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Abstract 
In this study, we used Double Elzaki Transform (DET) coupled with Ado-
mian polynomial to produce a new method to solve Third Order Korteweg- 
De Vries Equations (KdV) equations. We will provide the necessary explana-
tion for this method with addition some examples to demonstrate the effec-
tiveness of this method. 
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1. Introduction 

In 1985, Two Dutchmen, D. J. Korteweg and G. de Vrie derived a nonlinear par-
tial differential equation, well known by the Korteweg-de Vries (KdV) equation, 
to model the height of the surface of shallow water in the presence of solitary 
wave’s. The KdV equation also describes the propagation of plasma waves in a 
dispersive medium. 

Third order Korteweg-de-Vries (KdV) equation of the form 

0t x xxxu auu bu+ + =                       (1) 

with the initial conditions: 

( ) ( ),0u x f x=                         (2) 

where a and b are constants. 
So many methods and approaches have been made to find the approximate 

analytic solutions and numerical solutions of KdV equations, such as Adomian 
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Decomposition Method (ADM) [1], Variation Iteration Method (VIM) [1], Ho-
motopy Perturbation Method (HPM) [1], Homotopy Perturbation Method us-
ing Elzaki Transform [2], Homotopy Perturbation Method using Laplace Trans-
form [3], Adomian Decomposition Method using Elzaki Transform [4], Nu-
merical solutions to a linear KdV equation on unbounded domain [5], The nu-
merical solutions of KdV equation using radial basis functions [6], Numerical 
solution of separated solitary waves for KdV equation through finite element 
technique [7]. 

In this paper, we study a new method to solutions of KdV equations namely 
Double Elzaki Transform Decomposition Method (DETDM), this method is its 
capability of combining easy integral transform Double ELzaki Transform (DET) 
[8] and an effective method for solving non-linear partial differential equations, 
namely Adomian Decomposition Method [1]. 

Several examples are given as follows to illustrate this method to explain its 
effectiveness. 

2. Basic Definitions of Double Elzaki Transform 

Definition: Let ( ), , ,f x t t x R+∈  be a function which can be expressed as a con-
vergent infinite series, then its Double Elzaki Transform given by: 

( ) ( ) ( )2
0 0

, , , , , e d d , , 0.
x t
u vE f x t u v T u v uv f x t x t x t

 ∞ ∞ − + 
 = = >   ∫ ∫       (3) 

where ,u v  are complex values. 
To obtain double Elzaki transform of partial derivatives we use integration by 

parts [8], and then we have: 

( ) ( )2
1 , 0,fE T u v uT v

x u
∂  = − ∂   

( ) ( ) ( )
2

2 2 2

1 , 0, 0,fE T u v T v u T v
xx u

 ∂ ∂
= − −  ∂∂   

( ) ( )2
1 , ,0fE T u v vT u

t v
∂  = − ∂ 

                  (4) 

( ) ( ) ( )
2

2 2 2

1 , ,0 ,0fE T u v T u v T u
tt v

 ∂ ∂
= − −  ∂∂   

( ) ( ) ( ) ( )
2

2
1 , ,0 0, 0,0f v uE T u v T u T v uvT

x t uv u v
 ∂

= − − + ∂ ∂   

Proof: 

( ) ( )2
0 0 0 0

, e d d e e , d d
x t t x
u v v ufE uv f x t x t v u f x t x t

x x x

 ∞ ∞ ∞ ∞− + − − 
 

 ∂ ∂ ∂  = =   ∂ ∂ ∂   
∫ ∫ ∫ ∫

 

The inner integral gives ( ) ( )1 , 0,T u t uf t
u

−  
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( ) ( )2
0 0

e , d e 0, d
t t
v vf vE T u t t uv f t t

x u

∞ ∞− −∂ ⇒ = − ∂  ∫ ∫
 

( ) ( )2
1 , 0,fE T u v uT v

x u
∂ ⇒ = − ∂   

Also ( ) ( )2
1 , ,0fE T u v vT u

t v
∂  = − ∂ 

 

( ) ( )

( )

2 2

2 2 2
0 0

2

2
0 0

, ,
e d d

,
e e d d

x t
u v

t x
v u

f x t f x t
E uv x t

x x

f x t
v u x t

x

 ∞ ∞ − + 
 

∞ ∞− −

 ∂ ∂
= 

∂ ∂  
 ∂

=  
∂  

∫ ∫

∫ ∫
 

The inner integral: 
( ) ( ) ( ) ( )2

2 2
0

, , 0,
e d 0,

x
u

f x t T u t f t
u x f t u

xx u

∞ −∂ ∂
= − −

∂∂∫ . 

By taking Elzaki transform with respect to t for above integral we get: 

( ) ( ) ( ) ( )
2

2 2 2

, 1 , 0, 0,
f x t

E T u v T v u T v
xx u

 ∂ ∂
= − − 

∂∂    
Similarly: 

( ) ( ) ( ) ( )
2

2 2 2

, 1 , ,0 ,0
f x t

E T u v T u v T u
tt v

 ∂ ∂
= − − 

∂∂    

3. Theorems of Convergence of Double Elzaki Transform: 

Theorem 3.1. Let the function ( ),f x t  is continuous in the xt −  plane, if 

the integral converges at 0 0,u u v v= =  then the integral,  

( )
0 0

, e d d
x t
u vuv f x t x t

 ∞ ∞ − + 
 ∫ ∫  is convergence for 0 0,u u v v< < . 

For the proof we will use the following theorems. 

Theorem 3.2. Suppose that: ( )
0

, e d
t
vv f x t t

∞ −

∫ , converges at 0v v= , then the 

integral converges for 0v v<  

Proof 

Let ( ) ( ) 0
0

0

, , e d , 0
st

vx t v f x s s tα
−

= < < ∞∫              (5) 

Clearly ( ),0 0xα =  and ( )lim ,
t

x tα
→∞

 exist. 
By fundamental theorem of calculus we have: 

( ) ( ) 0
0, , e

t
v

t x t v f x tα
−

=                      (6) 

If we choose 1∈  and 1R  such that ( 1 10 R<∈ < ) and using Equation (6) we 
get: 

( ) ( ) ( )
01 1 1

00

1 1 10 0

1, e d e , e d , e d
v vtR R Rt t t
vvvv v

t t
vv f x t t v x t t x t t

v v
α α

 −
− − −  
 

∈ ∈ ∈

= =∫ ∫ ∫     (7) 
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Integrating the last integral by parts to gives: 

( )

( ) ( )

( ) ( )

01
0

1

1
0 01

0 0

1
1

0 0
1 1

0 0

0

0

0 0

0
1 1

0 0

, e d

, e , e d

, e , e

v vR t
vv

t

R
v v v vRt t
vv vv

v v v v
R

vv vv

v x t t
v

v vv x t x t t
v vv

v vv x R x
v vv

α

α α

α α

 −
−  
 

∈

   − −
− −      
   

∈
∈

   − −
− − ∈      
   

     −  = − ⋅ ⋅ −           

 −
= − ∈ + 



∫

∫

( )
01

0

1

, e d
v vR t
vvx t tα

 −
−  
 

∈

 
   

∫

 (8) 

Now let 1 10, R∈→ →∞ , if 0v v< , then we have 

( ) ( )
0

00
2

0 00

, e d , e d
v vt t
vvv v v

v f x t t x t t
v

α
 −∞ ∞ − −  
 

 −
=  
 

∫ ∫              (9) 

Now if the integral on the right converges then the theorem is proved. 
By using limit test for convergence we get: 

( ) ( )( )
0

0

0

0

2
2lim , e lim lim ,

e

v v
t

vv
v vt t tt
vv

tt x t x tα α
 −

−  
 

 −→∞ →∞ →∞  
 

 
 

= ⋅ 
 
   

The first limit equal zero at t →∞  if 0v v<  and the second limit exist, then 

( )
0

02lim , e 0
v v

t
vv

t
t x tα

 −
−  
 

→∞
= , finite. 

Then the integral ( )
0

, e d
t
vv f x t t

∞ −

∫  is converges at 0v v< . 

Theorem 3.3. Suppose that: ( )
0

, e d
x
uu f x t x

∞ −

∫ , converges at 0u u= , then the 

integral converges for 0u u<  

Proof 
Prove, of this theorem is same as the method in theorem (3.2). 
Now the proof of the theorem (3.1) is as follows 

( ) ( )
0 0 0 0

, e d d e e , d d
x t x t
u v u vuv f x t x t u v f x t t x

 ∞ ∞ ∞ ∞− + − − 
 

 
=  

 
∫ ∫ ∫ ∫         (10) 

By using theorem (3.2) and theorem (3.3) we see the integral in RHS of Equa-
tion (10) is converges for 0 0,u u v v< < , hence the integral  

( )
0 0

, e d d
x t
u vuv f x t x t

 ∞ ∞ − + 
 ∫ ∫  converges for 0 0,u u v v< <  [9] [10]. 

4. Double Elzaki Transform Decomposition  
Method (DETDM) 

The main focus of this study is to solve the Third Order Korteweg-De Vries Eq-
uations (KdV) equations. Firstly we show how to use Double Elzaki Transform 
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Decomposition Method (DETDM) to solve the general nonlinear partial diffe-
rential equations [11]. 

Consider a general partial differential equation with the initial condition of 
the following form: 

( ) ( ) ( ) ( ), , , , ,Lu x t Ru x t Nu x t g x t+ + =               (11) 

( ) ( ) ( ) ( ),0 , ,0 .tu x h x u x f x= =                 (12) 

where, L is the second order linear differential operator 
2

2L
t
∂

=
∂

, R is the linear 

differential operator of less order then ,L N  represents the general nonlinear 
differential operator and ( ),g x t  is the source term. 

Taking the double Elzaki Transform on both sides of Equation (11) and single 
Elzaki Transform of Equation (12), we get: 

( )( ) ( )( ) ( )( ) ( )( )2 2 2 2, , , , ,E Lu x t E Ru x t E Nu x t E g x t+ + =       (13) 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ),0 ,0 and ,0 ,0 .tE u x E h x T u E u x E f x T u
t
∂

= = = =
∂

 (14) 

To substitute Equation (14) in (13), after using Equation (4), we get: 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

2 2 3
2 2

2 2
2 2

, ,

, , .

E u x t v E g x t v E h x v E f x

v E Ru x t v E Nu x t

= + +

− −
        (15) 

Now, with the application of the inverse Double Elzaki Transform on both 
side of Equation (15) we get: 

( ) ( ) ( ) ( )1 2
2 2, , , , .u x t G x t E v E Ru x t Nu x t−  = − +             (16) 

where ( ),G x t  represents the terms arising from the source term and the pre-
scribed initial conditions. 

After that we represent solution as an infinite series given below, 

( ) ( )
0

, , ,n
n

u x t u x t
∞

=

= ∑                      (17) 

and the nonlinear term can be written as follow, 

( ) ( )
0

, ,n
n

Nu x t A u
∞

=

= ∑                      (18) 

where, ( )nA u  are Adomian polynomial and it can be calculated by formula 
given below: 

0 0

1 d , 0,1,2,3,
! d

n
i

n in
i

A N u n
n λ

λ
λ

∞

= =

  = =  
  
∑ �            (19) 

To substitute (17) and (18) in (16), we get: 

( ) ( ) ( )1 2
2 2

0 0 0
, , , .n n n

n n n
u x t G x t E v E R u x t A

∞ ∞ ∞
−

= = =

  = − +  
  

∑ ∑ ∑        (20) 

Then from Equation (20) we get: 
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( ) ( )
( ) ( )
( ) ( )

0

1 2
1 2 2 0 0

1 2
2 2 2 1 1

, , ,

, , ,

, , .

u x t G x t

u x t E v E Ru x t A

u x t E v E Ru x t A

−

−

=

 = − +   
 = − +   

              (21) 

In general, the recursive relation is given by: 

( ) ( )1 2
2 2 1 1, , , 1.n n nu x t E v E Ru x t A n−

− − = − + ≥              (22) 

Finally, we approximate the solution ( ),u x t  by the series: 

( ) ( )
0

, lim , .nN n
u x t u x t

∞

→∞ =

= ∑                     (23) 

5. Applications 

Now we are demonstrated the effectiveness of this method, by solving the fol-
lowing third Order Korteweg-De Vries Equations (KdV) equations. 

Example 1: Consider the following KdV equations 

6 0,t x xxxu uu u+ + =                      (24) 

with initial condition: 

( ),0 .u x x=                          (25) 

Take the double Elzaki transform to both sides of Equation (24), we get: 

( ) ( ) ( )2

,
,0 6 ,x xxx

T u v
vT u E uu u

v
− = − +               (26) 

Take single Elzaki transform to initial condition we get: 

( )( ) ( ) ( ) 3,0 ,0 ,E u x T u E x u= = =                 (27) 

Substitute Equation (27) in Equation (26), we obtain: 

( ) ( )2 3
2, 6 .x xxxT u v v u vE uu u= − +                 (28) 

Take the inverse double Elzaki transform to both sides of Equation (28), we 
obtain: 

( ) ( )1
2 2, 6 .x xxxu x t x E vE uu u−  = − +                 (29) 

From the Adomian decomposition method, rewrite Equation (29) as follows, 

( ) ( ) ( )1
2 2

0 0 0
, 6 .n n n xxx

n n n
u x t x E vE A u u

∞ ∞ ∞
−

= = =

  = − +  
  

∑ ∑ ∑          (30) 

where, ( )nA u  areAdomian polynomials that represent the nonlinear terms. 
The first few components of ( )nA u  are given by: 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0 0

1 0 1 0 1

2 0 2 1 1 2 0

3 0 3 1 2 2 1 3 0

,

,

,

,

x

xx

x xx

x xx x

A u u u

A u u u u u

A u u u u u u u

A u u u u u u u u u

=

= +

= + +

= + + +

�

           (31) 
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By comparing both sides of Equation (22), we get: 

( )0 , ,u x t x=                          (32) 

( ) ( ) ( )1
1 2 2, 6 , 0.n n n xxx

u x t E vE A u u n−
+

  = − + ≥             (33) 

Then: 

( ) ( ) ( )

( )

1
1 2 2 0 0

1 1 3 3
2 2 2

, 6

6 6 6 ,

xxx
u x t E vE A u u

E vE x E v u xt

−

− −

  = − +  
 = − = − = −    

          (34) 

( ) ( ) ( )

( )

1
2 2 2 1 1

1 1 4 3 2
2 2 2

, 6

72 72 36 ,

xxxu x t E vE A u u

E vE xt E v u xt

−

− −

  = − +  
 = − − = =    

        (35) 

By similar way we get: 

( ) 3
3 , 216 .u x t xt= −                       (36) 

And so on, then the first four terms of the decomposition series for Equation 
(24) are given by: 

( ) 2 3, 6 36 216 ,u x t x xt xt xt= − + − +�               (37) 

This can be written as: 

( ) ( ) ( )2 3, 1 6 6 6 ,u x t x t t t = − + − + �               (38) 

The solution in a closed form is given by: 

( ), , 1.
1 6

xu x t t
t

= <
+

                     (39) 

Example 2: Consider the following KdV equations 
6 0,t x xxxu uu u− + =                       (40) 

with initial condition: 

( ) ( )1,0 1 .
6

u x x= −                       (41) 

Take the double Elzaki transform to both sides of equation (40), we get: 

( ) ( ) ( )2

,
,0 6 ,x xxx

T u v
vT u E uu u

v
− = −                (42) 

Take single Elzaki transform to initial condition we get: 

( )( ) ( ) ( ) ( )3 21 1,0 ,0 1 ,
6 6

E u x T u E x u u = = − = − 
 

          (43) 

Substitute Equation (42) in Equation (41), we obtain: 

( ) ( ) ( )2 3 2 2
2

1, 6 .
6 x xxxT u v v u v u vE uu u= − + −             (44) 

Take the inverse double Elzaki transform to both sides of Equation (44), we 
obtain: 

( ) ( ) ( )1
2 2

1, 1 6 .
6 x xxxu x t x E vE uu u−  = − + −              (45) 
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From the Adomian decomposition method, rewrite Equation (45) as follows, 

( ) ( ) ( ) ( )1
2 2

0 0 0

1, 1 6 .
6n n n xxx

n n n
u x t x E vE A u u

∞ ∞ ∞
−

= = =

  
= − + −  

   
∑ ∑ ∑       (46) 

where, ( )nA u  are the Adomian polynomials that represent the nonlinear terms. 
The first few components of ( )nA u  are given by: 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0 0

1 0 1 0 1

2 0 2 1 1 2 0

3 0 3 1 2 2 1 3 0

,

,

,

,

x

xx

x xx

x xx x

A u u u

A u u u u u

A u u u u u u u

A u u u u u u u u u

=

= +

= + +

= + + +

�

           (47) 

By comparing both sides of Equation (46), we get: 

( ) ( )0
1, 1 ,
6

u x t x= −                       (48) 

( ) ( ) ( )1
1 2 2, 6 , 0.n n n xxx

u x t E vE A u u n−
+

  = − ≥             (49) 

Then: 

( ) ( ) ( )

( )

( )

( )

1
1 2 2 0 0

1
2 2

1 3 3 3 2
2

, 6

16 1
36

1
6

1 1 ,
6

xxx
u x t E vE A u u

E vE x

E v u v u

x t

−

−

−

  = −  
  = ⋅ −    
 = −  

= −

              (50) 

( ) ( ) ( )

( )

( )

1
2 2 2 1 1

1
2 2

1
2 2

1 3 4 2 4
2

2

, 6

1 16 1
6 3

1 1
3 3

1 1
3 3

1 1 ,
6

xxxu x t E vE A u u

E vE x t

E vE xt t

E u v u v

x t

−

−

−

−

  = −  
  = ⋅ − ⋅    
  = −    
 = −  

= −

              (51) 

By similar way we get: 

( ) ( ) 3
3

1, 1 .
6

u x t x t= −                      (52) 

And so on. Then the first four terms of the decomposition series for Equation 
(40), is given by: 

( ) ( )( )2 31, 1 1 ,
6

u x t x t t t= − + + + +�                (53) 

The solution in a closed form is given by: 
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( ) 1 1, , 1.
6 1

xu x t t
t

− = < −                    (54) 

6. Conclusion 

This method is very effective for solving non-linear partial differential equations 
in general, and as a special case, the Third Order Korteweg-De Vries (KdV) eq-
uations. It can be applied to higher order Korteweg-De Vries Equations. 
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