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Abstract 
The architecture of the Great Pyramid at Giza is based on fascinating golden 
mean geometry. Recently the ratio of the in-sphere volume to the pyramid 

volume was calculated. One yields as result 5
VR ϕ= π⋅ , where 5 1

2
ϕ −
=  is 

the golden mean. It is important that the number φ5 is a fundamental con-
stant of nature describing phase transition from microscopic to cosmic scale. 
In this contribution the relatively small volume ratio of the Great Pyramid 
was compared to that of selected convex polyhedral solids such as the Platon-
ic solids respectively the face-rich truncated icosahedron (bucky ball) as one 
of Archimedes’ solids leading to effective filling of the polyhedron by its in- 
sphere and therefore the highest volume ratio of the selected examples. The 
smallest ratio was found for the Great Pyramid. A regression analysis delivers 

the highly reliable volume ratio relation ( )1 exp 3V FR b n= − − ⋅ − , where nF 

represents the number of polyhedron faces and b approximates the silver 
mean. For less-symmetrical solids with a unique axis (tetragonal pyramids) 
the in-sphere can be replaced by a biaxial ellipsoid of maximum volume to 
adjust the RV relation more reliably. 
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1. Introduction 

Recently the golden mean architecture of the Great Pyramid at Giza was investi-
gated with a surprising result [1]. Performing the volume ratio of the in-sphere 
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of the pyramid and the pyramid itself, one yields as result 5ϕπ⋅ , where  
5 1 0.6180339887
2

ϕ −
= =  is the golden mean. The same result can be obtained 

when calculating the respective areas ratio. This connection is valid for all regular 
convex polyhedral solids. Unfortunately, in the appendix of reference [1] the 
area ratio was carelessly calculated violating this proved fact. However, this flaw 
was already corrected in the prepublication [2]. 

In this contribution the in-sphere to polyhedron volume ratios for selected 
convex solids such as Platonic solids [3] respectively Archimedean ones [4] were 
compared to the result of the Great Pyramid. Face-rich regular solids adapt the 
in-sphere better to the polyhedron surface and exhibit a high volume ratio (see 
Figure 1). A simple relation is given to connect the volume ratio to the number 
of faces. It can be applied for the determination of the void space of polyhedral 
assemblies. For solids with reduced symmetry such as pyramids the in-sphere 
has to be replaced by a biaxial ellipsoid with maximum volume to adjust the re-
lationship between volume ratio and number of faces more reliably. 

2. Methods 

Known elementary techniques of Euclidian coordinate geometry in 3  were used 
to determine area, volume, in-sphere volume and the in-sphere to polyhedron 
volume ratio for selected convex polyhedra, using the universal number of the 
golden mean when dealing with polyhedra of icosahedral symmetry. In contrast 
to irregular solids [5] [6] not being considered in this contribution, the analytic 
approach for regular solids is trivial. For solids with lower than cubic symmetry 
such as tetragonal pyramids, the in-sphere has to be replaced by an in-ellipsoid 
of maximum volume determining the zero of the first derivative of volume to 
half-diameter splitting. Then half-diameters were fixed by solving the ellipsoid 
equation using coordinates of two independent contact faces of the actual con-
vex solid. Finally, a regression analysis delivered a reliable relation between vo-
lume ratio and number of faces. 

3. In-Sphere Approach 

For a convex polyhedron the radius of its in-sphere ri is related to the ratio be-
tween its volume Vp and its surface area Ap by 

3 p
i

p

V
r

A
=                            (1) 

It could not be found out who actually first derived this relationship. Howev-
er, in the Appendix an explanation for the more general application of the rela-
tion is given as the weighted mean “in-sphere” half-distance when the polyhe-
dral void can’t be adapted by a simple sphere, exemplified by the case of the 
truncated octahedron. 

One can derive for the volume ratio using relation (1) 
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2

336sph p

p p

V V
V A

= π                          (2) 

and further for the surface area ratio 
2

336sph p

p p

A V
A A

= π                          (3) 

This proves that volume ratio and surface area ratio are equal 

sph sph

p p

V A
V A

=                           (4) 

In the following the mentioned ratios were calculated for selected convex sol-
ids. The polyhedron notation is given by the symbol iF

ip   , where p is the po-
lygon multiplicity and F is the number of faces. The number V of vertices can be 
derived by means of the following equation [7] 

1 2
2 i i iV p F F= − +∑ ∑                      (5) 

using the Euler relation for convex polyhedra [8] 

2F V E+ − =                          (6) 

where 1
2 i iE p F= ∑  means the number of edges. Don’t confuse V with sym-

bols of Table 1. 
A list of notations used in the following was summarized in Table 1. 
We begin with the truncated icosahedron, a convex isogonal non-prismatic 

solid of symmetry group Ih with 32 faces, known from the soccer ball structure of 
C60, where 60 C atoms are placed at the 60 vertices. The symmetry group tells us 
that the golden mean must be involved in the formulas for the polyhedron vo-
lume respectively area. 

 
Table 1. List of used symbols and numbers. 

Term Symbol 

Polyhedral volume Vp 

In-sphere volume Vsph 

In-ellipsoid volume Vel 

Polyhedral area Ap 

In-sphere area Asph 

In-sphere radius ri 

In-ellipsoid radii rx, rz 

Polyhedron edge a 

Polyhedron height h 

Golden mean ϕ  

Big phi 1φ ϕ= +  
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Truncated icosahedron (soccer ball) [512620]: 

2 3 321 55.2877308
2pV a aϕϕ− = + = ⋅ 

 
               (7) 

2 2

3

3 520 3 12 72.607253
2 4 5

pA a a
ϕ

 
 = ⋅ + = ⋅
 ⋅ 

          (8) 

( )

2

1
1

3 2

21
23 2.284388754 2

5 2 3 5

p
i

p

V
r a a a

A

ϕϕ
ϕ

ϕ

−

−

−

+
= = = ⋅ ≈

 
+  

 

      (9) 

( )

3
2

5 42
3 3 5 3

3 1
3 2

76 46 15.89456977
35

2 3 5
sphV a a a

ϕϕ
ϕ

ϕ

−

−

−

 +   = π⋅ = π ⋅ ⋅ ≈ π ⋅ ⋅   
   + 

  (10) 

2

336 0.28748819 0.903170795sph p

p p

V V
V A

= π⋅ = π⋅ =            (11) 

2

3 2 24 36 p
sph i

p

V
A r a a

A
 

= π = π⋅   
 

                 (12) 

2

336sph p

p p

A V
A A

= π⋅                        (13) 

Triacontahedron [430] (Kepler zonohedron K30 see Appendix): 

34 5 2 5pV a= +                       (14) 

2 212 5 26.8328157pA a a= = ⋅                  (15) 

5 2 5 1.37638192
5ir a a+

= = ⋅                  (16) 

3
34 0.8872000

3 15
sph

i
p

V
r

V
ϕ−

= π = π⋅ =                 (17) 

2 224 1 23.806074
5sphA a a 

= π + = ⋅ 
 

              (18) 

3
24 0.8872000

15
sph

i
p

A
r

A
ϕ−

= π = π⋅ =                 (19) 

Hexakishexahedron [324]: 

33
2pV a=                           (20) 

3
2 5ir a=                          (21) 

3 39 1.2644666
10 5sphV a a= π⋅ = ⋅                 (22) 
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3 0.842977767
5 5

sph

p

V
V

= π⋅ =                   (23) 

23 5pA a=                          (24) 

2 29 5.65486677
5sphA a a= π⋅ = ⋅                  (25) 

5 5

3 3 0.842977767
5 5

sph

p

A
A ϕ ϕ−= π⋅ = π⋅ =

+
            (26) 

Icosahedron [320]: 

2 35
6pV aϕ−=                         (27) 

2

2 3ir aϕ−

=                          (28) 

6
3

18 3sphV aϕ−

= π⋅                        (29) 

4

0.263814507 0.8287977
15 3

sph

p

V
V

ϕ−

= π⋅ = π⋅ =            (30) 

25 3pA a= ⋅                         (31) 

4
2

3sphA aϕ−

= π                         (32) 

4

15 3
sph

p

A
A

ϕ−

= π⋅                         (33) 

Truncated Octahedron [4668] (α-cage of the sodalite structure): (Combi-
nation of the octahedron with its dual polyhedron) 

Like the cube this polyhedron is space-filling. However, the distances from the 
center to the different polygon faces are also different, and we apply a weighted 
in-sphere radius as given by equation one. The reason for this approximation is 
explained in the Appendix. 

3 38 2 11.3137085pV a a= = ⋅                   (34) 

4 2 1.2671876
1 2 3ir a a= = ⋅
+

                  (35) 

3

3 34 4 2 8.523370381
3 1 2 3sphV a a

 
= π⋅ ⋅ = ⋅  + 

            (36) 

0.2398040 0.753366624sph

p

V
V

= ⋅π =                (37) 

( ) 2 26 1 2 3 26.7846097pA a a= + = ⋅                (38) 

2

2 24 24 6.42305774
1 2 3sphA a a
 

= π ⋅ = ⋅π ⋅  + 
           (39) 
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3
4 0.2398040 0.753366624

3 1 2 3
sph

p

A
A

π  
= = ⋅π = 

+ 
         (40) 

Regular Pentagonal Dodecahedron [512]: 

( )
3 3 3

4 3 2

5 5 7.6631188998
2 2 1pV a a a
ϕ ϕ ϕ

= = =
+

�          (41) 

2 25

1 1 1.113516364
2 12 5

ir a a a
ϕ ϕϕ

=
+⋅

= = �          (42) 

3 34 1.840893008
3sph iV r a= π = π⋅ �                 (43) 

0.240227643 0.754697398sph

p

V
V

= ⋅π =               (44) 

( ) 2 2 2

2

153 5 5 2 5 20.64572881
1

pA a a a
ϕ ϕ

= ⋅ + ⋅ = =
+

�       (45) 

2 2 2
5

14 4.9596747
5sph iA r a a
ϕ

= π = π = π⋅ �             (46) 

0.240227643 0.754697398sph

p

A
A

= ⋅π =               (47) 

Rhombic Dodecahedron [412]: 

316
3 3pV a=                          (48) 

2
3ir a=                           (49) 

3

3 34 2 8 6
3 273sphV a a

 
= π = π⋅  

 
                  (50) 

2 0.23570226 0.74048048
6

sph

p

V
V

= π⋅ = π⋅ =             (51) 

28 2pA a=                          (52) 

2 22 84
3 3sphA a a= π = π⋅                     (53) 

1 0.23570226
3 2

sph

p

A
A

= π⋅ = π⋅                  (54) 

Octahedron [38]: 

32
3pV a=                          (55) 

6i
ar =                           (56) 

https://doi.org/10.4236/jamp.2021.91005


H. H. Otto 
 

 

DOI: 10.4236/jamp.2021.91005 47 Journal of Applied Mathematics and Physics 
 

3
4
3 6sph

aV  
= π 

 
                       (57) 

1 0.192450089 0.604599788
3 3

sph

p

V
V

= π = π⋅ =            (58) 

22 3pA a=                          (59) 

2
24
36sph

aA  
= π = π 

 
                    (60) 

1
3 3

sph

p

A
A

= π                         (61) 

Hexahedron (Cube) [46]: 
3

pV a=                           (62) 

3

6sphV aπ
=                          (63) 

0.523598775
6

sph

p

V
V

π
= =                     (64) 

26pA a=                           (65) 
2

24
2sph
aA a = π = π 

 
                     (66) 

6
sp

p

A
A

π
=                           (67) 

Tetrahedron [34] (self-dual polyhedron): 

32
12pV a=                          (68) 

1
2 6ir a=                          (69) 

3
3 34 4 1

3 3 2 6sph iV r a 
= π = π 

 
                  (70) 

0.096225044 0.30229989
3 6

sph

p

V
V

π
= = π⋅ =

⋅
           (71) 

23pA a=                          (72) 
2

2 214
62 6sphA a aπ 

= π = 
 

                   (73) 

6 3
sph

p

A
A

π
=                          (74) 

Equilateral Quadratic Pyramid (Half-Octahedron) [3441]: 
3

2 3p
aV =
⋅

                         (75) 
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( )2 1 3
i

ar =
+

                       (76) 

( )
3

3
3

4 2
3 3 1 3

sph i
aV r π

= π =
+

                   (77) 

( )3

2 0.0980762 0.308115505
1 3

sph

p

V
V

= π⋅ = π⋅ =
+

           (78) 

( ) 21 3pA a= +                        (79) 

( )
2

24
2 1 3

sp
aA = π
+

                      (80) 

( )3

2 0.0980762 0.308115505
1 3

sph

p

A
A

π
= = π⋅ =

+
          (81) 

Great Pyramid [3441]: 
In case of the Great Pyramid we use exceptionally for the basis length the val-

ue a = 2 in accordance with a recently published contribution [1]. 

2 1 21 4
3 3pV a h ϕ−= =                       (82) 

3 2
ir ϕ=                            (83) 

3 9 24 4
3 3sphV r ϕ= π = π                      (84) 

5 0.0901699 0.283277sph

p

V
V

ϕ= π⋅ = π⋅ =               (85) 

1 24 4 4pA ϕ ϕ− −= + =                      (86) 

2 34 4sphA r ϕ= π = π                       (87) 

5sph

p

A
A

ϕ= π⋅                          (88) 

In Figure 1 the volume ratio RV is depicted in relation to the number of faces. 
However, because one needs a minimum of 4 faces to put up a solid, the number 
of faces was reduced by 3. Therefore, a highly reliable least squares fit was per-
formed using the relation 

( )1 exp 3V FR b n= − − ⋅ −                    (89) 

The parameter b was found to be 0.418 ± 0.011 (2.6%). This value approx-
imates 2 1 0.414235− = �  known as silver mean. The tetragonal pyramids (half- 
octahedron and Great Pyramid) were not included in the fit, because they don’t 
match the regression curve (see green marked solids in Figure 1) due to reduced 
symmetry. Polyhedral solids with icosahedral symmetry indicate a slightly enhanced 
volume ratio compared to these with cubic symmetry. However, diversification  
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Figure 1. Volume ratio of selected solids related to their by 3 reduced face numbers. Red: 
solids with cubic symmetry, violet: solids with icosahedral symmetry. The green respec-
tively black marked tetragonal pyramids (half-octahedron and Great Pyramid) as well as 
the blue data for the Bilinski B20 zonohedron were not included in the fit, because their 
smaller volume ratios behave somewhat differently. 

 
of the plot does not give a profound improvement. 

Applying Equation (89) to the case of a hexakisicosahedron with 120 triangu-
lar faces, one can predict for its volume ratio a value of 0.99VR ≈ . In practice, 
the polyhedral void space of polyhedral networks can approximately be deter-
mined by this formula. 

Turning back to the deviation of the volume ratios for both quadratic pyra-
mids from that of the fitted curve, denoted by VR′ , one can determine the fol-
lowing approximations 

Half-octahedron: 1.0229 1
2

V

V

R
R
′

= ≈               (90) 

Great Pyramid: 
5

0.9834 1
8

V

V

R
R
′
= ≈                 (91) 

Interestingly, the term 5/8 in equation (90) approximates the golden mean φ. 

4. Inscribed Ellipsoid Approach 

However, symmetry reduction from icosahedral respectively cubic symmetry to 
tetragonal one resulted in the degeneration of the in-sphere to a biaxial ellipsoid 
as approximated void space. The volume Ve of a biaxial ellipsoid with z being the 
rotation axis is given by 

24
3e x zV r r= π                          (92) 
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where rx and rz are the corresponding half-axis. 
Equilateral Quadratic Pyramid 
In case of the half-octahedral pyramid the inscribed rotation ellipsoid of 

maximum volume has half-diameters of maxz ir r= − ∆  and max 2x ir r= + ∆ ⋅ .  

Replacing these relations in Equation (92), then the first derivative d 0
d
V
=

∆
 de-

livers 

max
2 2 2 0.430964

3 i ir r−
∆ = = ⋅ .                (93) 

The volume ratio is represented in Figure 1 with the top green cross and was 
calculated to be 

4 75 0.45417
27 2

sph
e p

p

V
V V

V
  

= + =  
  

.              (94) 

This value fits relation (89) reasonable well. The numerical eccentricity of the 

maximum biaxial in-ellipsoid with z

x

rk
r

=  yielded 21 0.93539k= − = . 

Great Pyramid 
Turning to the comparable results for the Great Pyramid, one has to work 

with ellipsoid half-diameters maxz ir r= − ∆  and maxx ir r ϕ= + ∆ . Now max∆  
is calculated to be 

max
2

0.4046162
3 i ir r
ϕ−

∆ = = ⋅                  (95) 

giving for the half diameters 

( ) ( )
3
22 11 0.735934838, 1 0.28927809

3 3x zr rϕ ϕ ϕ ϕ= + = = + =    (96) 

and for its ratio k respectively eccentricity ε 

2 4
0.393075688, 1 0.919506

2 2
z

x

rk k
r

ϕ ϕ
ε

−
= = = = − = =     (97) 

Then the volume Ve simply results in 

( )
4 7 3

22 1 0.6562705
3eV ϕ ϕ = + ⋅π = 

 
              (98) 

Using relation (82) the ratio e

p

V
V

 (represented in Figure 1 with the top black 

cross) numerically gives 

( )344 1 0.386946
27

e

p

V
V

ϕ ϕ= + ⋅π =                (99) 

This Great Pyramid volume ratio based on its maximum in-ellipsoid is still 
not quite well adapted to curve (89) in Figure 1. A comparison between in-sphere 
and in-ellipsoid of the Great Pyramid was illustrated in Figure 2. 

Finally one should note that if the sphere degenerates to an ellipsoid, Equation  
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Figure 2. Cut through the middle of a Great Pyramid’s face down the apex. In-sphere re-
spectively in-ellipsoid projection yellow displayed. 1 1φ ϕ ϕ−= = + ,  

( ) ( )arccos arctan 51.82729α ϕ φ= = = � . 

 
(4) no longer holds, because 

sphe

p p

VA
A V

>                          (100) 

Again the case of the Great Pyramid should serve to demonstrate this. The surface 

A of a biaxial ellipsoid with rotation axis z and eccentricity 21 , z

x

rk k
r

= − =  is 

given by 

( )2 2 atanh
2 1xA r k

ε
ε

 
= π + 

 
                  (101) 

The surface at maximum volume of the ellipsoid Ae is then calculated as  
2.093982eA =  and 

the ratio 50.323538 0.283277sphe

p p

AA
A A

ϕ= > = π⋅ =         (102) 

Bilinski B20 Zonohedron 
Finally, the in-ellipsoid approach was applied to the Bilinski B20 zonohedron 

as example for an oblate polyhedron with a unique five-fold axis, derived from 
the triacontahedron by removing a complete zone of 10 faces. The calculation of 
its in-ellipsoid half-diameters was given in the Appendix. Then one determines 
the ellipsoid volume according to Equation (92) as 

35.165elV a=                        (103) 

The volume of the B20 polyhedron is one half of that of the triacontahedron 

3 32 5 2 5 6.155367pV a a= + =                 (104) 

and the volume ratio, depicted by the top blue cross in Figure 1, yields 

0.8391el
V

p

V
R

V
′ = =                      (105) 

Contrary, the calculation of the volume ratio using an in-sphere radius defined 

by Equation (1) leads to a very low ratio, with ( )triaconta2 he on
3

drp pA A=  
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( )33 triacontahedron 1.032286
4

p
i i

p

V
r r a a

A
= = =           (106) 

3 2
3 3 34 9 21 4.6077539

3 16 5sph iV r a aπ  
= π = + = 

 
          (107) 

0.748575sph
V

p

V
R

V
= =                     (108) 

5. Intended Application 

Information about the in-sphere of polyhedral solids as interstitial void space in 
networks of alumo-silicates (zeolites), metallic glasses, amorphous alloys or liq-
uids are important to understand their packing density and related properties 
such as phase transitions [9] [10]. The maximum in-ellipsoid may be a chal-
lenging approach for new practical utilization. Especially a micro-version of the 
Great Pyramid may serve as proposal for an asymmetric ‘confinement chamber’ 
for nuclear fuel such as deuterium, provided you believe in the feasibility of cold 
nuclear fusion [11] [12]. In this way we walk in the footsteps of the great inven-
tor Nicola Tesla with his pyramid vision of harvesting energy. 

6. Duality between Volume and Surface 

The relationship between volume and surface goes far beyond a purely geome-
tric understanding. The duality between volume and surrounding surface re-
spectively between any compact entity and assigned surface in general as well as 
the duality between a moving particle respectively body and the accompanying 
wave or reciprocity between matter and dark matter is the very spice of life. It 
has been impressively formulated by the words of Nobel laureate Wolfgang Pau-
li: “God made the bulk; surfaces were invented by the devil” (quoted from [19]). 
These facts were once more proven by the beautiful new information relativity 
theory of Suleiman [20] [21]. 

7. Conclusions 

This contribution was inspired by a flaw in a recently published own paper. It 
compares the ratio of in-sphere volume to polyhedral volume of selected con-
vex solids, which is always equal to the corresponding ratio of in-sphere sur-
face and polyhedral surface. The volume ratio of the Great Pyramid is the smal-
lest among the selected solids and also smaller as the similar half-octahedral 
pyramid as well as the tetrahedron. Convex solids with icosahedral symmetry 
indicate a slightly higher volume ratio than solids with cubic symmetry respec-
tively tetragonal symmetry. However, replacing the in-sphere by the maximum 
inscribed biaxial ellipsoid one can adjust the volume ratio more reliably to a 
proposed relationship that connects the volume ratio with the number of faces. 
The in-sphere volume ratio of the Great Pyramid was recently shown to be 
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π⋅φ5, where φ is the golden mean. Assigned as fundamental number of nature, 
the fifth power of the golden mean, on the other hand, is fascinating through 
its connection to phase transition from microscopic to cosmic scale and may 
become important in connection with the DNA genetic code. 

This number is also indirectly found in the expressions for the in-sphere sur-
face of the regular pentagonal dodecahedron, not really expected in the term for 
the volume ratio of the hexakishexahedron, and as an approximation in the in- 
sphere volume relation for the soccer ball respectively the triacontahedron. Be-
sides a solely geometrical interest, the theory of random packing respectively the 
determination of polyhedral void space as in-sphere volume respectively in-ellip- 
soid volume is important for practical applications. 
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Appendix 

Truncated Octahedron: 
The distances ,i fr  from the center to the different faces f(square and hex-

agon) are calculated to be ,4 2ir a= ⋅  and ,6
1 6
2ir a= ⋅ . Now we use a weighted  

in-sphere radius, where the face areas are thought to be a measure of the radius 
of curvature. Then we get the weighted radius as 

12 2 3 6 4 22 1.267187608
1 2 3 1 2 3ir a a a
+ ⋅

= = = ⋅
+ +

        (109) 

This weighted radius is identical to that used in Equation (35) derived by ap-

plication of the relation 3 p
i

p

V
r

A
=  underlining the universal importance of this  

relation. The volume ratio of the truncated octahedron is well represented by 
Equation (89) using this approach. 

Triacontahedron (Figure A1): 
It belongs to the icosahedral group Ih and is a regular polyhedron consisting of 

30 equilateral rhobus faces (golden rombi), 32 vertices and 60 edges. It was first 
discovered by Johannes Kepler (1571-1630). Many years ago I had chosen this 
solid serving as a structural model forthe first building sphere of quasi-crystals 
belonging to the Al-Mn alloy system, where neighboring polyhedra interpene-
trate [13]. 

Interestingly, the volume ratio of the triacontahedron can by approximated by 
[14] [15] 

3
3

5

4 20.8872000 0.88721359
3 15 25

sph
i

p

V
r

V
ϕ

ϕ

−

= π = π⋅ = ≈ =
⋅

      (110) 

In this way, one is again faced with the fifth power of the golden mean. 
Bilinski Zonohedron 
If one remove a complete zone from the rhombic triacontahedron, for in-

stance the middle zone parallel to the c axis in Figure A1, then an oblate solid 
with 20 faces results named Bilinski’s B20 zonohedron [16], a solid that already  

 

 
Figure A1. Rhombic Triacontahedron (Keplerhedron, notation K30). 
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has figured out by Cowley in 1752 [17]. Due to symmetry reduction a biaxial el-
lipsoid instead of a sphere was fitted into the solid to approximate the volume 
ratio given by Equation (89). 

Using two independent Cartesian face coordinates of the B20 zonohedron, 
choosing faces of different steepness, on can solve the ellipsoid equation to get 
the two half diameters rx and rz of the biaxial ellipsoid as 

( ) ( )2 2 2 2 2 2
2 1 1 1 2 2

2 2
2 1

x

z x y z x y
r

z z

+ − +
=

−
                (111) 

1

2 2 2
1 1

x
z

x

r z
r

r x y
=

− −
                     (112) 

Coordinates of the triacontahedron given by Gray [18] were used, rotated that 
a fivefold axis is parallel to the c axis and normed to an edge length of unity. The 
middle zone with zone axis parallel to c is then cut out to deliver coordinates of 
the B20 zonohedron. One obtains the following face coordinates using big  

1 1.6180339887φ ϕ= + = �  

1 1 1
3, 0, ;

5 2 5
x a y z aφ
= = =                 (113) 

2 2 2
1 1 1 2 1, 1 ,

2 25 5 2 5
x a y a z aφ = + = + = 

 
         (114) 

With these coordinates one yields the B20 in-ellipsoid half-diameters 

1.21520448xr a=  and 0.834993zr a= .            (115) 
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