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Abstract 

Based on a node group 
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 , the Newman 

type rational operator is constructed in the paper. The convergence rate of 
approximation to a class of non-smooth functions is discussed, which is 

( )
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log
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 regarding to X. Moreover, if the operator is constructed based 

on further subdivision nodes, the convergence rate is 
( )2

1
log

O
n n

 
  
 

. The 

result in this paper is superior to the approximation results based on equidis-
tant nodes, Chebyshev nodes of the first kind and Chebyshev nodes of the 
second kind. 
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1. Introduction 

In approximation theory, rational approximation to x  plays an important role. 
The approximation to non-smooth functions x  began with Bernstein’s poly-
nomial approximation [1]. In 1964, Newman [2] constructed rational functions 
( )nr x  and approximated x , with the constructed node set  

{ }
1

2 1 1 2 2, , , ,0, , , , , exp , 1,2, ,n nX a a a a a a a n n
−− −  

= − − − = − =  
 

    

and the correspondingly rational function to set X. It was found that the ap-
proximation effect is much better than polynomial approximation. 
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After that, scholars have studied the convergence rate of x  by operators 
based on different node groups. In 1997, Brutman and Passow [3] considered the 
zeros of Chebyshev polynomial ( ) ( )2 cos 2 arccosnT x n x=  in interval ( ]0,1 ,  

namely, ( )
1
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π
, or 
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2 1 2 2 1
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        (1) 

and investigated the rational interpolation problem of x . The order of ap-

proximation was 
( )

1
log

O
n n

 
  
 

. 

In 2010, Huiming Zhang [4] constructed Newman-α type rational operators 
and the zeros of the second kind of Chebyshev polynomials  
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 in interval [ ]1,1−  were considered on the rational 

interpolation of x , ( )
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, namely,  
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ππ . The order of approximation was 

( )
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In reference [5], a new set of interpolating nodes was constructed, and the 
Newman type rational interpolation operator was used to approximate the  

function x , and the order of approximation was 
2

1 ee
n

O
−
+

 
  
 

, where 

3 1
2 nn

ε = + . In reference [6], the rational operator pairs on a group of en-

crypted Newman nodes 
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e
nk

n
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N
−

=

  =  
  

 approximated x , and the order of  

approximation was ( )2e nO − . 
The approximation x  of different operators based on different nodes has a 

wide past. Among these node groups, the zeros of polynomials and exponential 
type nodes have been considered. It is natural to ask how do the logarithmic 
nodes perform in the approximation problem. 

In this paper, we focus on the convergence rate of x  at logarithmic  

nodes 
1

: : log
n

k
k

n kX x
n =

 +  = =  
  

. We prove that, with the node group X, the 

convergence rate of approximation is 
( )

1
log

O
n n

 
  
 

. Furthermore, if the operator  
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is constructed based on further subdivision nodes, the convergence rate is  

improved to 
( )2

1
log

O
n n

 
  
 

. This result reveals the essential to some extent: the  

more dense the nodes near zero, the better rate of convergence, which also ex-
plains the results in some former research, see for example, reference [3]. 

The Newman type rational operator is constructed in this paper. The Newman 
type rational operator is defined as  
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2. Auxiliarily Lemmas 

To verify the desired result, we shall need the following auxiliary results.  

Lemma 1. For x N+∈ , the inequality 
1
2 1e 1

x
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 ≤ + 
 

 holds true.  

Proof. Notice that the function ( ) 11
x

f x
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 = + 
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for 1x > . Then, ( )1 2f =  is the minimum value and ( )
1
21 ef > . It is easy to 

observe that  
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Lemma 2. For ( ), 1,ex y∈ , the inequality ( )
( )

log
log

x x
y y

≤  holds true.  

Proof. Write ( ) ( )log x
f x

x
= . Take the derivative of ( )f x , we have  
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The function ( ) ( )log x
f x
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=  is monotonically increasing for ( )1,ex∈ . So 

the inequality ( ) ( ) ( )
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log log log
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x y x x
x y y y
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Lemma 3. [7] For 10
2

x≤ ≤ , the inequality 21 3
1

xx
x
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>

+
 holds true.  

Lemma 4. For [ ]0,1x∈ , the inequality ( )log 1
2
x x x≤ + ≤  holds true.  

Proof. Take the derivative of ( ) ( )log 1
2
xf x x= + − , we obtain  

( ) 1 1 .
1 2

f x
x

′ = −
+

                           (5) 

The function ( )f x  is monotonically increasing for [ ]0,1x∈  and  
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( )0 0f = . Thus the inequality ( )log 1
2
x x≤ +  holds true for [ ]0,1x∈ . 

Similarly, for function ( ) ( )log 1g x x x= − + , the inequality ( )log 1x x+ ≤  
holds true when [ ]0,1x∈ . 

Lemma 5. [8] For x N+∈ , the inequality ( ) 1

1log n
kn
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∑  holds true. 

3. Main Results and Proofs 
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function, we only need to consider the approximation on the interval [ ]0,1 . The 
proof will be divided into the following cases. 
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it is clear that the function achieves its maximum value in the interval  
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Applying the lemma 1,  
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Combining three cases completes the proof of Theorem 1. 

Theorem 2. Considering 
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Applying Lemma 3,  
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Then we obtain,  
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This shows that the approximation order in Theorem 1 cannot be improved. 
It is noticed that the density near zero is closely related to the approximation 

order. If the node near the zero point is further subdivided, the following theo-
rem can be obtained. 

Theorem 3. Considering inserting n-degree nodes into the interval  
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Direct computation together with (9) result in  
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The proof on other intervals can refer to theorem 1. 

4. Conclusions 

In this paper, based on the node group 
1

log
n

k
k

n kX x
n =

 +  = =  
  

, we use  

Newman type rational operators to approximate |x|, and derive the approximation  

order 
( )

1
log

O
n n

 
  
 

. When ( )nr x  is discussed on the interval 
10, log n

n
 +  

    
, 

the approximation effect is the worst, which is 
( )

1
log
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; on the interval 

1log , log 2n
n

 +  
    

, the approximation effect is better, which is ( )e nO − ; on the  

interval [ ]log 2,1 , the approximation effect is the best, it is ( )4 nO − . 
Considering that the higher the density of the node near zero, the better the 

approximation effect is, we further insert the nodes of degree n to make the  

approximation order reach 
( )2

1
log

O
n n

 
  
 

. This result is better than x  on  

equidistant nodes ([9]), Chebyshev nodes of the first kind ([3]) and Chebyshev 
nodes of the second kind ([4]). 
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