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Abstract 
In this paper, a mathematical relation was found between interatomic Hooke’s 
force constant and both the bulk modulus and interatomic distance in solid 
crystals, considering that the forces which have effect on an atom are only 
those resulted from the neighboring atoms, and the forces are subject to 
Hooke’s law as the deflections of atoms from their equilibrium positions are 
very small. This work has been applied on some solid semiconducting crystals 
of diatomic primitive cell, including crystals of mono-atomic primitive cell 
automatically, by using linear statistical fitting with computer programming 
and, then, using mathematical analysis, proceeding from the vibrational dis-
persion relation of solid linear lattice, these two methods have been used in 
the process in order to support each other and for the result to be satisfying 
and reasonable. This is a contribution to the process of using computer pro-
gramming in physics to facilitate mathematical analyses and obtain the re-
quired relations and functions by designing and developing appropriate com-
puter programs in line with the macro and micro natures of materials. The 
importance of this is in enhancing our understanding of the interatomic ac-
tions in cells and of the crystal structure of materials in general and semi-
conductors in particular, as it is a step of the initial steps to facilitate the 
process of calculating energies and extracting mathematical relations between 
correlation energy and temperature as well as between sub-fusion and fusion 
energies with temperature. 
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1. Introduction 

Obtaining a mathematical relation of interatomic Hooke’s force constant to bulk 
modulus and interatomic distance in solids, especially in semiconductors, is very 
important as a relation connecting macroscopic and microscopic quantities that 
helps in understanding the interaction between atoms and calculating energies 
and other quantities. Dedicated bond force constant and bulk modulus of Cn 
fullerenes (n = 20, 28, 36, 50, 60) are computed using density functional theory 
(DFT) and finite element analysis (FEA) by Peon et al. The bond force constants 
predicted by DFT are then used as an input for finite element analysis (FEA) of 
the fullerene [1]. Santiago-Perez et al. obtained the linear chain equations that 
should be used to obtain the phonon dispersion relations along high symmetry 
directions from the 3D bulk problem [2]. Other work by Kot et al. found that 
there is a well-defined relationship between the geometric characteristics of the 
mass spring model systems and physical properties of the modeled materials [3], 
and so Dolocan et al. presented theoretical expressions relating the cohesive energy 
to bulk modulus, the force constant and the lattice constant applicable to solids 
with a variety of crystal structures, by assuming, under nearest-neighbor approxi-
mation, the interatomic force to be a polynomial of 2nd degree 2F x xβ γ= − +  
[4]. 

In this paper, it has been assumed that Hooke’s force is the only affecting in-
teratomic force under nearest-neighbor approximation ( F Uβ= − ), which was 
used to find a mathematical expression for solid crystals of diatomic primitive 
cell, including those of mono-atomic one automatically, relating interatomic 
Hooke’s force constant (β) to bulk modulus and interatomic distance by using 
two methods, linear statistical fitting with computer programming and mathe-
matical analysis. We used the vibrational dispersion relation of a linear lattice of 
diatomic primitive cell and Data of some semiconductors (C (diamond), Si, Ge, 
SiC, ZnS, ZnTe, CdS and CdTe). 

In spite of existing other forces than Hooke’s one and which may be of other 
atoms than the neighbors, but that do not affect much the process of calculating 
energies and other quantities as was shown in Einstein and Debye theories for 
specific heat in solids [5] [6], we tried to simplify the mathematical processing 
and, at the same time, obtain an accurate mathematical relation as far as possi-
ble. 

In order to get the mathematical relation that we seek, we considered that the 
interatomic forces in a linear lattice are subject to Hooke’s law with small atomic 
deflections as ( F Uβ= − ), where F is the Hooke’s force, U is small deflection 
and (β) is the force constant, with neglecting other effects to facilitate the process 
mathematically for scientific purposes [7]. 

2. Theoretical Work 

As we know, the two functions of the dispersion relation which describe linear 
vibrations of a diatomic primitive cell as shown in Figure 1 (the mono-atomic 
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primitive cell is automatically included) are [8]. 
The acoustic branch 

2
2 21 1 1 1 4 sin ,

2ac
qa

M m M m mM
ω β

       = + − + −            
         (1) 

The optical branch 
2

2 21 1 1 1 4 sin ,
2op

qa
M m M m mM

ω β
       = + + + −            

         (2) 

where m and M are the masses of both atoms in the primitive cell ( M m≥ ) and 
a is the interatomic distance. The possible deflections of two atoms are 

( ) ( )ei l t
mU l U ω⋅ −= q a  (for the bigger mass),             (3) 

( ) ( )ei l t
mu l u ω⋅ −= q a  (for the smaller mass),             (4) 

where Um and um are the maximum deflections for both atoms, ω is the angular 
frequency and t is the time [5]. 

Figure 2 shows the two acoustic and optical branches functions which are se-
parated by the prohibited ω-zone. 

Where the allowed values of q (wave number) are given as follows: 
2q l
Na
π

= , N is the number of primitive cells in the crystal, 1, 2, 3,l = ± ± ± �  

This means that all the solution points are within the first two Brillouin zones, 
so, if the number of atoms in each primitive cell is three, then all the solutions 
are within the first three Brillouin zones [7]. 

 

 
Figure 1. A linear solid lattice of diatomic primitive cell. 

 

 
Figure 2. The two curves of dispersion relation [9]. 
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Figure 3. Approximation of dispersion relation by a straight line ω = sq beside q = 0 [9]. 

 
We proceeded from the acoustic branch of the dispersion relation in a linear 

solid lattice of diatomic cell (Equation (1)) and the fact that where q approaches 
zero, it approximately takes the following form [6]: 

sqω = ,                           (5) 

where s is the wave (sound) speed via the lattice, as shown in Figure 3. 

2.1. Linearstatistical Fitting 

We should make some mathematical simplifications in Equation (1) (the acous-
tic branch) to remove the function dependence on the physical characteristics as 
follows. 

Equation (1) may be rewritten under the following form: 
2

2
2

21 1 cos ,m m m aq
m M MM
βω
  = + − + +  
   

             (6) 

or 
2

2

21 1 cos ,m m m m aq
M MM

ω
β

 = + − + + 
 

             (7) 

assuming that x aq= , 
Mp
m

=  ( M m≥ , then 1p ≥ )and mϖ ω
β

= , then 

2

1 1 21 1 cos .x
p pp

ϖ
 

= + − + + 
 

                 (8) 

By using a VISUAL BASIC program that generates 50 ( ), xϖ  points beside 
0x =  via substituting with values of x in Equation (8) and uses them for linear 

statistical fitting as 0 1xϖ η η= +  after calculating each of 0η  and 1η , we can 
reach the sought relation. 

When running the program which needs to enter the values of p = M/m for 
each matter, the 1η  values are as Table 1 shows. 
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Table 1. Estimated values of 1η  for the used matters. 

1η  
Mp
m

=  ( )2610M ×  [10] ( )2610m ×  [10] Crystal 

0.495478885554644 1 1.994022912 1.994022912 C-C 

0.495478885554644 1 4.663788810 4.663788810 Si-Si 

0.495478885554644 1 12.05213349 12.05213349 Ge-Ge 

0.381690077840471 2.338884263 4.663788810 1.994022912 Si-C 

0.400556205681922 2.039301310 10.85505562 5.322928773 Zn-S 

0.406612439957611 1.951667177 21.18545600 10.85505562 Zn-Te 

0.327164494602450 3.505926388 18.66179645 5.322928773 Cd-S 

0.479475162402413 1.135231317 28.76019326 18.66179645 Cd-Te 

 
Because that the curve ( )xϖ  passes through the origin (0, 0), so 0 0η ≅  

and 1η  is the tangent slope of linear fitting function 1xϖ η=  besides 0x = . 

1 1  ,mx aqϖ η ω η
β

= ⇒ =                     (9) 

where ω  and β  are calculated by linear fitting process, then 

1 ,a q
m
β

ω η=                         (10) 

which we compare with Equation (5), so 

1a q sq
m
β

ω η= ≅ , then                   (11) 

2

2 2
1

.ms
a

β
η

=                          (12) 

2.2. Mathematical Analyzing Proof 

Proceeding from Equation (8), which is 

2

1 1 21 1 cos .x
p pp

ϖ
 

= + − + + 
   

A first estimation of the force constant β  may be derived from simple con-

sideration. Indeed, as x approaches zero, 
2

cos 1
2
xθ ≅ − , so, Equation (8) can be 

rewritten under the following form 

2
2

2

1 1 21 1 1
2
x

p pp
ϖ

  
= + − + + −  
   

, around 0x =         (13) 

or 
( )

2
2

2

11 1 1
1 1

x
p p p

ϖ
    = + − − 
 +   

,             (14) 

for values of x around zero, we have 
( )

2

2 1
1 1

x
p p+

� , and, consequently 

https://doi.org/10.4236/jamp.2021.91002


M. Joghlaf et al. 
 

 

DOI: 10.4236/jamp.2021.91002 16 Journal of Applied Mathematics and Physics 
 

(as ( )1 2 11 1
2

y y+ ≅ +  as 0y ≅ ), Equation (14) reduces to the simple form 

( )
2

2 ,
2 1

x
p

ϖ =
+

                       (15) 

as x aq= , 
Mp
m

=  ( M m≥ , then 1p ≥ )and mϖ ω
β

= , then from Equation 

15, one can obtain the following expression of ω . 

( )2
a q

M m
βω

 
=   + 

                     (16) 

According to Equation (5), we get 

( )
  ,

2
s a

M m
β 

=   + 
                     (17) 

then 
2

2

4ms
a

β = ,                       (18) 

where 
2

m Mm +
= . 

3. Comparison and Discussion 

Comparing the estimated force constant and the analytically extracted one, we 
get the results shown in Table 2 in which the last column shows the calculated 
values of β  according to Equation 18 and we can observe a good concordance 
between these values and those given by the fitting process according to Equa-
tion 12 (in the adjacent column) and, so, as Figure 4 shows. 

We can now introduce the interatomic force constant, β, via the following re-
lation 

2

2

4 ,ms
a

β =
 

 
Table 2. Comparison between the estimated force constant (Equation (12)) and the ana-
lytically extracted one (Equation (18)). 

2

2

4ms
a

β =
 

Extracted 

2

2
1

ms
a

β
η

=
 

Estimated 
S (m/s) 

B [11] 
(×1011) 

a [5] 
(×10−10 m) 

Crystal 

78.31346728 79.7487862 11155.092 4.4000 3.56 C-C 

26.90453009 27.39779461 6520.984 0.9908 5.43 Si-Si 

24.05782553 24.49891544 3998.367 0.8501 5.66 Ge-Ge 

45.98786306 47.27084074 8084.071 2.1142 4.35 Si-C 

13.61016036 13.95506009 3508.744 0.5032 5.41 Zn-S 

12.30523188 12.60025426 2673.068 0.4046 6.10 Zn-Te 

13.34362773 13.84632183 2942.99 0.4783 5.82 Cd-S 

9.939901797 10.12465468 2288.505 0.3068 6.48 Cd-Te 
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cBvBs
m Mρ

= =
+

, ρ  is the density [12],           (19) 

cv  is the primitive cell volume, such as 
3

c
av
n

=  [12],      (20) 

where n  is the number of atoms in a primary cell; Figure 5 shows the differ-
ence between primary cell and primitive cell in B. C. C. structure as an example. 

Substituting from Equation (20) in Equation (19) then in Equation (18), we 
get 

2 ,a
n

Bβ =                          (21) 

which is the relation we are looking for. 

As an example, for F. C. C. Structure, as 4n = , 1
2

Baβ = . 

It is worth noting that a similar relation has been shown to be valid for solids 
with a variety of crystal structures [4]. 

Comparing Equation (12) and Equation (18), we find 
2 2

2 2 2
1

4 ,ms ms
a aη

=                         (22) 

 

 
Figure 4. Comparison between the estimated β and the analytically extracted β. 

 

 
Figure 5. Primary cell and primitive cell in B. C. C. structure [13]. 
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then 
2 2

2 2 2
1

4 ,ms ms
a aη

=                      (23) 

which gives us the exact values of the slope 1η  for the matters used in this work 
as shown in Table 3, and can be compared to their estimated values in Table 1 
which is shown in Figure 6. 

As direct results from the obtained force constant relation, we can calculate 
the maximum acoustic angular frequency ( )maxacω , the minimum optical angu-
lar frequency ( )minopω  and the maximum optical angular frequency ( )maxopω , 
which can easily be measured experimentally. 

From Figure 2, we can see that 

( ) ( ) ( )2 22

max min max

1 1 1 ,
2 2 2ac op opM mβ ω ω µ ω= = =           (24) 

where µ  is the reduced mass 
1 1 1

M mµ
 

= + 
 

. 

By substituting with 
( ) 2

2

2 M m s
a

β
+

= , we can deduce that 

 
Table 3. Comparison between the extracted 1η  and the estimated 1η  for the used matters. 

Crystal p M m=  1η  Extracted 1η  Estimated 

C-C 1 0.5 0.495478885554644 

Si-Si 1 0.5 0.495478885554644 

Ge-Ge 1 0.5 0.495478885554644 

Si-C 2.338884263 0.386976257 0.381690077840471 

Zn-S 2.039301310 0.405600166 0.400556205681922 

Zn-Te 1.951667177 0.411577201 0.406612439957611 

Cd-S 3.505926388 0.333114054 0.327164494602450 

Cd-Te 1.135231317 0.483907705 0.479475162402413 
 

 
Figure 6. Comparison between the estimated 1η  and the analytically extracted 1η . 
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Table 4. Values of ( )maxacω , ( )
minopω  and ( )

maxopω  according to the resulted relation 

of β , (
2

2

4ms
a

β = , where 
2

M mm +
= ). 

( )
maxopω

 
(×1013) 

( )
minopω

 
(×1013) 

( )maxacω  
(×1013) 

S (m/s) Mp
m

=  a (×10−10) [5] Crystal 

12.534 8.863 8.863 11155.092 1 3.56 C-C 

4.804 3.397 3.397 6520.984 1 5.43 Si-Si 

2.826 1.998 1.998 3998.367 1 5.66 Ge-Ge 

8.115 6.792 4.441 8084.071 2.338884263 4.35 Si-C 

2.761 2.262 1.584 3508.744 2.039301310 5.41 Zn-S 

1.852 1.506 1.078 2673.068 1.951667177 6.10 Zn-Te 

2.435 2.147 1.147 2942.99 3.505926388 5.82 Cd-S 

1.214 0.885 0.831 2288.505 1.135231317 6.48 Cd-Te 

 

( )max

12 1 ,ac
s

p a
ω

 
= + ⋅ 

 
                   (25) 

( ) ( )
min

2 1 ,op
sp
a

ω = + ⋅                     (26) 

and ( ) ( )
max

2 1
,op

p s
ap

ω
+

= ⋅                   (27) 

which Table 4 shows their values for the substances of this work. 

4. Conclusions 

The simple approach, detailed in this work, based on linear fitting by computer 
programming and mathematical analysis, permitted computation of the constant 
force (CF) as a linear function of the bulk modulus and interatomic distance para-
meters, under the assumption that only interactions between first nearest neighbors 
are considered. The two derived relations from the two above-mentioned methods 
have led to similar results for some mono- and diatomic molecules of the semi-
conductor type. Furthermore, these two relations enabled us to express the inte-
ratomic force constant as proportional to the bulk modulus and the interatomic 
distance. 

The importance of deriving this relation is that many physical quantities are 
linked to the force constant, the bulk modulus and the interatomic distance and 
so, it could be a contribution to increase crystal structure understanding and 
may be used in many other theoretical works. 

Moreover, this resulted mathematical relation makes it possible to calculate 
interatomic Hooke’s force constant for solid matters in terms of bulk modulus 
and interatomic distance, and so to calculate bulk modulus in terms of the oth-
ers, which can help understanding the relationship between sub-fusion and fu-
sion energies with fusion temperature. 
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The results of this work will be used in an attempt to extract mathematical re-
lations between correlation energy, sub-fusion energy and fusion energy with 
temperature, which will clarify many physical issues and provide broader re-
search possibilities. 
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