the regulations of EEG [9]. The heat 
generated by the μCHP must be stored in the heat storage unit to be used for lo-
cal heat demand. Furthermore, it is assumed that the aquaponics contains an 
electrical unit (auxiliary boiler) that can cover heat demand if the heat generated 
by the μCHP is not enough.  

To be able to find an optimal strategy for the daily operation to be followed by 
the hybrid system, the day-ahead electricity price, the daily solar power, and the  
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Figure 2. Hybrid Energy system of the aquaponics. 
 
energy demands are required and need to be forecasted. The prediction of PV 
energy is available through weather information. 

2.2. Intelligent Information Management System 

The Intelligent Information Management System for the aquaponics system is 
illustrated in Figure 3. It is a free structure unlike the classical automation py-
ramid [10] with its hierarchical structure and its fixed information flow from 
bottom to the top. All information will be collected in a central database as in 
[11]. Models will be applied and simulated data will be fed back to the IIM and 
displayed on stakeholder-specific websites or in a mobile app. 

Aquaponics webpages and a mobile app will be targeted to different stake-
holders and customer segments. The consumer can enter the tracking code, QR 
code or even a barcode and relevant growth data will be displayed. There will 
also be an app for smartphones. A fish farm owner can view online sensor data, 
actual and modeled growth curves and compare data with other fish farms. 

The platform collects data from all system components (Fish tanks, Bio and 
mechanical filters, Greenhouse climate, hydroponics, Fish and plants) on size, 
water quality (physical—pH, total dissolved solids (TDS), turbidity, temperature, 
and chemical—DO, Biochemical oxygen demand (BOD), electroconductivity 
(EC), Ammonia, Nitrite, Nitrates, etc.), actual filter efficiencies, feeding patterns 
and weather conditions using mobile devices, sensors, and automated feeders. 
Combined with other data, the algorithms go to work to provide recommenda-
tions such as feeding management strategies and optimal harvest dates and de-
tection of anomalies occurring in the system, amount of additional fertilizer to 
be added to the system, recirculation pump flow, and greenhouse environmental 
control. Encapsulated in the Intelligent Information Management system are be-
sides other components, data utilization functions, e.g., for predictive analytics,  
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Figure 3. In-situ data from sensors will be transferred to database and compared with 
environmental and COPERNICUS data. Growth data and temperature and coordinates 
during delivery will also be added. Algorithms will then create result data to be shown for 
specific target groups. 
 
system optimization, and diagnosis and anomaly detection. The two will be de-
scribed in the following sections. 

3. Aquaponics System Optimization 

Due to the structure of the DRAPS system (double recirculation), the optimization 
of the RAS and the Greenhouse-Hydroponics system can be done separately (see 
Figure 4) to get optimal conditions for both fish and crops, provided the pro-
duction cycles and quantities of the fish and plants are optimized appropriately 
in the design phase. To find the optimal start date for fish production, the sys-
tem should be run several times with different start dates for the fish production, 
because the plant production cycle is very seasonal dependent. 

As in [7], for the RAS and the Greenhouse Hydroponics the main objectives 
are to maximize fish and plant growth rate, reduce water use and water dis-
charge for environmental protection, maximize renewable energy factor, mi-
nimize energy for heating, electricity and pumping and find the lowest operation 
cost and the lowest CO2 emissions.  

For the RAS, the operators have the aim to maximize the revenue above the 
variable costs (π). Besides the direct monetary costs induced by the stock, water 
and electrical power use and feeding the fish, there are some costs which can in-
cur due to suboptimal system operation, e.g., if the filters are not completely re-
moving metabolic wastes such as ammonia which can even cause mortality to 
fish. We can express the decision making problem as follows 

, , , ,maximizeR W S PC E Q expensesP Q Cπ = ⋅ −                    (1) 
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Figure 4. Optimization strategy for DRAPS. Production cycles optimized in the design phase and then RAS and Greenhouse hy-
droponics optimized for their specific needs. 

 
where the yield price is expressed by QP  is the price of Fish ($/gram) and Q is 
the quantity of fish harvested (grams/liter). The variable costs expensesC  are a re-
sults of ( f e sC C C− − ) in which ( ), ,fC f R F D=  is total feed cost ($/liter), 

( )eC f E=  is total electricity cost ($/liter), and ( )s oC f S=  is total fingerling 
cost ($/liter). The control variables are the feed ration size R, feed to satiation F, 
water quality and quantity W, Stocking density S, Protein Composition of feed 
PC and Electricity rate E. 

Further, Equation (1) is subject to the system dynamics composed of the fish 
growth, the bioenergetics of the fish and water quality dynamics, e.g., the 
unionized ammonia (UAN) and dissolved oxygen feedbacks. To be able to fully 
utilize the available information and data, unlike in [7], where we used mathe-
matical models, the prediction models for the system dynamics used in the op-
timization framework are based on machine learning methods, to be specific, on 
the Long Short Term Memory neural Network (LSTM). 

For the Greenhouse hydroponics is as in the RAS to maximize the yield (Prof-
it). Optimized control of the climate conditions, e.g., light intensity is very sig-
nificant for obtaining good yield and quality for greenhouse products. This can 
be expressed as in Equation (2). 

( ) ( )
2, , , , ,
maximize Profit mcos cosLight Heat CO Electricity Fertilizer Water

P t P t= −           (2) 

where 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

cos fcos heat ecos ee wcos sw

sfcos sf ccos

P t P t H t P t E t P t W t

P t F t P t CO t

= + +

+ +
 

heatH  is the fuel consumption of the heating system, eeE  electricity energy 
consumed by the heating and the lighting system, swW  is the supplied water, 

sfF  are the supplied fertilizers and fcosP , ecosP , wcosP , sfcosP  and ccosP  are the 
fuel, electricity, water and fertilizer and Carbon dioxides prices, respectively. 

The above objectives are subject to constraints such as the dynamics of the 
system such as the heat and water balances, nutrient dynamics, hardware, weather 
and climate conditions, in/out feed tariffs and the legislation on feeding power 
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into the grid. 
The calculated optimal values for energy demands (heating, electricity (mainly 

for lighting and driving the system components), and pumping) are fed into the 
Energy Management System (EMS) to optimize the hybrid energy system (see 
Figure 2). 

4. Monitoring, Diagnosis and Anomaly Detection 

One of the reasons for developing an IIM system is system monitoring and 
timely anomaly identification. Hier all the information available is used to ob-
tain the system status. Due to the fact that aquaponics system processes are 
quite complex and usually staff at the farms lack professional knowledge, a 
monitoring, diagnosis and remote service assistance system as illustrated in 
Figure 5 is required. In the DRAPS system, data is monitored at different loca-
tions to maintain proper water chemistry and physics. Obviously, in an IoT-based 
aquaponics, faults can occur anywhere along the line from the facility itself, 
software up to the communication system, but here we are just looking at faults 
at the facility. The system takes sensors, actuators, fish and plant growth infor-
mation and their tolerance bands and calculates remotely the system status and 
recommendations for action. Instead of a human measuring the fish or plant 
growth up and again photos from IoT-Cameras in combination with deep 
learning estimators are used to estimate remotely the fish and plant growth in 
real-time. 

The core of the system is a Long-Short-Term Memory (LSTM) neural net-
work [12] for anomaly detection and symptom generation and a Bayesian Net-
work (BN) for fault localization [13]. The LSTM can predict future time point  
 

 
Figure 5. A monitoring, diagnosis and remote service assistance system. 
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values based on the past observations. It is a zero-positive machine learning sys-
tem [14] [15]. Therefore, it is trained on values from normal operation regime 
(does not require anomalous training samples). This is of practical significance, 
because anomalous samples are difficult to collect and varying. For the training, 
the dataset from the normal regime is divided into three portions. The LSTM is 
trained on the first dataset to get a model M, following this, the model M is used 
to the second portion of the dataset error vectors are computed and fit into a 
multi-variate normal distribution N. Further the Model M is applied to make 
predictions and compute error vectors for the third portion of the dataset. Then 
Mahalanobis distances are calculated and fit into a truncated normal distribution 
T. Finally, the inverse cumulative distribution function of T at a user-specified 
percentile is evaluated to be used as the anomaly detection threshold τ. For the 
inference, the system is applied to a New Dataset to make predictions. Error 
vectors and M-distances between these error vectors and the center of N are 
computed and finally the time-series values whose M-distances exceed the thre-
shold τ are considered as anomalies. 

For training the BN requires expert knowledge and historical data of symp-
toms and faults relationships. For inference, it takes the values calculated by the 
LSTM model as symptoms. The recommendations for action are sorted auto-
matically according to the importance of the parameters and reaction times re-
quired by the failures. In aquaponics, issues with water, electrical power, dis-
solved oxygen i.e., aeration system and oxygen system requires very fast response 
in minutes. Moderate response time-hours are required by issues of temperature, 
carbon dioxide, pH, alkalinity, ammonia-nitrogen nitrite-nitrogen, nitrate-nitrogen, 
because they are normally slow changing.  

As Illustrated in Figure 3, all the information calculated by the models is fed 
back into the IIM system for general use. 

5. Results 

An IIM system for an integrated RAS and hydroponics system model was con-
structed successfully. Sample results of selected features of the developed system 
will be presented and discussed in the following. This will include the results of 
the system optimization, the monitoring and anomaly detection and the overall 
benefits of the IIM system.  

5.1. Results of Databased System Optimization 
5.1.1. Optimal Fish and Plant Growth 
Two example results of the optimization system will be shown to illustrate the 
capability of the system to predict for long and short-terms as required by dif-
ferent services, e.g. the planning department is more interested in the end 
outcome and the operational department would like to know the short-term op-
erational controls. The optimization of the RAS will be used to illustrate the 
long-term and the optimization of the Greenhouse hydroponics system the 
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short-term. 
For the RAS, the fish growth optimization problem was setup as an optimal 

control problem with free final time. Therefore, the final growth state was set to 
700 g of weight. The other parameters such as the filter efficiencies for removing 
metabolic waste in the system were set to 0.95 for the biological filter and 0.5 for 
the mechanical filter. These filter parameters were obtained through experi-
ments. It was found out that when the real aquaponics system had stabilized, the 
efficiency of the biological filter and the mechanical filter where only 0.95 and 
0.5, respectively. The results can be seen in Figure 6. It can be seen that the fish 
growth continually upto the final state of 0.7 kg with some reactions to the 
change in temperature. Correspondingly the objective function also increases in 
the same manner. The requirement of fresh water and the key metabolic waste 
values are also shown. The value of the unionized ammonia which is very dan-
gerous to the fish was kept under its maximum. The values in the second figure 
are normalized.  

The control variables ration size R and protein content D can be seen in the 
lower part of Figure 6. It can be seen that the ration size R was always kept as 
high as possible at 0.8 and the protein content D at 0.3 and then went down for 
the older fish. It could be deducted that the limiting factor for the whole system 
was the unionized ammonia. Unionized ammonia is introduced into the system 
by the protein content, so the there are two ways of controlling this, one is to 
supply more fresh water and the other one is to reduce the amount of protein in 
the feed. It can be seen that in this case the optimization algorithm could solve 
this problem by just setting the protein values as low as possible according to the 
fish growth stage. This saves money for the feed which is lower and also fresh  
 

 
Figure 6. Optimal fish growth in RAS (top), water conditions (middle), controls variables 
(bottom). 
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water is not required which saves more money. 
The predictive control shows good results as expected (Figure 7). The predic-

tion horizon was set to 21 days which is considered short-term. Similar beha-
viour for all days can be observed. To maintain the minimum required green-
house inside temperature, heating is switched on during the night just enough so 
that it is just above the required temperature. The heating is not higher than is 
necessary to keep this temperature. It can also be seen that the CO2 production is 
on during the day to increase the CO2 concentration which is require for photo-
synthesis. As expected, the CO2 production is shut down if the ventilation is on, 
because the increase in yield does not cover the cost to maintain a higher CO2 
concentration with ventilation on. When the outside temperature makes the in-
side temperature rise to high, the ventilation is automatically opened. 

Beside the optimization for the fish and plant growth, some econometric, en-
vironmental optimization for the complete system in terms of renewable energy, 
waste water discharge, fresh water use and supplementary fertilizer use was also 
performed and some of the results will be shown and discussed in the following. 

5.1.2. Optimal Water and Fertilizer Use 
Using models, the optimal water exchange flowrate between RAS and hydro-
ponics area was determined. At the demo site, it was found through optimiza-
tion that the sedimentation tank should be emptied once a week to supply water 
to the hydroponic area. This interval was sufficient to keep nutrient concentra-
tions in the RAS safe for optimal fish growth and was enough to supply all NFT 
channels with enough water to cultivate tomato with optimal fruit yield. In the 
optimized aquaponics system no water discharge is required, no nutrients from 
the RAS are wasted. Furthermore, the system can predict an ideal fertilizer re-
gime for optimal plant growth based on shortage in nutrient from RAS saving 
fertilizer costs and increasing yield. 

In Figure 8 the results of an aquaponics system with 40 m3 fish tanks coupled 
with a 1000 m2 hydroponics system which can produce five tons of Tilapia and 
75 tons of tomato yearly is given. In the top of the Figure, one can see that in the 
summer months, the RAS produces more than enough water for the hydropon-
ics system. However, about 530 m3 of fish water per year is in excess and need to 
be discarded, otherwise if recirculated, it will cause the fish to die due to intoxi-
cation by the metabolic waste such as ammonia and nitrates. This is because in 
the winter months, the crops are too small and their demand for nutrients is low. 
Therefore, all the nutrients produced by the RAS cannot be utilized by the crops, 
here in our case tomatoes.  

In the lower part of Figure 8, the nutrients balance (nutrients produced by the 
RAS, the nutrients uptaken by the tomatos, and the deficiency, i.e., the nutrients 
required in fertilizer form) is shown. Here, it is obvious that the crops re-
quires much more nutrients than the amount produced by the RAS. Therefore, 
additional fertilizer for the crops is required, which amounts to about 171 kgN  
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Figure 7. Sample results of optimization of the greenhouse climate under real world weath-
er conditions over 7 consecutive days. 
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Figure 8. Water and nutrient balance of the aquaponics and their utilization by the crops. 
 
fertilizer per year. This irregular distribution in the summer and winter months 
makes us conclude that only 26% of the required nitrates can be really utilized 
due to the nutrient water discharge, even though the RAS can theoretically 
supply up to 56% of the required nitrates by the crops.  

5.1.3. Optimal Energy Allocation and Utilization 
The optimization of the Hybrid Energy system used several datasources, such as 
meteorological data, energy data demanded by the aquaponics system such as 
for heating, cooling, lighting, pumping, etc. The results of the optimization are 
shown in Figure 9 and Figure 10. It can be seen in Figure 9 that all demand 
requirements of all forms (heating, pumping, electricity) are met considering the 
availability of the resources and according to the given priorities of utilization of 
different energy sources. The figure also shows the contributors at the instance 
in time. Heat energy is mainly is satisfied by the by the biomass plant and the 
FPC in the hours from 8 to 16. 

In Figure 10(a), the energy production rates of the different sources are 
shown. It can be seen that the energy produced by the wind turbine fluctuates a 
lot and that the energy suppliers based on the solar radiation (PV and FPC) have 
their maximum production capacity of at midday and zero at night. Small hy-
dropower and biomass have constant production rate as they are driven by 
steady water flow and a constant supply of heating material was assumed, re-
spectively. Figure 10(b) shows that the excess electrical energy mainly produced  
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Figure 9. Energy demand and supply contributions of different sources. 
 

 
Figure 10. (a) Energy production by different sources and (b) Electrical energy allocation 
to/from Battery/Grid. 
 
by wind is transferred to the power grid throughout the day. The battery start in 
an empty state and the excess energy from the HES is stored gradually. On the 
other hand little energy is taken from the power grid.  
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5.2. Results of Monitoring and Anomaly Detection 

The monitoring and anomaly detection system constantly collects data of the 
whole system and compares it with the expected values form the tolerance bands 
of the sensors and the predicted growth by the models. As an overview, an ex-
traction of the system status produced by the monitoring system is shown below: 
 

 
 

Following the procedure described in Section 2.1, we prepared three datasets 
from the 2 years data in the ratio of 50% dataset 1 to train the LSTM to get a 
model M, 30% dataset 2 used to compute error vectors with model M and fit in-
to a multi-variate normal distribution N, and 20% dataset 3 where the model M 
is applied for testing the predictions. For the LSTM model, the input dimensions 
were determined by the sum of the number of sensors, the number of No. of ac-
tuators and the growth prediction model outputs and for the structure, a dro-
pout layer with dropout rate of 0.2, a hidden layer with 100 neurons, another 
dropout layer of rate 0.6, a dense layer and relu) was defined. The key hyperpa-
rameters (batch size = 1, learning rate = 0.7 and number of epochs = 50) were 
tuned using Bayesian optimization [16] while checking the performance of the 
system.  

The results are shown in Table 1 and Figure 10. For example, for the dis-
solved oxygen, the network achieved a training MAE of 0.006 and a test MAE of 
0.002. For all the sensors and actuators, the LSTM model had an average recall 
rate of 0.87, precision rate of 0.533 and Fβ-score of 0.0825. 

Figure 11 shows exemplary the results for the water quality (nitrate and am-
monia), plant and fish growth, respectively. With the system, alarms and rec-
ommendations for corrective measures are triggered as can be seen in the Fig-
ures 11(a)-(d). For example, in Figure 11(a), anomaly was detected and con-
firmed in ammonia concentration. The system suggested through the Bayesian 
fault localization system that either the oxygen sensor or the directly the ammo-
nia sensor was faulty. Due to the shift in the values, the system further suggeste-
da recalibration of the sensors with the first option ammonia sensor and an SMS  
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Table 1. Results of the anomaly detection system compared to a Bayesian detector. 

Detection/Fault localization Data required Precision Recall Fβ-score 

Our anomaly detector Zero-positive 0.49 0.872 0.533 

Bayesian anomaly detector Positive examples 0.51 0.876 0.542 

Our Bayesian fault localization Positive examples 0.88 0.78  

 

 
Figure 11. (a) Anomaly detected for ammonia, (b) Plant growth rate deteriorating alarm at 70th day (c) Nitrate issue occur after 
320 days, (d) retardation in fish growth registered and corrected. 

 
was sent to the operator console.  

In Figure 11(c), the system detected some limiting factors issues, in this case a 
controller outage for the nitrates was found as the fault by the Bayesian fault lo-
calization system and a message “Nitrate critical alert, possible cause controller 
defect” was sent. 

For the long-term development of the aquaponics products (fish and toma-
toes), the system collects actual data from the sensors and predict the future 
growth rate using the fish and tomato growth models. In Figure 11(b), after 65 
days, the tomato growth rate was predicted to be stagnating. Therefore, it was 
recommended to add extra fertilizer to the system to increase the electroconduc-
tivity (EC) and in Figure 11(d), the fish growth rate was predicted to be slower 
than expected. Several possible causes for the deterioration were identified to be 
the feed rate (first option) and too high Biochemical Oxygen (BOD) (second op-
tion). It can be seen that increasing the ration size solved the problem after a 
while. 
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5.3. Intelligent Manufacturing Execution System (MES) 

The IoT enhanced Manufacturing Execution System (MES) is based on the IIM 
system and is the front end of the system. It has several views for visualizing dif-
ferent functions customized for different stakeholders, listed in Figure 3. One 
important feature of the INAPRO aquaponics system is to minimize fresh water 
less than 3%, energy and nutrient supplies [5]. This can only be achieved by ap-
propriate design of the fish and crop mixture, considering the fish to crop ratio, 
when to sow the crops etc. and to monitor the system to see whether or not, it 
performing as designed. Therefore, the MES has a view to show the system with 
all the material flow (water, energy and nutrients) and also how the system will 
be performing for a given prediction horizon. The main view of the MES is 
shown in Figure 12. It shows the economics (current harvest, losses, production 
costs, current sale prices of the products, actual feeding costs etc.) and the con-
sumption rate of the resources. Knowing the future developments of the system, 
the operator can take corrective measures to make sure that the system is be-
having as required. The MES is responsible for 
 

 
Figure 12. Main view of the IIM system. 
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1) Cost and yield monitoring, product tracking on a user-friendly dashboard. 
2) Enables production without human intervention and maintain accountable 

and controlled production flow.  
3) Visualizing quality, costs (energy, food, water, heating, etc.) and productiv-

ity in comparison to market prices.  
4) Assists users in feed and nutrient calculation and other planning issues and  
5) Log farm activities, e.g. Log health & safety activities, Fish feeding tracea-

bility and Plants harvest traceability. 

6. Key Benefits of the Intelligent Management System 

Figure The modularity, scalability and viability of the of the INAPRO system has 
been proven in many demonstration sites, e.g., in Germany with 573 m2 green-
house produces 24 tonnes of African catfish and 11 tonnes of tomatoes and 
another large scale site in China of 2100 m2 of greenhouse produces 30 tonnes of 
fish and 360 tonnes of vegetables. All the sites have been running at <3% fresh-
water input. The resulting benefits of the system are  

1) Improved productivity. DRAPS provides optimized conditions for both fish 
and plants. 

2) Costs and resources savings. Efficient double use of water and energy, 
model-based optimization, reducing sewage and the amount of fertilizer used. 
The reduction of fish water emission saves costs for freshwater and wastewater 
treatment and protects the environment and regaining evaporated water.  

3) Reduction of freshwater consumption. Compared to conventional (RAS) 
which requires a daily water input representing 10% of the total amount of water 
circulating [4] [6], INAPRO cuts this rate to 1% - 3%. The freshwater demand is 
minimized by a secondary clarification step in the RAS circuit and using evapo-
rated water from the plant section which is regained via cooling traps.  

4) Automated system management. Production conditions are adjusted au-
tomatically model-based on the analysis of different sensors and historical data  

5) Competitive advantages. High-value products for consumers who are con-
cerned about the environmental impact. Transparency through product tracing, 
achieving higher retail prices. 

7. Conclusion 

An information management system for aquaponics has been presented. The 
aquaponics system is based on the double recirculation technology, which enables 
the set-up of optimal conditions for both fish and plants. Fish and plant health 
and welfare are ensured with the help of smart sensors monitoring water quality 
and biological parameters of the fish and plants in the fish tanks, before and af-
ter the filters, fertilizer requirements and intelligent information management 
(e.g., remote monitoring diagnosis and anomaly detection based on collected 
data, predictive analytics and system optimization for minimizing use of re-
sources and maximizing yield). Cameras are installed to measure fish and plant 
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growth. It is implemented according to the Aquaculture industry 4.0 and its 
management system does not follow the outdated classical automation pyramid 
with its bottom-up, layer to layer structure. It looks at the digitalization of the 
whole value chain from production to customers. This will enable full traceabili-
ty and transparency in the processes, increasing consumers’ trust in aquaponics 
products. The sustainability and efficiency use of natural resources will benefit 
from the implementation of digital technologies and data management in real-time 
monitoring of water and aquaponics farm conditions. 
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