
Open Journal of Social Sciences, 2020, 8, 340-352 
https://www.scirp.org/journal/jss 

ISSN Online: 2327-5960 
ISSN Print: 2327-5952 

 

DOI: 10.4236/jss.2020.812028  Dec. 28, 2020 340 Open Journal of Social Sciences 
 

 
 
 

The Asymmetry of Shanghai Composite Index 
Volatility 
—Stochastic Volatility Models Based on GHST Distribution 

Xu Han, Jihong Kong 

Business School, Nanjing Normal University, Nanjing, China 

 
 
 

Abstract 
In this paper, we analyzed how the asymmetric stochastic volatility models 
with GHST distribution capture the asymmetry of stock index volatility in 
China. Under the setting of fat-tail distribution, we introduced the correlation 
parameter ρ of two error terms to refine the classification of ASV model from 
two aspects of Contemporaneous correlation and Subsequent correlation. So 
we could compare the effect of ASV model in demonstrating the asymmetry 
of stock index volatility under the above different settings. Using the daily 
returns of Shanghai stock composite index, we concluded that the ASV model 
with GHST distribution and Subsequent correlation between error terms can 
better describe the asymmetry of the stock index in China. The DIC value and 
Kupiec test verified the adequacy and the effectiveness of risk measurement of 
the above model respectively. 
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1. Introduction 

With the rapid development of economic globalization and financial integration, 
the transaction scale of global financial market continues to expand, and the op-
eration efficiency is significantly improved. With the unprecedented develop-
ment of financial market, the volatility of asset prices is increasing as well. The 
volatility has always been an important topic in the field of financial econome-
trics and time series analysis. At first, volatility is considered to be constants. 
Later, a series of researches have proved that, affected by time, dividend and re-
lated information, volatility is more constant than time variant and regular. 
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As a systematic method to research volatility, generalized autoregressive con-
ditional heteroscedasticity (GARCH) models and stochastic volatility (SV) mod-
els have been developed fully and widely in recent years. On the basis of 
time-varying, scholars use the above two models to study the typical characteris-
tics of volatility, such as persistence, clustering and asymmetry. GARCH models 
assume that the return is a stochastic process, and the variance equation isn’t af-
fected by the error term. The typical characteristics of volatility can be described 
by transforming the variance equation. The SV models assume that the volatility 
is random that both the yield and volatility equations consider the random error 
term, which increases the flexibility of volatility measurement as well as the 
complexity of the measurement to a certain extent.  

In the underlying researches, SV models are applied to the study of option 
pricing in the form of continuous time series (Taylor, 1982; Hull & White, 1987). 
The discrete SV models are more convenient for empirical research, and have 
been widely used in the study of the return on financial assets such as stock 
market and foreign exchange market (Taylor, 1986; Jacquier et al., 1994; Kim et 
al., 1998). The discrete SV model is as follows, 

( )exp 0.5 .t t ty h w=                          (1) 

( )1 .t t th h − ν= ω+ φ −ω +σ ν                       (2) 

The volatility ( )exp 0.5t thσ =  acts as a constant scale factor in return equa-
tion, and th  is the unobserved latent volatility in logarithmic volatility equa-
tion. In order to ensure the strict stationarity and ergodicity of the stochastic 
process, the persistence parameter 1φ <  is assumed as well as 0h = ω ,  

( )( )2 2
0 ~ 0, 1Nν σ −φ . tw  and tν  are the random error terms. Theoretically, 

when tν  follows standard normal distribution, ( )( )2 2~ , 1th N ω σ −φ , th  is 
a stationary process of AR (1). 

The basic SV models assume that error terms tw  and tν  of returns and vo-
latility respectively following independent normal distribution. However, the 
return of most financial assets doesn’t conform to the characteristics of normal 
distribution, but presents the phenomenon of leptokurtosis and fat-tail. That is, 
compared with normal distribution, the value of skewness and kurtosis of asset 
return are larger, even slightly extreme. The generalized hyperbolic distribution 
(Barndorff-Nielsen, 1977) is a general term for a wide range of parametric dis-
tributions, such as hyperbolic distribution, normal inverse Gaussian (NIG) dis-
tribution, skew-t distribution, and so on. In the case of affine transformation, 
conditionalization and marginalization, these distributions are still closed (Na-
kajima & Omori, 2012), which can describe the fat-tailed characteristics flexibly. 
The generalized hyperbolic skew-t distribution (GHST), as a special case of GH 
distribution, could describe the skewness and fat tails of volatility because of its 
properties that two tails are polynomial and exponential respectively. Aas & Haff 
(2006) compared the fitting effects of normal inverse Gaussian distribution, 
skew-t distribution and GHST distribution on four financial time series of 
stocks, bonds, foreign exchange and interest rates, and proved that GHST dis-
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tribution is the distribution most in line with the characteristics of skewness and 
fat tail, and is simpler in form setting, avoiding over parameterization and re-
ducing the difficulty of model estimation (Nakajima & Omori, 2012), while 
fat-tailed NIG is suitable for biased but not severe heavy tailed sequences, biased 
t distribution could well fit fat tailed data, but couldn’t deal with extreme skew-
ness. In addition to the characteristics of leptokurtosis, there is obvious asym-
metric effect in the financial market, especially in the volatile stock market. The 
asymmetry of volatility is defined as the negative correlation between future 
conditional volatility and current yield. In contrast to good news, bad news may 
bring about more intensive volatility. The basic accept of asymmetric SV models 
is as follows: there is a negative impact on the price level when ρ is negative, 
which will lead to lager volatility, in contrast to the negative impact of the same 
scale, the positive price shock will lead to the decline of volatility when ρ is posi-
tive, and there is no correlation between the error terms when ρ is 0, therefore 
the model is symmetric. Different settings of error term should be considered in 
the process of measure the asymmetry of volatility, such as normal distribution, t 
distribution, GHST distribution and skew-t distribution. In the past empirical 
studies, Harvey & Shephard (1996) used CRSP and S&P500 data to estimate the 
asymmetric SV model with normal inverse Gaussian distribution, and Jacquier 
et al. (2004) concluded that volatility has significant asymmetry using CRSP in-
dex and two sets of exchange rate data of UK against US dollar, Deutsche Mark 
and Canadian relative to the US dollar. It is demonstrated that the SV model 
with negative correlation coefficient ρ and following t distribution is better than 
the asymmetric normal distribution, symmetric t distribution and normal dis-
tribution. Nakajima & Omori (2009) adapted S&P500 and Topix index data to fit 
a variety of SV models with different settings. Among them, the fat-tailed ASV 
model following t distribution and introducing gamma scale could capture the 
asymmetric characteristics of fluctuations efficiently. 

Using different SV models, the fat tail characteristics and leverage effect of 
Chinese stock index returns were also verified. Yang and Su (2013) concluded 
that the SV model under t distribution is easier to describe the fat tail characte-
ristics of Chinese stock index by comparing the SV model with normal distribu-
tion and t distribution; Yang and Wu (2016) analyzed the fat tail and leverage 
effect of Chinese GEM stock index using ASV-t model, and demonstrated that 
the fitting effect was better than that of the asymmetric SV-N model.  

Because of its relatively uncomplicated form, t distribution could describe the 
sufficiency of volatility significantly, but its fitting efficiency is lower than that of 
GHST distribution. As the only distribution with exponential tail and polynomi-
al tail in GH distribution, GHST distribution has more advantages in analyzing 
the asymmetry of volatility, fitting return on assets data and VaR risk measure-
ment. The innovation of this paper is that, considering the asymmetry of volatil-
ity of SV-GHST model under the contemporary and subsequent correlation. We 
also test the effectiveness of VaR risk measurement, verify the advantage of 
GHST distribution from the perspective of risk measurement, and fill in the gap 
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of domestic research on risk measurement under this complex distribution. 
The paper is organized as follows. Section 2 outlines the asymmetric SV mod-

els with GHST distribution and student t distributions as well as the Gibbs sam-
pling scheme in detail. In Section 3, the application of ASV models using 
Shanghai composite index is developed, which includes the parameter estima-
tion and comparison of models in Section 2 as well as the VaR measure by for-
mula method. Finally Section 4 concludes. 

2. SV Models and Estimation 
2.1. The Setting of SV Models  

In SV model, the yield rate of financial assets is affected by two random shocks 

tw  and tν . In order to ensure the finiteness of return, the error term tν  is 
generally admitted as the standard normal distribution, while the error term tw  
is divided into different classification adhering to different distributions. In this 
paper, we use the SV model of generalized hyperbolic skew t distribution setting 
by Nakajima & Omori (2012), and combine the correlation of two error terms 

tw  and tν  to describe the asymmetry of volatility. 
Firstly, the error term tw  of basic SV model in Equation (1) is expressed as a 

random variable following GHST distribution, 

t w t t tw Z Z u= µ +β + .                       (3) 

( ) ( )~ 0,1 , ~ 0.5 ,0.5 .t tu N Z IG ν ν                   (4) 

The error term tw  expressed by the above formula is a mixture of normal 
variance -mean, and the mixed distribution tZ  is the inverse gamma distribu-
tion with degree of freedom of 2ν . In order to guarantee the finite variance, 
the value of ν  must be greater than 4 and w zµ = −βµ . At the same time, in 
order to ensure ( ) 0tE w = , there is ( ) ( )2z tE Zµ ≡ = ν ν − . Substituting the 
expression of tw  back to Equation (1), there is the following SV model with 
generalized hyperbolic skew t distribution: 

( ) ( )( ){ }exp 0.5t t t t t ty h Z E Z Z u= µ + β − + .          (5) 

 ( )1 1t t th h+ ν += ω+ φ −ω +σ ν .                  (6) 

( )~ 0.5 ,0.5tZ IG ν ν .                     (7) 

where, ( ),β ν  is the common variable that determines the skewness and thick 
tail characteristics of models. In particular, when 0β =  the above Equation (5) 
is simplified as SV model in which the error term follows the student distribu-
tion. 

Secondly, the classification of SV models can be refined according to the cor-
relation between two error terms tu  and sν  ( s t=  or 1s t= + ), so as to 
further investigate whether the efficiency of different models to capture the 
asymmetry of volatility is different. 

When ( )cov , 0t su ν = , the relationship between the error terms tu  and sν  
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follows the basic zero correlation setting. Most of the two error terms in the ba-
sic SV model follow the null correlation hypothesis (Taylor, 1982, 1986; Hull & 
white, 1987), which could describe the clustering of volatility. However, when 
the asymmetry and long memory of volatility are considered, the explanatory 
ability of this model will decline (Nakajima & Omori, 2009, 2012; Jacquier et al., 
2004; Berg & Yu, 2004). When describing the asymmetry of volatility, it is ne-
cessary to consider the correlation coefficient ( )0ρ ρ ≠  between the error term 

tu  and sν  ( s t=  or 1s t= + ) based on the basic SV model. 
Furthermore, the research on the correlation between the error terms ( tu  and 

sν ) of ASV model can be basically divided into two types: subsequential correla-
tion (SC) represented by Harvey & Shephard (1996) and contemporary correla-
tion (CC) represented by Jacquier et al. (2004). When the correlation between 
the error terms is assumed as synchronous, the error term of volatility equation 
could be written as 21t t tuν = ρ + −ρ η , and tη  follows the standard normal 
distribution. In order to ensure tν  still follows the standard normal distribution 
and ( )cov ,t tu ν = ρ , assuming tu  and tη  is uncorrelated, i.e. ( )cov , 0t tu η = . 
When it is assumed that there is a lag correlation between the error terms, the 
term could be written as 2

1 11t t tu+ +ν = ρ + −ρ η , ( )1 ~ 0,1t N+η . Similarly, 
supposing ( )1cov , 0t tu +η =  to ensure ( )1cov ,t tu +ν = ρ  and ( )1 ~ 0,1t N+ν . In 
particular, if 0ρ = , there is no correlation between the above two terms. 

When the error terms are correlated, the impact path of price shocks on vola-
tility is as follows. Taking the lag correlation as an example, that is, assuming 
that the correlation coefficient ρ  between the error terms is less than 0, 1t+ν  
will produce a larger volatility than the positive impact of the same size through 
the related transition between 1t+ν  and tu  when the yield ty  is negatively 
impacted (i.e. 0tu < ), so the uncertainty of the yield increases in the next pe-
riod as a result. Similarly, the same conclusion can also be drawn when the two 
error terms are contemporaneous correlation, that is, negative shocks will be as-
sociated with higher contemporaneous and subsequent volatility, while positive 
shocks will reduce volatility (Jacquier et al., 2004). However, it is worth noting 
that the current negative impact in lag correlation is not equal to the negative 
impact in the next period. Therefore, the current negative impact on the yield 
can only ensure that the probability of the raise of the returns in the next period 
will increase, but it couldn’t guarantee that the sign of the value must be negative 
(Kong, 2017). In theory, the error term of contemporaneous correlation couldn’t 
explain the leverage effect ( )( )2ln | ,t t tE Xσ σ  as well as conform to the hypo-
thesis of efficient market because it is not martingale difference sequence, 
meanwhile the empirical data of S&P and CRSP yields also verified that the ASV 
model with lag correlation can capture the asymmetry of volatility better (Yu, 
2005). Therefore, lag correlation is easier to explain the negative correlation be-
tween price and volatility than the ASV model with contemporaneous correla-
tion. However, for the sake of the integrity of the model type, this paper still 
considers the situation of the same period correlation to verify the conclusion 
from the empirical perspective of Chinese stock index return. 
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To sum up, the expression of SV model can be written as follows, 

( ) ( )( ) ( ){ }1 2exp 0.5 1t t t t t s ty h Z E Z Z −= µ + β − + ρ υ − −ρ η .    (8) 

( ) ( )1 , 1s s sh h s t t− ν= ω+ φ −ω +σ ν = + .              (9) 

when 1s t= + , it is an asymmetric SV model following GHST distribution with 
subsequential correlation between error terms (ASV-GHSTSC); when s t= , it 
is an asymmetric SV model following GHST distribution with contemporaneous 
correlation (ASV-GHSTSC). In particular, when 0ρ = , the above models are 
simplified to be symmetric, that is, there is non-correlation (SV-GHST); when 

1, 1s tβ ≡ = + , asymmetric SV model following student t distribution with sub-
sequent correlation, and When 1, s tβ ≡ = , asymmetric SV model following T 
distribution with contemporaneous correlation. 

2.2. Gibbs Sample  

BUGS (Bayesian Inference Using Gibbs Sampling) is a software package that 
runs SV model based on Bayesian Markov Chain Monte Carlo (MCMC) me-
thod. It can easily set the prior distribution and error distribution by modifying 
the code, and then improve the efficiency of Gibbs sampling. In this paper, the 
single-move Gibbs algorithm in OpenBUGS software is used to estimate the 
ASV models whose error term follows the generalized hyperbolic skew-t distri-
bution by setting the normal variance-mean mixed distribution, and the mixed 
distribution is inverse gamma distribution (Nakajima & Omori, 2012). Open-
BUGS could give the results of convergence, parameter estimation, autocorrela-
tion posterior density map and DIC value. Generally speaking, the steps of Gibbs 
sampling are as follows: 

1) initialize , ,h zθ  
2) sample | , , , , , , ,h z yφ σ ρ µ β ν  
3) sample ( ), | , , , , , ,h z yσ ρ φ µ β ν  
4) sample | , , , , , , ,h z yµ φ σ ρ β ν  
5) sample | , , , , , , ,h z yβ φ σ ρ µ ν  
6) sample | , , , , , , ,h z yν φ σ ρ µ β  
7) sample | , ,z h yθ  
8) sample | , ,h z yθ  
9) go to 2 
In this paper, we use the prior distributions of parameters for reference which 

are setting by Nakajima & Omori (2012), and Kong (2017) has made some im-
provement based on the consideration of the correlation, persistence and model 
fitting effect of volatility equation. The prior distribution of parameters in-
cludes1: ( )~ 0,100Nµ , ( )( )~ 16,0.8 4Gν ν > , ( )~ 0,10Nω , ( )~ 1,1Uρ − , 

( )~ 2.5,0.025IGνσ , ( ) ( )0.5 1 ~ 20,1.5Betaφ+ . In this paper, the single chain 
Gibbs algorithm is used to improve the accuracy of the estimation results by ite-

 

 

1Where N is the normal distribution, Beta is the beta distribution, G is the gamma distribution, IG is 
the inverse gamma distribution, and U is the uniform distribution. 
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rating 15,000 times and discarding the first 5000 times as burn-in period. 

3. Application 
3.1. Data 

We consider daily closing price of Shanghai Composite Index from January 2001 
to July 2020 as the research object, and calculate the logarithmic rate of returns, 

( )1100 lnt t ty p p −= ∗ , where tp  represents the daily closing price of Shanghai 
Composite Index on trading day t. The sample size is 4746 for the returns of 
Shanghai composite index, and it includes all the stocks in Shanghai Stock Ex-
change with A-shares and B-shares. Table 1 shows the descriptive statistics of 

ty . The value of mean is 0.0095, close to zero, which means that the number of 
positive and negative logarithmic returns is equal. This also reflects the high vo-
latility and instability of the stock index return. At the same time, the skewness 
of the log return is −0.3987 and the kurtosis is 7.8630. We can see that the stock 
index return presents left deviation and excess kurtosis. Because of the large JB 
statistic, we could also judge that the return rate of Shanghai stock index is 
non-normal distribution. 

3.2. Parameter Estimates 
3.2.1. Convergence 
In the estimation results in Table 2, MC error is used to measure the uncertainty 
of posterior mean estimation under sampling. The smaller the value is, the high-
er the estimation accuracy of posterior mean is, and the estimation accuracy of 
posterior mean may be ±2 times of MC_error. It can be seen from Table 2 that 
the posterior mean values of each parameter have very high accuracy, indicating 
that they all converge to the prior distribution. 
 
Table 1. Summary statistic for log returns. 

mean Stdev. skewness kurtosis median max min JB stat 

0.0095 1.5678 −0.3987 7.8630 0.0573 9.4008 −9.2561 4802 

 
Table 2. Estimation results of Gibbs sampling of SV models. 

 µ  ω  β  φ  ρ  
νσ  ν  

SV-GHSTSC 

0.0046* 0.1455* −0.1643 0.9889 −0.2553 0.1363 7.059 

0.0166 0.1941 0.0503 0.0029 0.0682 0.0136 0.8031 

6.573E−4 0.0040 0.0028 1.787E−4 0.0054 0.0012 0.0648 

ASV-GHSTCC 

0.0193* 0.1759* −0.0853 0.9894 −0.2483 0.1335 6.858 

0.0160 0.1876 0.0453 0.0029 0.0600 0.0134 0.8182 

4.516E−4 0.0046 0.0023 1.853E−4 0.0044 0.0012 0.0677 

SV-GHST 

0.0170** 0.1494* −0.1127 0.991  0.1118 6.898 

0.0164 0.2136 0.0410 0.0028  0.0136 0.6118 

4.952E−4 0.0037 0.0018 1.968E−4  0.0014 0.0430 
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Continued 

ASV-TCC 

0.0322 0.1458*  0.9886 −0.2919 0.1184 7.141 

0.0151 0.1779  0.0027 0.0529 0.0095 0.7196 

4.028E−4 0.0057  1.429E−4 0.0038 8.252E−4 0.0546 

ASV-TSC 

0.0296 0.0965*  0.9892 −0.1968 0.1096 6.631 

0.0152 0.1936  0.0029 0.0637 0.0120 0.722 

4.518E−4 0.0052  1.936E−4 0.0049 0.0011 0.0599 

Note: In the above table, the first, second and third row are the posterior mean value and standard devia-
tion and MC error of each parameter respectively. The parameters with “**” are significantly 0 at 1% signi-
ficance level, and the parameters with “*” are significantly 0 at 5% significance level, and other parameters 
are significantly not 0 at 1% significance level. 

 
In the meantime, the sample autocorrelation graph, sample path and posterior 

distribution map of parameter iteration also show that the sample autocorrela-
tion of each parameter decays rapidly, the sample path is stable, and the model 
has high convergence. Each parameter has only one peak value, and the curve is 
smooth, which indicates that the sampling iteration of each parameter converges 
to the target prior, so the Gibbs sampling method is fast and effective. 

3.2.2. The Sufficiency of Model Fitting 
Deviation information criterion (DIC) was proposed by Spiegelhalter et al. 
(2002) to measure the fitting effect of several Bayesian models. The so-called 
deviation refers to the difference between the logarithmic likelihood of the fit-
ting model and that of the perfect replica model. DIC is composed of D  and 
pD , which is especially suitable for comparing Bayesian models with posterior 

distribution obtained by MCMC simulation. Among them, D  is the posterior 
mean value of logarithmic likelihood, which is used to measure the fitting degree 
of the model. The better the fitting effect is, the smaller the D  value is. pD  is 
the complexity degree of the model, which is expressed as the deviation of loga-
rithm similar to the posterior mean value minus the deviation of the posterior 
mean value of parameters. The greater the pD  value, the greater the penalty 
for the complexity of the model. Yu (2005) compared eight SV models including 
real models by using the bias information criterion to verify that DIC can iden-
tify the real model of the generated data, and then proves the applicability of 
DIC in the selection process of financial time series model, so as to introduce 
and apply it to SV model. The calculation of DIC value could be directly imple-
mented in OpenBUGS software, which is easier to get than the marginal likelih-
ood value of Bayesian model. 

DIC value reflects the Bayesian measurement of model goodness of fit and 
model complexity, so it can better explain the adequacy of the model, rather 
than simply measure the goodness of fit of the model (Kong, 2017). DIC is used 
to compare the ability of different models in predicting the same kind of new 
data, but it is unable to evaluate whether one model is good or bad value (Spie-
gelhalter et al., 2002). When comparing different models with the same data, the 
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smaller DIC value indicates that the model has better prediction ability. It is 
worth noting that DIC and marginal likelihood criteria have different concerns. 
DIC indicates the degree of prediction of future data by posterior data, while 
marginal likelihood criterion focuses on the prediction degree of prior data for 
observation data, so the comparison results of DIC and marginal likelihood cri-
terion may be slightly different (Berg & Yu, 2004). 

It can be seen from the results in Table 3 that in terms of the degree of model 
fitting, D  value of the ASV-TCC model is the smallest as well as the fitting ef-
fect is best, and ASV-GHSTSC and ASV-GHST are in the second and third place 
respectively. However, as for the complexity of the model, the pD  value of 
ASV-TCC model is the largest, which indicates that the model has the largest 
reduction of uncertainty due to estimation, and the pD  value of symmetric 
SV-GHST model is the smallest among the five models, indicating that the com-
plexity of the model is the lowest, but also because of its relatively simple, its fit-
ting effect is the worst. Generally speaking, the DIC value of ASV-GHSTSC 
model is the smallest, and the model fitting is the best, while the ASV-GHST 
model is the worst. 

3.2.3. The Result of Model Estimation 
Firstly, for the yield equation of models, it can be seen from the estimation re-
sults that the constants μ of the two ASV models with the error term following 
the GHST distribution are significantly 0 at the level of 5%, and the constants 
term μ of the two ASV models following the t distribution aren’t significantly 0 
at the level of 1%. In SV-GHST model, the posterior mean value of parameter β 
is −0.1029 (Stdev is 0.0436), the posterior mean value of β in ASV-GHSTSC 
model is −0.1127 (0.0410), and the posterior mean value of β in ASV-GHSTSC 
model is −0.1643 (0.0503), and they are not 0 under the significance level of 1%, 
which indicates that the three models could capture the negative skewness of re-
turn. Parameter estimation results in Kong (2017) demonstrate that the skew-
ness parameter β of ASV-GHSTSC model and ASV-GHSTSC model is signifi-
cantly 0 at the level of 1%. In the conclusion of this paper, the skewness parame-
ter of all ASV models following GHST distribution is significantly not 0. This is 
because the data size used in this paper is larger, and the volatility of stock index 
return is more severe under random impact, therefore this kind of model is of 
great significance to capture the negative skewness parameter. 

The estimated values of the degree of freedom of the SV model discussed are 
far less than that of Nakajima & Omori (2012) using S&P500 index (the post-
erior mean value of ν is 12.513, the standard deviation is 1.4522) and the TOPIX 
index (the posterior mean value of ν is 29.791, and the standard deviation is 
4.4430), indicating that the return rate of Shanghai Composite Index has a larger 
fat tail characteristics. 

Secondly, for the parameter estimation of volatility equation, as shown in Ta-
ble 2, the value of persistence parameters ϕ of Shanghai composite index volatil-
ity is approximately equal to 0.99, and the volatility has high persistence when 
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impacted, which indicates that the SV model discussed above could capture the 
volatility clustering well. At the same time, the half-life of the asymmetric SV 
model is considered to be about 63 days. The half-life of the symmetric 
SV-GHST model is 76 days. It shows that the time of duration of the volatility 
affected by price is much longer. Compared with symmetric SV models, the ad-
justing speed of asymmetric SV models is faster. The time is shorter the adjust-
ment of the ASV model is faster than that of the symmetric model in compari-
son. 

Finally, the ability of ASV models to capture volatility asymmetry is investi-
gated. The posterior mean value of the correlation coefficient ρ of ASV-GHSTSC 
model is −0.2553 (0.0683), which is significantly not 0 at the level of 1%. The 
95% confidence interval is [−0.382, −0.119], indicating that there is a significant 
negative correlation between the error terms tu  and tν . The posterior mean 
value of the correlation coefficient ρ of ASV-GHSTCC model is −0.2483 
(0.0600), and the 95% confidence interval is [−0.3631, −0.1306]. Compared with 
ASV-GHSTSC model, the absolute value of ρ is smaller and the confidence in-
terval is closer to 0. Therefore, the negative correlation between error items is 
not significant by contrast. Similarly, the posterior mean value of parameter ρ of 
ASV-TSC model is −0.1968 (0.0637), which is significantly not 0 at the level of 
1%. The 95% confidence interval is [−0.316, −0.1981], the posterior mean value 
of parameter ρ of ASV-TCC model is −0.2919 (0.0529), and the 95% confidence 
interval is [−0.3969, −0.1922]. ASV-TCC model could better describe the asym-
metry of volatility. 

3.3. Risk Measurement and Posterior Test 

VaR (value at risk), as a common index of risk measurement, measures the 
maximum possible loss of a financial asset or portfolio under a certain confi-
dence level, as shown in Equation (11), 

( ) 1 1r t pP L l VaR p− ≤ ≥ −  .                    (11) 

This paper uses formula method to calculate the VaR value of 244 trading 
days from July 31, 2019 to July 31, 2020, and verifies it by Kupiec test (1995). 
There is the intra sample prediction formula of VaR by Equtaion (12), where μ is 
the average yield of 0.0094, σ the standard deviation of each model at different 
times, namely e th

tσ = , and the alpha number after each distribution was si-
mulated for 100,000 times as quantile 1Z −α . 

1 1t tVaR Z− −α= −µ + σ .                      (12) 

Kupiec test is also called failure frequency test. When the actual loss of a trad-
ing day is less than the estimated value of its VaR, it is recorded as the success of 
the experiment. Supposing the actual number of days is T and the number of 
days of failure is N, then the actual failure rate p N T= , the expected failure 
rate * 1p = −α , and α is the confidence level. At this time, the predicted VaR 
value could be tested by verifying whether the expected failure rate is equal to 
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the actual failure rate, that is *
0 :H p p= . 

( )( ) ( )( ){ }* *2 ln 1 ln 1
T NT N N NLR p p p p
−−= − − − .        (13) 

when 0H  holds, the likelihood ratio ( )2~ 1LR χ . The critical value of χ2(1) is 
3.84 at 95% confidence level. As shown in Table 3, except for ASV-TCC model, 
the LR statistics of other models are less than 3.84, so we couldn’t reject the null 
hypothesis, that is, the other four models could better measure the market risk of 
Shanghai composite index return rate. The failure days under different settings 
are similar, which indicates that the risk measurement of the four models is 
more accurate, and does not overestimate or underestimate the market risk of 
Shanghai stock index return. 

Among them, the LR statistics of SV-GHST model is the smallest, which can 
effectively measure the market risk of return rate, and the data fitting degree is 
the best, while the LR statistics of ASV-GHSTSC model is the largest, in com-
parison, the accuracy of risk measurement and data fitting effect are worse. At 
99% confidence level, the failure rate and LR statistics of the five models are al-
most the same, and far less than the critical value, so it is no longer explained. 

To sum up, although ASV-TCC model could capture the asymmetry of vola-
tility significantly, the adequacy of the model fitting effect is not as good as that 
of ASV-GHST model because the error term follows the t distribution, so it 
couldn’t effectively measure the risk status of return. Compared with other 
models, ASV-GHSTSC model can not only describe the asymmetry of volatility 
significantly, but also measure the market risk of Shanghai composite index re-
turn rate more accurately. 

4. Conclusion 

This paper focuses on the ability of SV model to depict the asymmetry of the vo-
latility of Shanghai Composite Index, and verifies the effectiveness of the model 
in VaR risk measurement. It fits a more sufficient and efficient model for the 
volatility stock market. In the setting of ASV model, GHST fat-tailed distribu-
tion (t distribution as a special case) is used for the error term. Meanwhile, the 
asymmetry of volatility is described by measuring the correlation coefficient ρ 
between return and volatility error term. The correlation between error items is 
subdivided into contemporaneous correlation, subsequent correlation and  
 
Table 3. DIC values and LR stats. 

 D  pD  DIC rank Failed days Failure rate LR stats 

ASV-TCC 14,460 1108 15,570 3 20 8.23% 4.5061 

ASV-TSC 14,670 922 15,600 4 18 7.79% 2.5480 

SV-GHST 14,890 750 15,640 5 17 5.74% 1.7805 

ASV-GHSTSC 14,490 1034 15,530 1 19 7.79% 3.4356 

ASV-GHSTCC 14,560 992.5 15,550 2 18 7.41% 2.5990 
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non-correlation. In the empirical study, the Gibbs sampling method in Open-
BUGS software is used to estimate the model, and the formula method is used to 
estimate the VaR value and carry out a posterior test. 

It can be concluded that the parameters of the models discussed have high 
convergence, and the parameters of persistence, asymmetry and degree of free-
dom in SV models are significantly not 0. Therefore, ASV model can capture the 
asymmetry, clustering and fat tail characteristics of volatility in Chinese stock 
market. As far as the sufficiency of model fitting is concerned, the DIC value of 
ASV-GHSTSC model is the smallest, and the fitting is the most sufficient. The 
DIC value of symmetric SV-GHST model is the largest, and the fitting effect of 
ASV models with GHST distribution is generally better than that of ASV model 
with asymmetry. As for the VaR risk measurement, SV-GHST model can meas-
ure the market risk of return rate most effectively, and the fitting effect is the 
best. Although the VaR value of ASV-GHSTSC model is large, it also passes Ku-
piec test, which could effectively measure the market risk of Shanghai composite 
index return rate. Therefore, our research could provide an ASV-GHSTSC mod-
el with sufficient fitting and effective measurement of stock market risk for 
Shanghai stock market, which provides experience for other financial markets to 
some extent. 

Our research has limitations as well. Firstly, we concentrated on the stock 
yields only using the most commonly using Shanghai composite index, ignoring 
other typical financial assets data such as GEM, exchange rate and so on. Then, 
only the GHST and T distributions are adopted in our paper, and the results 
may be limited because of the lack of adequate comparison distributions. In the 
future, we can expand the research object to other financial assets such as for-
eign exchange, futures, etc. to investigate the asymmetry of volatility under the 
biased GED distribution of SV model. We use the long memory SV model to 
study the long memory of the yield series, and further study the effectiveness of 
VaR under the SV complex distribution model. 
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