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Abstract 
In the article, we established a non-autonomous vector infectious disease 
model, studied the long-term dynamic behavior of the system, and obtained 
sufficient conditions for the extinction and persistence of infectious diseases 
by constructing integral functions. 
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1. Introduction 

In real life, we are often confused by infectious diseases. Infectious diseases in-
clude humans, animals, plant infectious diseases, especially human infectious 
diseases, such as tuberculosis, AIDS/HIV, malaria, which are the top three single 
disease killers of health in the world. According to the World Health Organiza-
tion statistics, in 2002 about 70 million people are infected with AIDS, causing 
around 20 million deaths. In recent years, each year more than 560 million 
people infected with AIDS [1] [2]. The control of infectious diseases spread has 
aroused great interest of the people and many mathematical models are estab-
lished (see [3] [4] [5] [6]) to understand the mechanism of disease transmission, 
and to prevent or slow down the transmission of infectious diseases. In order to 
effectively control the spread of infectious diseases, we often introduce three 
control strategies in the model: cohort immunization, time-dependent pulse 
vaccination, and state-dependent vaccination. The first strategy details a conti-
nuous vaccination effort of susceptible individuals, while the second and third 
strategies involve vaccinating a significant fraction of the susceptible population 
in a short period of time [7]. 

In recent years, some mathematical models incorporating treatment have 
been established and investigated by many researchers [8]-[15]. Infectious dis-
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eases are the most important biosecurity issues, and every country should pay 
attention and strive to have a maximal capacity treatment for diseases. Therefore, 
it is vital to describe the limited capacity for treatment [16]. In [12], Wang and 
Ruan proposed the constant treatment function of diseases in an SIR epidemic 
model. According to this model when people get sick and must be hospitalized 
but there are limited beds in hospitals, or there is not enough medicine for 
treatments, should be considered and simulated the limited resources for the 
treatment of patients. Wang [13] researched the piecewise linear treatment func-
tion. The model is assumed that treatment rate is proportional to the number of 
infectives below the capacity and is a constant when the number of infectives is 
greater than the capacity. In [13], Wang adopted a constant treatment, which is 
suitable for the case of a large number of infectives. Zhang and Liu [17] intro-
duced a continuously differentiable treatment function, which describes the sa-
turation phenomenon of the limited medical resources. Zhang and Kang [15] 
proposed discontinuous treatment function in an SEIR epidemic model, which 
describes that the treatment rate has at most a finite number of jump disconti-
nuities in every compact interval. 

Some infectious diseases are transmitted by vector, such as Malaria, Dengue 
and West Nile virus, which spread by Mosquitoes. The maintenance and resur-
gence of vector-borne diseases are related to ecological changes that favor in-
creased vector densities or vector-host interactions, among other factors [18]. 
However, travel and transport are a major factor in the spread of vector-borne 
diseases, we have reasons to believe that the spatial movement of humans may 
be important for the epidemiology of vector-borne diseases. Every year there are 
more than 1 billion cases and over 1 million deaths from vector-borne diseases 
such as malaria, dengue, schistosomiasis, human African try-panosomiasis, 
leishmaniasis, Chagas disease, yellow fever, Japanese encephalitis and onchocer-
ciasis [19]. So the vector-borne is a very important part of the transmission of 
epidemic diseases. 

The structure of this paper is organized as follows. Section 2 presents the vec-
tor-borne diseases model. And positivity and boundary of the model (1.1) are 
studied. In Section 3 and 4, we deal with the existence and permanence of model 
(1.1). In Section 5, we had a brief discussion.  

2. Definitions and Preliminaries  

Based on [20], we get the following vector infectious disease model:  
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with initial value  

( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0.S I X Y> > > >              (2.2) 

where the variables ( )S t , ( )I t , ( )X t  and ( )Y t  represent susceptible host, 
infected host, susceptible vector and infection vector, respectively. ( )tΛ  
represents the input rate of susceptible hosts, ( )i tβ  ( 1,2i = ) means effective 
contact rate. ( )tµ  and ( )v tµ  represents the natural mortality of the host and 
the vector, respectively. ( )L t  represents the birth rate of the newborn vectors, 
A represents the effective bite rate of the vector. 

Assumption 2.1 
1) Functions ( ) ( ) ( ) ( ) ( )1 2, , , ,t t t t tβ β µ γΛ  and ( )v tµ  are positive, 

bounded and continuous on [ )0,+∞ . 
2) There exist constants ( )0 1,2,3,4i iω > =  such that 

( ) ( )1 2
1d 0, liminf d 0,

t t

t tt
s s s s

ω ω
β

+ +

→+∞
Λ > >∫ ∫  

( ) ( )3 4
2liminf d 0, liminf d 0.

t t

t tt t
s s s s

ω ω
β µ

+ +

→+∞ →+∞
> >∫ ∫  

In what follows, we denote ( ) ( ) ( ) ( ) ( ) ( ), vN t S t I t N t X t Y t= + = +  
and ( )N t  the solution of  

( ) ( ) ( ) ( )
d

d
N t

t t N t
t

µ= Λ −                    (2.3) 

( )vN t  the solution of  

( ) ( ) ( ) ( )
d

d
v

v v

N t
L t t N t

t
µ= −                   (2.4) 

with initial value ( )0 0S > , ( )0 0S > , ( ) ( ) ( )0 0 0 0N S I= + > ,  
( ) ( ) ( )0 0 0 0vN X Y= + > . 

Proposition 2.2 
1) There exist constants 1 0m >  and 1 0M > , which are independent from 

the chioce of initial value ( )0 0N > , such that 

( ) ( )1 10 liminf limsup .
t t

m N t N t M
→+∞ →+∞

< ≤ ≤ ≤ < +∞          (2.5) 

2) There exist constants 2 0m >  and 2 0M > , which are independent from 
the chioce of initial value ( )0 0vN > , such that 

( ) ( )2 20 liminf limsup .v vt t
m N t N t M

→+∞ →+∞
< ≤ ≤ ≤ < +∞         (2.6) 

3) The solution ( ) ( ) ( ) ( )( ), , ,S t I t X t Y t  of system (1.1) with initial value 
(2.2) exists, uniformly bounded and  

( ) ( ) ( ) ( )0, 0, 0, 0,S t I t X t Y t> > > >  

for all 0t > . 
For 0, 0p q> >  and 0t >  we define 

( ) ( ) ( ) ( ) ( ) ( )1 2, vG p t t p t N t t tβ β µ µ= + − +    

and 
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( ) ( ) ( ), ,W p t pI t Y t= −                     (2.7) 

where ( )I t  and ( )Y t  are solutions of system (1.1). In Sections 3 and 4 we use 
the following lemma in order to investigate the longtime behavior of system 
(2.1). 

Lemma 2.3 If there exist positive contants 0p >  and 1 0T >  such that 
( ), 0G p t <  for all 1t T≥ , then there exists 2 1T T≥  such that either  
( ), 0W p t >  for all 2t T≥  or ( ), 0W p t ≤  for all 2t T≥ . 
Proof. Suppose that there does not exist 2 1T T≥  such that ( ), 0W p t >  for 

all 2t T≥  or ( ), 0W p t ≤  for all 2t T≥  hold. Then there necessarily exists 

1 1s T≥  such that ( )1, 0W p s =  and 
( )

1

d ,
0

d
t s

W p t
t

=

> . Hence we have  

( ) ( )1 1pI s Y s=                        (2.8) 

and  
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= − + +      
−

>

   (2.9) 

Substituting (2.8) into (2.9) we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
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≤

 

From 3) of Proposition 2.2, we have ( )1, 0G p s > , which is a contradiction. 
  

3. Extinction of Infectious Population 

In this section, we obtain conditions for the extinction of infectious population 
of system (2.1). The definition of the extinction is as follows: 

Definition 3.1. We say that the infectious population of system (2.1) is extinct 
if 

( ) ( )lim 0, lim 0.t tI t Y t→+∞ →+∞= =  

From system (2.1), it’s easy to prove that if one of the above equalities hold, 
then the other one is certainly hold. We give one of the main results of this pa-
per. 

Theorem 3.2. If there exist positive constants 0, 0, 0p qλ > > >  and 1 0T >  
such that 

( ) ( ) ( )( ) ( ) ( ){ }1 1 1, limsup d 0,
t

tt
R p s p s N s p s s

λ
λ β β µ

+

→+∞
+ − <∫    (3.1) 

( ) ( ) ( ) ( )1
1, limsup d 0,

t
v vtt

R p s N s s s
p

λ
λ γ µ

+

→+∞

 ′ − < 
 

∫      (3.2) 
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and ( ), 0G p t <  for all 1t T≥ , then the infectious population of system (2.1) is 
extinct. 

Proof. From Lemma 2.3, we only have to consider the following two cases. 
1) ( ), 0W p t >  for all 2t T≥ . 
2) ( ), 0W p t ≤  for all 2t T≥ . 
First we consider the case 1). From the second equation of system (2.1), we 

have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ } ( )
( ) ( )( ) ( ) ( ){ } ( )

1 2

1 2

1 1

d
d
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I t
t S t I t t S t Y t t I t

t
t S t p t S t t I t

t p t N s p t I t
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= + −

< + −

< + −

 

Hence, we obtain 

( ) ( ) ( ) ( )( ) ( ) ( ){ }( )
2

2 1 1exp d
t

T
I t I T s p s N s p s sβ β µ< + −∫       (3.3) 

for all 2t T≥ . From (3.1) we see that there exist constants 1 0δ >  and 3 2T T>  
such that  

( ) ( )( ) ( ) ( ){ }1 1 1d ,
t

t
s p s N s p s s

λ
β β µ δ

+
+ − < −∫            (3.4) 

for all 3t T≥ . From (3.3) and (3.4), we have ( )lim 0t I t→+∞ = . Then it follows 

from ( ) ( )pI t Y t>  for all 2t T≥  that ( )lim 0t Y t→+∞ = . 

Next we consider the case 2). From the fourth equation of system (2.1), we 
have  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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= −

≤ −

 
< − 
 

              (3.5) 

Hence we have  

( ) ( ) ( ) ( ) ( )
2

2
1exp d

t
v vT

Y t Y T s N t s s
p
γ µ

  
< −  

  
∫          (3.6) 

From (3.2) we see that there exist constants 2 0δ >  and 4 2T T>  such that  

( ) ( ) ( ) 2
1 d ,

t
v vt

s N t s s
p

λ
γ µ δ

+  
− < − 

 
∫               (3.7) 

for all 4t T≥ . From (3.6) and (3.7), we have ( )lim 0t Y t→+∞ = . Then it follows 

from ( ) ( )1I t Y t
p

≤  for all 2t T≥  that ( )lim 0t I t→+∞ = .   

4. Permanence of Infectious Population 

In this section, we get sufficient conditions for the permanence of infectious 
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population of system (2.1). The definition of the permanence is as follows: 
Definition 4.1. We say that the infectious population of system (2.1) is per-

manent if there exist positive constants 1 0I ≥  and 2 0I ≥ , which are indepen-
dent from the choice of initial value satisfying (2.2), such that 

( ) ( )1 20 liminf limsup .
t t

I I t I t I
→+∞ →+∞

< ≤ ≤ ≤ < +∞  

We give one of the main results of this paper. 
Theorem 4.2. If there exist positive constants 0, 0, 0p qλ > > >  and 1 0T >  

such that 

( ) ( ) ( )( ) ( ) ( ){ }2 1 1, liminf d 0,
t

tt
R p s p s N s p s s

λ
λ β β µ

+

→+∞
+ − >∫   (4.1) 

( ) ( ) ( ) ( )2
1, liminf d 0,

t
v vtt

R q s N s s s
p

λ
λ γ µ

+

→+∞

 ′ − > 
 

∫        (4.2) 

and ( ), 0G p t <  for all 1t T≥ , then the infectious population of system (2.1) is 
permanent. 

Before we give the Proof of Theorem 4.2, we introduce the following lemma. 
Lemma 4.3. If there exist positive constants 0, 0pλ > >  and 1 0T >  such 

that (4.1), (4.2) and ( ), 0G p t <  hold for all 1t T≥ , then ( ), 0W p t >  for all 

2 1t T T≥ ≥ , where 2T  is given as in lemma 2.3. 
Proof. From Lemma 2.3 we have only two cases to discuss, ( ), 0W p t >  for 

all 2t T≥  or ( ), 0W p t ≤  for all 2t T≥ . Suppose that ( ), 0W p t ≤  for all 

2t T≥ . Then ( ) ( )pI t Y t≤  for all 2t T≥ . It follows from the last equation of 
system (2.1) that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
d 1 1

d
Y t

t X t Y t t Y t t X t t Y t
t p p

γ µ γ µ
 

> − = − 
 

 

for all 2t T≥ . Hence, we obtain 

( ) ( ) ( ) ( ) ( )
2

2
1exp d

t
vT

Y t Y T s N s s s
p
γ µ

  
> −  

  
∫           (4.3) 

for all 2t T≥ . From the equality (4.2), we see that there exist constants 1 > 0η  
and > 0T  such that 

( ) ( ) ( ) 1
1 d

t
vt

s N s s s
p

λ
γ µ η

+  
− > 

 
∫                  (4.4) 

for all t T> . For convenience, we choose 2T  satisfying 2T T≥ . Then the in-
equality (4.3) holds for 2t T≥ , it follows from (4.4) that ( )limt I t→+∞ = +∞ . 
This contradicts with the boundedness of ( )Y t , stated in 2) of Proposition 2.2. 
Thus we have ( ), 0W p t >  for all 2t T≥ .   

Using Lemma 4.4 we prove Theorem 4.2. 
Proof (Proof of Theorem 4.2). For simplicity, let 1 1m mε ε− ,  

1 1M Mε ε+ , 2 2m mε ε− , and 2 2M Mε ε+ , where 0ε >  is a constant. 
From the inequality (2.7) and (2.8), we see that for any 0ε > , there exists 

0T >  such that 
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( )1 1 ,m N t Mε ε< <                        (4.5) 

( )2 2 ,vm N t Mε ε< <                       (4.6) 

for all t T≥ . The inequality (4.1) and (4.2) implies that for sufficient small 
0η > , there exists 1T T≥  such that 

( ) ( )( ) ( ) ( ){ }1 1 d ,
t

t
s p s N s p s s

λ
β β µ η

+
+ − >∫            (4.7) 

( ) ( ) ( )1 d ,
t

v vt
s N s s s

p
λ

γ µ η
+  

− > 
 

∫                (4.8) 

for all 1t T≥ . We define  

( ) ( ) ( )

( ) ( )

1 1 2 2
0 0 0

0 0

sup , sup , sup ,

sup , sup .
t t t

v v
t t

t t t

t t

β β β β µ µ

µ µ γ γ

+ + +

≥ ≥ ≥

+ +

≥ ≥

  

 

 

From (4.6) and (4.8), we see that for positive constants 1η η<  and 2 1T T≥  
there exist small ( )0, 1,2,3,4i iε > =  such that 

( ) ( )( ) ( )1 2 4 2 1
1 d ,

t
vt

s N s M s s
p

λ
εγ ε γ ω ε µ η

+ + 
− − − > 

 
∫        (4.9) 

( ) 1 2 4 2 2 ,vN t M mε εε γ ω ε+− − >                 (4.10) 

hold for all 2t T≥ . From 2) of Assumption 2.1, 1 2,ε ε  can be chosen sufficiently 
small satisfying  

( ) ( )( )4
2 2 1 1d ,

t
vt

s M s s
ω

εγ ε µ ε η
+

− < −∫             (4.11) 

hold for all 2t T≥ . 
First we claim that ( ) 2supt I t ε→+∞ > . 
In fact, if it is not true, then there exists 3 2T T≥  such that  

( ) 2 ,I t ε≤                        (4.12) 

for all 3t T≥ . Suppose that ( ) 1Y t ε≥  for all 3t T≥ . Then, from (4.5) and (4.12) 
we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )( )

3

3

3

3 2 2 1

d

d .

t
v vT

t
vT

Y t Y T s I s N s Y s Y s s Y s s

Y T s M s sε

γ µ

γ ε µ ε

= + − − −

≤ + −

∫

∫
 

for all 3t T≥ . Thus, from (4.11), we have ( )limt Y t→+∞ = −∞ , which contradicts 
with 2) of Proposition 2.2. Therefore we see that there exists 1 3s T≥  such that 
( )1 1Y s ε< . Suppose that there exists an 2 1s s≥  such that  
( )2 1 2 4 2Y s M εε γ ω ε+> + . Then, we see that there necessarily exists an  
( )3 1 2,s s s∈  such that ( )3 1Y s ε=  and ( ) 1Y t ε>  for all ( ]3 2,t s s∈ . Let n be 

an integer such that ( ) )2 3 4 3 4, 1s s n s nω ω∈ + + + . Then from (4.11), we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ){ }2

3

1 2 4 2

2 3 d
s

v vs

M

Y s Y s s I s N s Y s s Y s s

εε γ ω ε

γ µ

++

< = + − −∫
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{ } ( ) ( ){ }

( )

3 4 2

3 3 4

2

3 4

1 2 2 1

1 2 2

1 2 4 2

d

d

s n s
vs s n

s

s n

s M s s

s M s

M

ω
εω

εω

ε

ε γ ε µ ε

ε γ ε

ε γ ω ε

+

+

+

+

< + + −

< +

< +

∫ ∫

∫  

which is a contradiction. Therefore, we see that  

( ) 1 2 4 2 ,Y t M εε γ ω ε+≤ +                    (4.13) 

for all 1t s≥ . Now, from lemma 4.4, there exists 

4 1T s≥  such that ( ), 0W p t >  
for all 4t T≥ . Then  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )1 2 4 2

d
d

1

1

v v

v v v

v v

Y t
t I t N t Y t t Y t

t

Y t t N t I t t
p

Y t t N t M t
p ε

γ µ

γ µ

γ ε γ ω ε µ+

= − −

 
≥ − − 

 
 

≥ − − − 
 

 

for all 4t T≥ . Hence, we have  

( ) ( ) ( ) ( )( ) ( )
4

4 1 2 4 2
1exp d

t
v vT

Y t Y T s N s M s s
p εγ ε γ ω ε µ+  

≥ − − −  
  

∫  

It follows from (4.9) that ( )limt Y t→+∞ = +∞  and this contradicts with the 
boundedness of ( )vI t , stated in 2) of Proposition 2.2. Thus, we see that our 
claim ( ) 2supt I t ε→+∞ >  is true. 

Next, we prove  

( ) 1liminf ,
t

I t I
→+∞

≥  

where 1 0I >  is a constant given in the following lines. For the following con-
venience, we let ω  be the least common multiple of 4ω  and λ . If we define  

( ) ( )( ) ( )1 2 4 2
1liminf :vt

t N t M t m
p εγ ε γ ω ε µ+

→+∞

 
− − − = 

 
 

Then we have two cases to discuss, namely 1) 0m >  and 2) 0m ≤ . Firstly, 
we discuss the case 1). We set 0ε >  such that 0m ε− > , then there exist 
 ( )3 2T T≥  such that  

( ) ( )( ) ( )1 2 4 2
1

vt N t M t m
p εγ ε γ ω ε µ ε+− − − > −  

for all 

3t T≥ . Then, from inequalities (4.9), (4.11)-(4.12) and 2) of Assumption 
2.1, we see that there exist constants  ( )4 3 2, 0T T λ≥ > , which is an integral mul-
tiple of ω , and 2 0η >  such that  

( ) ( ){ }3
2 2 1 2d ,

t
vt

s M s s M
λ

ε εγ ε µ ε
+

− < −∫               (4.14) 

( ) ( )( ) ( )3
1 2 4 2 2

1 d ,
t

vt
s N s M s s

p
λ

εγ ε γ ω ε µ η
+ + 

− − − > 
 

∫        (4.15) 
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( )3
2d ,

t

t
s s

λ
γ η

+
>∫                       (4.16) 

for all 

4t T≥  and 3 2λ λ≥ . Let 0C >  be an integer multiple of 2λ  satisfying  

2
2 2

2 2 2 1 2 4 2 ,
C

e m e M
η

µ λ λ
ε εη ν ε γ ω ε

+− +> +               (4.17) 

where 22
2 2

xe µ λν ε
+−

 . Since we have proved ( ) 2supt I t ε→+∞ > . There are only 
two possibilities as follows: 

1) ( ) 2I t ε≥  for all  

5 4t T T≥ ∃ ≥ . 
2) ( )I t  oscillates about 2ε  for large 

4t T≥ . In case 1), we have  
( ) 2 1liminft I t Iε→+∞ ≥  . In case 2), there necessarily exist two constants 

 ( )1 2 4 2 1,t t T t t≥ ≥  such that 

( ) ( )
( ) ( )

1 2 2

2 1 2

,

, for all , .

I t I t

I t t t t

ε

ε

= =


< ∈
 

Suppose that 2 1 22t t C λ− ≤ + . Then, from (1.1) we have  

( ) ( )
d

,
d
I t

I t
t

µ+≥ −                      (4.18) 

Hence, we obtain  

( ) ( ) ( ) ( )2

1

2
1 2 1exp d : ,

t C

t
I t I t s e Iµ λµ ε

+− ++≥ − ≥ =∫          (4.19) 

for all ( )1 2,t t t∈ . Suppose that 2 1 22t t C λ− > + . Then, from (4.18), we have  

( ) ( )22
2 1

CI t e Iµ λε
+− +≥ =  

for all ( )1 1 2, 2t t t C λ∈ + + . Now, we are in a position to show that ( ) 1I t I≥  for 
all [ )1 2 22 ,t t C tλ∈ + + . Suppose that ( ) 1I t ε≥  for all [ ]1 1 2, 2t t t λ∈ + . Then, 
from (4.14), we have  

( ) ( ) ( ) ( ){ }1 2

1
1 2 1 2 2 1 2 2d 0

t
vt

Y t Y t s M s s M M
λ

ε ε ελ γ ε µ ε
+

+ ≤ + − < − =∫  

which is a contradiction. Therefore, there exists an [ ]4 1 1 2, 2s t t λ∈ +  such that 
( )4 1Y s ε< . Then, as is in the proof of ( ) 2supt I t ε→+∞ > , we can show that  

( ) 1 2 4 2 ,Y t M εε γ ω ε+≤ +                    (4.20) 

for all 4t s≥ . From (4.18), we have  

( ) 22
2 2 ,I t e µ λν ε

+−≥ =                     (4.21) 

for all [ ]1 1 2, 2t t t λ∈ + . Thus, from (4.10), (4.20), (4.21), we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

d
d v v

Y t
t I t X t t Y t t m Y t

t εγ µ γ ν µ+= − ≥ −  

for all [ ]1 2 1 2, 2t t tλ λ∈ + + . Hence, from (4.16), we obtain  

( )
( ) ( ) ( ) ( ){ }
( ) ( )

1 21 2 1 2

1 2

1 21 2 2

1 2

1 2

22
1 2 2 2

22
2 2 2 2 2

2

d

d .

tt t s
t

tt s
t

Y t

e Y t e s m e s

e s m e s e m

λµ λ µ λ µ
ελ

λµ λ µ λµ
ε ελ

λ

λ γ ν

γ ν η ν

+ + +

+ ++

+− + +

+

+− + −

+

+

≥ + +

≥ ≥

∫

∫

     (4.22) 
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Now we suppose that there exists a 0 0t >  such that ( )0 1 2 22 ,t t C tλ∈ + + , 
( )0 1I t I=  and ( ) 1I t I≥  for all [ ]1 0,t t t∈ . Then there exists m N∈  such that 

( ) )0 1 2 1 22 , 2 1t t C m t C mλ ω λ ω∈ + + + + + + + . Note that from Lemma 4.4.  
without loss of generality, we can assume that 1t  is so large that  

( ) ( ) ( ), 0W p t pI t Y t= − >  for all 1 22t t λ≥ + . Then, from (4.20), we have  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( ) ( )1 2 4 2

d
d

1

1

v v

v v

v v

Y t
t N t Y t I t t Y t

t

Y t t N t Y t t
p

Y t t N t M t
p ε

γ µ

γ µ

γ ε γ ω ε µ+

= − −

 
≥ − − 

 
 

≥ − − − 
 

 

for all ( )1 2 22 ,t t tλ∈ + . Thus, from (4.15) and (4.22), we have  

( ) ( ) ( ) ( )( ) ( )

{ }
( ) ( )( ) ( )

0

1 2

1 2 1 2 02

1 2 1 2 1 2

2
2 2

0 1 2 1 2 4 22

2 2
2 2 2 2 2 2

1 2 4 2

2 2 2

12 exp d

exp

1 d

t
v vt

t C t C m t

t t t C m

v v

C

Y t Y t t N s M s s
p

e m

t N s M s s
p

e m e

ελ

λ λ ωµ λ
ε λ λ λ ω

ε

η
µ λ λ

ε

λ γ ε γ ω ε µ

η ν

γ ε γ ω ε µ

η ν

+

+

+

+

+ + + + +−

+ + + + +

+

−

  
≥ + − − −  

  


≥ + +


 
− − −  

  

≥

∫

∫ ∫ ∫
 

Thus, from (4.20), we have  

2
2 2

1 2 4 2 2 2 2 ,
C

M e m e
η

µ λ λ
ε εε γ ω ε η ν

+−++ ≥  

which contradicts with (4.17). Finally, if 0m ≤ , we let 0C >  be the integral 
multiple of 2λ  satisfying  

( )2
1 2 2

2 2 2 1 2 4 2> ,
C m

e m e M
η ε ω

µ λ λ
ε εη ν ε γ ω ε

+ + −
− ++            (4.23) 

Then, repeating the above steps, we have  

( )
( )2

2 2
0 2 2 2

C m
Y t e m e

η ε ω
µ λ λ

εη ν
+ + −

−≥  

Thus, from (4.20), we have  

( )2
2 2

1 2 4 2 2 2 2

C m
M e m e

η ε ω
µ λ λ

ε εε γ ω ε η ν
+ + −

−++ ≥  

which is contradictive with (4.23). Therefore, ( ) 1I t I≥  for all  

[ )1 2 22 ,t t C tλ∈ + + , which implies ( ) 1liminft I t I→+∞ ≥ . 

Since ( ) ( ) 1limsup limsupt tI t N t M→+∞ →+∞≤ ≤ < +∞ , the infectious popula-
tion of system (1.1) is permanent. 

5. Discussion 

In the paper, we have extended the epidemic models of vector-borne disease 
with direct mode of transmission presented in [20]. A non-autonomous vector 

https://doi.org/10.4236/ajcm.2020.104034


W. W. Ji et al. 
 

 

DOI: 10.4236/ajcm.2020.104034 601 American Journal of Computational Mathematics 
 

infectious disease model that conforms to the actual environment has been es-
tablished, which combines the spread of epidemics with changes in the natural 
environment and fully reflects the characteristics of the spread of epidemics that 
change over time. There are relatively few popular articles on the establishment 
of non-autonomous mathematical models, so the non-autonomous vector infec-
tious disease models are even rarer. Therefore, our research has a certain theo-
retical value and application value. 
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