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Abstract

To transfer a satellite or a spacecraft from a low parking orbit to another orbit
requires one of the many orbital transfers. These orbital transfers need to de-
termine some orbital elements of the initial and final orbits as perigee and
apogee distances. The transfers compete to achieve the transition with mi-
nimal consumption of energy, transfer time, as well as the highest accuracy of
transition. In the present research, certain mathematical procedures imple-
mentable with the help of computers will be employed to investigate the two
important non-coplanar tangential transfers between circular orbits called the
Hohmann and bi-elliptic transfers. Also, a comparative study between Hoh-
mann and bi-elliptic transfers will be established. At the end of present study,
we will be able to determine the lowest value of the velocity change Av and
the best transfer between the Hohmann and bi-elliptic transfers with minimal
fuel consumption.
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1. Introduction

The subject of mathematics has been found to play vital roles in many science
and technological professions including the space science and astronomy to state
a few. The present space technological advancements resulted in maneuvering or
rather transferring satellites and spacecrafts from low parking orbits to the final

desired orbits. These transfers battle to attain minimal time, consumption of
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energy and the highest accuracy of transition among others. In particular, a sa-
tellite accomplishes orbital maneuvers to rectify the shape, size, or the site of a
satellite [1]. In some stages for most satellites, we need to change the orbital ele-
ments of a satellite. The orbital elements that need to be changed depend on
whether the orbits are in the same plane or non-coplanar. When a spacecraft is
launched to the space or to the orbit around the Earth, is it placed in the begin-
ning at the initial orbit or law parking orbit, and then to appropriate orbit.
Transferring a spacecraft from one orbit to the other requires a large amount of
fuel [2]. The spaceship is transferred to a final orbit in which it is planned to
spend its life or accomplish its mission by using different types of transfer orbits.
The transfer orbit can be defined in orbital mechanics as an intermediate ellip-
tical orbit that is used to move a spacecraft from one orbit to the other. There are
several types of transfer orbits that vary in their required energy efficiency and
speed of transfer [3] [4]. For more relevant literature on the orbital maneuvering
for spacecraft and rockets, one can see [5] [6] [7] [8] [9] and the references the-
rewith. However, in the present research, certain mathematical procedures im-
plementable with the help of computers will be employed to investigate the two
important non-coplanar tangential transfers between circular orbits called the
Hohmann and bi-elliptic transfers. Also, we are conducting a comparative study
of these conversions. At the end of the present study, we can determine which
among the transfers has the lowest value of the velocity change Av with mi-
nimal fuel consumption. The organization of the paper takes the form: Section 2
gives the complete analysis of the Hohmann transfer; while Section 3 gives that
of bi-elliptic transfer. Section 4 presents the computational algorithms of the
transfers. Section 5 discusses the obtained results, and Section 6 gives some con-

cluding remarks.

2. The Hohmann Transfer

In this section, we give a complete analysis of the Hohmann orbital transfer
comprising of transfers on the same plate and plane change, and the determina-

tion of maximum value and plane changes among others.

2.1. Hohmann Transfer on the Same Plane

The Hohmann orbital transfer is one of the most famous transfers. It moves be-
tween two circular or elliptical orbits of dissimilar radii in the same plane with
the lowest possible amount of energy and highest fuel efficiency. Figure 1 shows
the velocity of the first impulse, V,, and the velocity of the second impulse, V,,
can be determined from vis-viva equation and by using the velocities of the ini-

tial (LER) and final (GEO) orbits, v, and V,, given respectively by

G
)7
vV, = |&—, 1
01 '1 (1)
u
= —_—, 2
C2 rz ( )
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Figure 1. Hohmann transfer.

v = [P 3)
n a

2
v, = |[E-E (4)
r, a
The first impulse is given as:
2
Av, = va—vol|: ﬁ[ "2 —1]. (5)
rl rl + rZ
The second impulse is given as:
2
Av, =V, —vb| = ﬁ{l— _EJ (6)
r, n+r
The total impulse for the Hohmann transfer is:
AV, = AV, +Av,, 7)
or
A_(lij [2R | \ﬁ_l, ®
Ve, R/)V1+R R

I, r+r
where R=-2%, a=12

is the Semi-major axis of transfer ellipse, and
r‘l

1 =398600.44 km® / s® represents the Earth’s mass gravitational constant.

2.2. The Maximum Value of Hohmann Transfer

Differentiating Equation (8) w.r.t. R and equating the resultant to zero, we ob-

1 1
%(2Rj2+ R—lz(ZRJZ_ 13:0. ©)
R°\1+R R(1+ R) 1+R IR?
Then it is easy to obtain the following from Equation (6) after multiplying by

tain
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3 3
J2(1+R)2 R? and thereafter squaring both sides,
F(R)=R®-15R* ~9R-1=0. (10)

Now, since the coefficients in Equation (10) have only one change in the sign,

only one real root is posed based on the Descartes rule, and is given by

R =R, =5+ 447 cos ltan’lﬁ =15.58176--- (11)
3 37
The Maximum value of % is
Ve,
(AVH J — 0.536258. (12)
V
G max

It is remarkable to mention here that for the bi-elliptic transfer, the limiting
value R is determined to be R =R,, =15.58176, which is exactly the same as in

the Hohmann transfer.

2.3. Superposition of Escape and Return Trajectory and Hohmann
Transfer

The non-dimensional velocity increase for the total maneuver is

Av, =Av, e+Av r, (13)
v,
AV, :(«/5—1)(1+i]. (14)
Vol V°1
Then, we get
AV, =(v2-1) 1+\/I . (15)
Ve, R

As Figure 2 shows, the curves of Av,, and Av, intersect. To seek for the

point of intersection, it is possible to equate Equations (8) and (15)

S Rt

multiply by JR and squaring both sides of the resulting equation, we then get

2(R—1)2 :2R+2\/ﬁ(\/§—2)+(x/§—2)2,

1+R
that is

1-3R
m—(S—zﬁ)mﬁ(Z—Zﬁ),

multiply by R+1 and squaring both sides of the resulting equation, we get
(1-3R)’ ~2(1-3R)(1+R)(3-2v2 )+ (L+ R)’ (3-22)
—(1+R)’ R(2—2J§)2 ,
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Figure 2. Superposition of escape and return trajectory and Hohmann transfer.

after some little analysis, we get

4R(7—6«/§)+4R2(5—2x/§)_R3:O. »

" 4(3-242)  4(3-242)

The required equation is thus obtained as
R3—(7+4\/§)R2+(3+«/§)R—1=0. (17)

Now, since the coefficients in Equation (17) have only one change in the sign,

then three roots are posed based on the Descartes rule, and given by

R =0.146554, R =0.571535, and R =11.93876.

We therefore reject the first two roots since we care about the case when

r,>1;ie. R>1.So,the only root in this case is:

R =R, =11.9387655. (18)

2.4. Plane Change Transfers

To derive the velocity increments at each plane change, consider the vector dia-
gram in Figure 3. This vector diagram gives the geometric relationships between,
for example the initial velocity V,, the velocity on the transfer orbit v, , and the

total velocity change Av,. On using the law of cosines, we get:

Av, =\/vf+vj—2vxvy cosd;, j=123. (19)

In the same way, we can find the second and third velocities Av, and Av,.

Therefore, the increment at all three plane changes is given by:

AV = AV, + AV, + Av,. (20)

total

2.5. Hohmann Transfer with Plane Change

Transfer modes (Figure 4)
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Figure 3. Velocity triangle.
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Figure 4. Hohmann transfer with plane change.

1) The Hohmann transfer is an optimal two impulse transfer. A departure is
made from initial orbit with plane change at first impulse.
2) Plane change at second impulse results from ellipse orbit to final orbit. A

circular consideration is also considered with regards to the initial and final or-

bits.

The first plane change
From Equations (1) and (3), by using Equation (19), 6 =6,, we have:

AV =
- =(1+Q7 -2Q, cos 4, )7, (21)
where
2r, { 2R
Ql = _2 = _—
L+, 1+R
The second plane change
From Equations (2) and (4), by using Equation (19), € =0, , we have:
(22)

AV, 1
V—b =Q, (1+Q} —2Q, cosb, ),
G

where
n 1 21, 2
= [Lt=,/= and Q, = =, |—.
R \r, \R R \jrlJrr2 VR+1

Open Access Library Journal

DOI: 10.4236/0alib.1107101


https://doi.org/10.4236/oalib.1107101

A. A. Algarni

The total velocity increment of Hohmann transfer can be obtained from Equ-
ation (20) as:

1

AV _ (1+Q7 —2Q, cos g, )% +Q, (1+Q3 —2Q, cos, )2 (23)

V01
3. The Bi-Elliptic Transfer

In this section, we give a complete analysis of the bi-elliptic orbital transfer
comprising of transfers on the same plate and plane change, and the determina-

tion of the plane changes among others.

3.1. Bi-Elliptic Transfer on the Same Plane

The bi-elliptic orbital transfer is the orbital maneuvering that transfers a space-
craft from one orbit to the other. The transfer mode of the bi-elliptic transfer is
shown in Figure 5.

The bi-elliptic transfer’s initial impulse tangentially exerted at the initial (first)

circular orbit with radius I, is given as:

av = [P s (24)
Loa yn

nL+r
L denotes the Semi-major axis of first elliptic transfer orbit. By

where a, =
substituting @, into Equation(24), we get:

AV 2r,
&= [—-1. (25)
Ve, L+,

The second impulse of the bi-elliptic transfer tangentially exerted at the

apoapsis of the first elliptic transfer orbit is given as:

= (26)
Vo
The third impulse is given as:
A 2r,
Yo i( —“—1} 27)
A n\\rn+r,

The total impulse for the bi-elliptic transfer is thus determined by summing

Equations (25), (26) and (27) as:
Ao _ [28 \ﬁ ERR F [25 1) o
Ve, 1+S S 1+S RIVR+S

where S=r/r,.
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Initial

Trans,

Figure 5. Bi-elliptic transfer.

3.2. Bi-Elliptic Transfer with Plane Change

Transfer mode (Figure 6)

1) A departure is made from orbital plane 1 with plane change angle €, .

2) At apoapsis of the resulting elliptic orbit, the second impulse exerted to
change the orbit plane through an angle 6, .

3) Finally, at apapsis of the resulting second ellipse a final plane change
through an angle 6, puts the vehicle in the desired final orbit, that is the orbital
plane 2. The initial and final orbits are taken to be circular.

The first plane change
1
AV = (1+HZ ~2H, cos, )2, (29)
Vo
where
- 2r, | 2S
Yon+r V1+S
The second plane change
1
%: H, (1+ HZ ~2H, cos4, )2 (30)
o
where
H _ 2rer2 _ 2R and H _ r;L(r2+ri)_ R+S
2R (n+r) \S(R+S) P An(n+r) \R(L+S)
The third plane change
A 1
% — H, (1+ HZ ~2H, cosd, )7, (31)
Vo,
where

H, = i=\/I and Hg = 2h__ / 25 :
r, R r+r R+S
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Figure 6. Bi-elliptic transfer with plane change.

By using Equation (20) and from Equations (29), (30) and (31), we have for
the total velocity increment relative to the initial velocity v, the following ex-

pression:

A 1 1
% — (14 H2 ~2H, 0086, )7 + H, (1+ HZ ~2H, 054, )?
V

o (32)
1
+H, (14 HZ - 2H  cos 6, ).

4. Computational Development of Hohmann and Bi-Elliptic
Transfers with Plane Change

This section outlines the two algorithms designed for both the Hohmann and
bi-elliptic transfers with the help of Mathematica software.

Module list for Hohmann transfer
HOHM(r1_,r2_,61_,62_):= Module[{m =1},

vclz\/i;vd:\/i;

rl r2

dva = \/7\/ —2c0s(61) 212 + 22 +1
ri+r2 rl+r2

dvb = ((J cos(02), |21+ 2 4
rl+r2 rl+r2

dvH =dva + dvb].

Module list for bi-elliptic transfer
BIELLEPTIC(r1_,r2_,ri_,01_,02_,63_) = Module[{m =398599.},

dva = \/7\/ 2c0s(61) 2n + 21 +1;
rl+ri rl+ri
dvb _\/7 rir2 r1(r2+r!)+r1(r2+r!)+1;
r|(r2+r| r2(r1+r|) r2(rl+ri)
(\FJ 2c0s(63), -2+ 21,
r2+ri r2+r|

dvB = dva + dvb + dvc].
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5. Results and Discussion

It is noted from the investigation carried out so far that there exist R,, and R,

as the two critical ratios. These ratios give the following four inequalities:

1<R<9, 9<R<R,, R <R<R,, R>R,.

Thus, a comparison analysis between the Hohmann and bi-elliptic transfers
will be carried out in each range for the case I, > 1, > 1.

1) The range 1<R<9

For all R in the range 1<R <9 and for all S >R, the Hohmann transfer is
better than the bi-elliptic transfer as depicted in Figure 7.

2) Therange 9<R<R,

For all R in the range 9<R<R, and for all S>R the Hohmann transfer
is better than the bi-elliptic transfer as depicted in Figure 8.

3) Therange R, <R<R,

Forall Rin therange R, <R<R,, andforall S>R the Hohmann transfer
is better than the bi-elliptic transfer as depicted in Figure 9.

4) The range R>R,

For all R in the range R>R,, and for all S >R the Hohmann transfer is
better than bi-elliptic transfer as depicted in Figure 10.

Z3p

=== Hohmann

2.2} —— Bi-elliptic

2L S
2200 0 T
1.9} R

1.8} N

L N,
fleffle e A N

Figure 7. Graphical illustrations for S'= 10.

202 _—-——\_

> 2.00} === Hohmann ]
=l — Bi-elliptic
1.98} 1
1.96 1

90 92 94 96 98 10.0 10.2 104
R

Figure 8. Graphical illustrations for §'= 30.
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Figure 9. Graphical illustrations for §= 20.
\ : : -
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1.94+ 1
> === Hohmann
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1.90 ™~ ~~mu__ i
1.88}, | | N
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R

Figure 10. Graphical illustrations for §'= 35.

6. Conclusion

In the present paper, certain mathematical algorithms to investigate the two
important non-coplanar tangential transfers between circular orbits called the
Hohmann and bi-elliptic transfers have been devised. The obtained results from
the two transfers were subjected to a comparative study in order to determine
which among the two is better, and thereafter depicted the obtained results
graphically. The suitable transfer was stated in each category of ranges according
to the ratio between the final to the initial radii and thus became obvious to de-
termine the best and or efficient transfer among the two. In addition, the Hoh-
mann transfer turned out to be the best maneuvering transfer based on the
demonstrated optimality and sensitivity analysis. While for computational de-
velopments, mathematical software has been utilized to simulate the obtained

analytical procedures.
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