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Abstract 
To transfer a satellite or a spacecraft from a low parking orbit to another orbit 
requires one of the many orbital transfers. These orbital transfers need to de-
termine some orbital elements of the initial and final orbits as perigee and 
apogee distances. The transfers compete to achieve the transition with mi-
nimal consumption of energy, transfer time, as well as the highest accuracy of 
transition. In the present research, certain mathematical procedures imple-
mentable with the help of computers will be employed to investigate the two 
important non-coplanar tangential transfers between circular orbits called the 
Hohmann and bi-elliptic transfers. Also, a comparative study between Hoh-
mann and bi-elliptic transfers will be established. At the end of present study, 
we will be able to determine the lowest value of the velocity change v∆  and 
the best transfer between the Hohmann and bi-elliptic transfers with minimal 
fuel consumption. 
 

Subject Areas 
Applied Statistical Mathematics, Classical Mechanics 
 

Keywords 
Orbital Transfer, Hohmann Transfer, Bi-Elliptic Transfer, Non-Coplanar 
Maneuver 

 

1. Introduction 

The subject of mathematics has been found to play vital roles in many science 
and technological professions including the space science and astronomy to state 
a few. The present space technological advancements resulted in maneuvering or 
rather transferring satellites and spacecrafts from low parking orbits to the final 
desired orbits. These transfers battle to attain minimal time, consumption of 
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energy and the highest accuracy of transition among others. In particular, a sa-
tellite accomplishes orbital maneuvers to rectify the shape, size, or the site of a 
satellite [1]. In some stages for most satellites, we need to change the orbital ele-
ments of a satellite. The orbital elements that need to be changed depend on 
whether the orbits are in the same plane or non-coplanar. When a spacecraft is 
launched to the space or to the orbit around the Earth, is it placed in the begin-
ning at the initial orbit or law parking orbit, and then to appropriate orbit. 
Transferring a spacecraft from one orbit to the other requires a large amount of 
fuel [2]. The spaceship is transferred to a final orbit in which it is planned to 
spend its life or accomplish its mission by using different types of transfer orbits. 
The transfer orbit can be defined in orbital mechanics as an intermediate ellip-
tical orbit that is used to move a spacecraft from one orbit to the other. There are 
several types of transfer orbits that vary in their required energy efficiency and 
speed of transfer [3] [4]. For more relevant literature on the orbital maneuvering 
for spacecraft and rockets, one can see [5] [6] [7] [8] [9] and the references the-
rewith. However, in the present research, certain mathematical procedures im-
plementable with the help of computers will be employed to investigate the two 
important non-coplanar tangential transfers between circular orbits called the 
Hohmann and bi-elliptic transfers. Also, we are conducting a comparative study 
of these conversions. At the end of the present study, we can determine which 
among the transfers has the lowest value of the velocity change v∆  with mi-
nimal fuel consumption. The organization of the paper takes the form: Section 2 
gives the complete analysis of the Hohmann transfer; while Section 3 gives that 
of bi-elliptic transfer. Section 4 presents the computational algorithms of the 
transfers. Section 5 discusses the obtained results, and Section 6 gives some con-
cluding remarks. 

2. The Hohmann Transfer 

In this section, we give a complete analysis of the Hohmann orbital transfer 
comprising of transfers on the same plate and plane change, and the determina-
tion of maximum value and plane changes among others.  

2.1. Hohmann Transfer on the Same Plane 

The Hohmann orbital transfer is one of the most famous transfers. It moves be-
tween two circular or elliptical orbits of dissimilar radii in the same plane with 
the lowest possible amount of energy and highest fuel efficiency. Figure 1 shows 
the velocity of the first impulse, av , and the velocity of the second impulse, bv , 
can be determined from vis-viva equation and by using the velocities of the ini-
tial (LER) and final (GEO) orbits, 

1c
v  and 

2cv  given respectively by  

1
1

,cv
r
µ

=                            (1) 

2
2

,cv
r
µ

=                            (2) 
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Figure 1. Hohmann transfer. 

 

1

2 ,av
r a
µ µ

= −                           (3) 

2

2 .bv
r a
µ µ

= −                           (4) 

The first impulse is given as:  

1
2

1 1 2

2
1 .a a c

rv v v
r r r
µ  

∆ = − = −  + 
                 (5) 

The second impulse is given as:  

2
1

2 1 2

2
1 .b c b

rv v v
r r r
µ  

∆ = − = −  + 
                 (6) 

The total impulse for the Hohmann transfer is:  

,H a bv v v∆ = ∆ + ∆                         (7) 

or  

1

1 2 11 1,
1

H

c

v R
v R R R
∆  = − + −  + 

                  (8) 

where 2

1

rR
r

= , 1 2

2
r ra +

=  is the Semi-major axis of transfer ellipse, and 

3 2398600.44 km sµ =  represents the Earth’s mass gravitational constant.  

2.2. The Maximum Value of Hohmann Transfer 

Differentiating Equation (8) w.r.t. R and equating the resultant to zero, we ob-
tain  

( )

1 1
2 2

2 2 3
2

1 2 1 2 1 0.
1 11 2

R R R
R RR R R R

−−   + − =   + +   +
            (9) 

Then it is easy to obtain the following from Equation (6) after multiplying by 
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( )
33
222 1 R R+  and thereafter squaring both sides,  

( ) 3 215 9 1 0.F R R R R= − − − =                   (10) 

Now, since the coefficients in Equation (10) have only one change in the sign, 
only one real root is posed based on the Descartes rule, and is given by  

11 35 4 7 cos tan 15.58176
3 37MR R − 

= = + =  
 

          (11) 

The Maximum value of 
1

H

c

v
v
∆

 is  

1 max

0.536258.H

c

v
v

 ∆
=  

 
                     (12) 

It is remarkable to mention here that for the bi-elliptic transfer, the limiting 
value R is determined to be 15.58176MR R= = , which is exactly the same as in 
the Hohmann transfer. 

2.3. Superposition of Escape and Return Trajectory and Hohmann  
Transfer 

The non-dimensional velocity increase for the total maneuver is  

,v v e v r∞ ∞ ∞∆ = ∆ + ∆                       (13) 

( ) 2

1 1

2 1 1 .c

c c

vv
v v

∞
 ∆

= − +  
 

                    (14) 

Then, we get  

( )
1

12 1 1 .
c

v
v R

∞
 ∆

= − +  
 

                    (15) 

As Figure 2 shows, the curves of Hv∆  and v∞∆  intersect. To seek for the 
point of intersection, it is possible to equate Equations (8) and (15)  

( )
1 1 1
2 2 21 2 1 11 1 2 1 1 .

1
R

R R R R

 
       − − = − + −       +      

 

 

multiply by R  and squaring both sides of the resulting equation, we then get  

( ) ( ) ( )
2

22 1
2 2 2 2 2 2 2 ,

1
R

R R
R
−

= + − + −
+

 

that is  

( ) ( )1 3 3 2 2 2 2 2 ,
1
R R

R
−

− − = −
+

 

multiply by 1R +  and squaring both sides of the resulting equation, we get  

( ) ( )( )( ) ( ) ( )
( ) ( )

22 2

22

1 3 2 1 3 1 3 2 2 1 3 2 2

1 2 2 2 ,

R R R R

R R

− − − + − + + −

= + −
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Figure 2. Superposition of escape and return trajectory and Hohmann transfer. 

 
after some little analysis, we get  

( )
( )

( )
( )
2

3
4 7 6 2 4 5 2 2

1 0.
4 3 2 2 4 3 2 2

R R
R

− −
+ + − =

− −
            (16) 

The required equation is thus obtained as  

( ) ( )3 27 4 2 3 2 1 0.R R R− + + + − =              (17) 

Now, since the coefficients in Equation (17) have only one change in the sign, 
then three roots are posed based on the Descartes rule, and given by  

0.146554, 0.571535, and 11.93876.R R R= = =  

We therefore reject the first two roots since we care about the case when 

2 1r r> ; i.e. 1R > . So, the only root in this case is:  

1 11.9387655.R R= =                      (18) 

2.4. Plane Change Transfers  

To derive the velocity increments at each plane change, consider the vector dia-
gram in Figure 3. This vector diagram gives the geometric relationships between, 
for example the initial velocity xv , the velocity on the transfer orbit yv , and the 
total velocity change 1v∆ . On using the law of cosines, we get:  

2 2 2 cos , 1,2,3.j x y x y jv v v v v jθ∆ = + − =             (19) 

In the same way, we can find the second and third velocities 2v∆  and 3v∆ . 
Therefore, the increment at all three plane changes is given by:  

total 1 2 3.v v v v∆ = ∆ + ∆ + ∆                    (20) 

2.5. Hohmann Transfer with Plane Change 

Transfer modes (Figure 4) 
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Figure 3. Velocity triangle. 

 

 
Figure 4. Hohmann transfer with plane change. 

 
1) The Hohmann transfer is an optimal two impulse transfer. A departure is 

made from initial orbit with plane change at first impulse. 
2) Plane change at second impulse results from ellipse orbit to final orbit. A 

circular consideration is also considered with regards to the initial and final or-
bits.  

The first plane change  
From Equations (1) and (3), by using Equation (19), 1θ θ= , we have:  

( )
1

1
2 2

1 1 11 2 cos ,a

c

v
Q Q

v
θ

∆
= + −                   (21) 

where  

2
1

1 2

2 2 .
1

r RQ
r r R

= =
+ +

 

The second plane change 
From Equations (2) and (4), by using Equation (19), 2θ θ= , we have:  

( )
1

1
2 2

2 3 3 21 2 cos ,b

c

v
Q Q Q

v
θ

∆
= + −                  (22) 

where  

1 1
2 3

2 1 2

21 2and .
1

r rQ Q
r R r r R

= = = =
+ +
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The total velocity increment of Hohmann transfer can be obtained from Equ-
ation (20) as:  

( ) ( )
1

1 1
2 22 2

1 1 1 2 3 3 21 2 cos 1 2 cos .H

c

v Q Q Q Q Q
v

θ θ
∆

= + − + + −         (23) 

3. The Bi-Elliptic Transfer 

In this section, we give a complete analysis of the bi-elliptic orbital transfer 
comprising of transfers on the same plate and plane change, and the determina-
tion of the plane changes among others.  

3.1. Bi-Elliptic Transfer on the Same Plane  

The bi-elliptic orbital transfer is the orbital maneuvering that transfers a space-
craft from one orbit to the other. The transfer mode of the bi-elliptic transfer is 
shown in Figure 5.  

The bi-elliptic transfer’s initial impulse tangentially exerted at the initial (first) 
circular orbit with radius 1r  is given as:  

1 1 1

2 ,av
r a r
µ µ µ

∆ = − −                     (24) 

where 1
1 2

ir r
a

+
=  denotes the Semi-major axis of first elliptic transfer orbit. By 

substituting 1a  into Equation(24), we get:  

1 1

2
1.a i

c i

v r
v r r
∆

= −
+

                     (25) 

The second impulse of the bi-elliptic transfer tangentially exerted at the 
apoapsis of the first elliptic transfer orbit is given as:  

1

1
1

1

2

2 1 1 .
1

b

ic i i

v r r
rv r r r
r

 
 ∆  = −
 ++ 
 

              (26) 

The third impulse is given as:  

1

1

2 2

2
1 .c i

c i

v rr
v r r r

 ∆
= −  + 

                   (27) 

The total impulse for the bi-elliptic transfer is thus determined by summing 
Equations (25), (26) and (27) as:  

1

2 2 1 1 1 21 1 ,
1 11

B

c

v S S
Sv S S S R R S
R

 
   ∆

= − + − + −    + + +   + 
 

    (28) 

where 1iS r r= .  
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Figure 5. Bi-elliptic transfer. 

3.2. Bi-Elliptic Transfer with Plane Change  

Transfer mode (Figure 6) 
1) A departure is made from orbital plane 1 with plane change angle 1θ . 
2) At apoapsis of the resulting elliptic orbit, the second impulse exerted to 

change the orbit plane through an angle 2θ . 
3) Finally, at apapsis of the resulting second ellipse a final plane change 

through an angle 3θ  puts the vehicle in the desired final orbit, that is the orbital 
plane 2. The initial and final orbits are taken to be circular.  

The first plane change  

( )
1

1
2 2

1 1 11 2 cos ,a

c

v
H H

v
θ

∆
= + −                   (29) 

where  

1
1

2 2 .
1

i

i

r SH
r r S

= =
+ +

 

The second plane change  

( )
1

1
2 2

2 3 3 21 2 cos ,b

c

v
H H H

v
θ

∆
= + −                 (30) 

where  

( ) ( )
( )
( ) ( )

1 21 2
2 3

2 2 1

2 2 and .
1

i

i i i

r r rr r R R SH H
r r r S R S r r r R S

+ +
= = = =

+ + + +
 

The third plane change  

( )
1

1
2 2

4 5 5 31 2 cos ,c

c

v
H H H

v
θ

∆
= + −                 (31) 

where  

1
4 5

2 2

21 2and .i

i

rr SH H
r R r r R S

= = = =
+ +  
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Figure 6. Bi-elliptic transfer with plane change. 

 
By using Equation (20) and from Equations (29), (30) and (31), we have for 

the total velocity increment relative to the initial velocity 
1c

v  the following ex-
pression:  

( ) ( )

( )
1

1 1
2 22 2

1 1 1 2 3 3 2

1
2 2

4 5 5 3

1 2 cos 1 2 cos

1 2 cos .

B

c

v H H H H H
v

H H H

θ θ

θ

∆
= + − + + −

+ + −

      (32) 

4. Computational Development of Hohmann and Bi-Elliptic  
Transfers with Plane Change  

This section outlines the two algorithms designed for both the Hohmann and 
bi-elliptic transfers with the help of Mathematica software.  

Module list for Hohmann transfer  
HOHM(r1_, r2 _ , 1_, 2_) : Module[{ 1},mθ θ = =  

vc1 ; vc2 ;
r1 r2
m m

= =   

2r2 2r2dva 2cos( 1) 1;
r1 r1 r2 r1 r2
m θ= − + +

+ +
 

r1 2r1 2r1dvb 2cos( 2) 1;
r1 r2 r1 r2 r1 r2
m θ= − + +

+ +
 

dvH dva dvb].= +   

Module list for bi-elliptic transfer  
BIELLEPTIC(r1_, r2 _, ri_, 1_, 2_, 3_) : Module[{ 398599.},mθ θ θ = =  

2ri 2ridva 2cos( 1) 1;
r1 r1 ri r1 ri
m θ= − + +

+ +
 

r1r2 r1(r2 ri) r1(r2 ri)dvb 2cos( 2) 1;
r1 ri(r2 ri) r2(r1 ri) r2(r1 ri)
m θ + +

= − + +
+ + +

  

r1 2ri 2ridvc 2cos( 3) 1;
r1 r2 r2 ri r2 ri
m θ= − + +

+ +
 

dvB dva dvb dvc].= + +  
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5. Results and Discussion 

It is noted from the investigation carried out so far that there exist MR  and IR  
as the two critical ratios. These ratios give the following four inequalities:  

1 9, 9 , , .I I M MR R R R R R R R< < ≤ ≤ < ≤ >  

Thus, a comparison analysis between the Hohmann and bi-elliptic transfers 
will be carried out in each range for the case 2 1ir r r> > .  

1) The range 1 9R< <   
For all R in the range 1 9R< <  and for all S R> , the Hohmann transfer is 

better than the bi-elliptic transfer as depicted in Figure 7.  
2) The range 9 IR R≤ ≤   
For all R in the range 9 IR R≤ ≤  and for all S R>  the Hohmann transfer 

is better than the bi-elliptic transfer as depicted in Figure 8.  
3) The range I MR R R< ≤   
For all R in the range I MR R R< ≤  and for all S R>  the Hohmann transfer 

is better than the bi-elliptic transfer as depicted in Figure 9.  
4) The range MR R>   
For all R in the range MR R>  and for all S R>  the Hohmann transfer is 

better than bi-elliptic transfer as depicted in Figure 10.  
 

 
Figure 7. Graphical illustrations for S = 10. 

 

 
Figure 8. Graphical illustrations for S = 30. 
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Figure 9. Graphical illustrations for S = 20.  

 

 
Figure 10. Graphical illustrations for S = 35.  

6. Conclusion 

In the present paper, certain mathematical algorithms to investigate the two 
important non-coplanar tangential transfers between circular orbits called the 
Hohmann and bi-elliptic transfers have been devised. The obtained results from 
the two transfers were subjected to a comparative study in order to determine 
which among the two is better, and thereafter depicted the obtained results 
graphically. The suitable transfer was stated in each category of ranges according 
to the ratio between the final to the initial radii and thus became obvious to de-
termine the best and or efficient transfer among the two. In addition, the Hoh-
mann transfer turned out to be the best maneuvering transfer based on the 
demonstrated optimality and sensitivity analysis. While for computational de-
velopments, mathematical software has been utilized to simulate the obtained 
analytical procedures. 
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