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Abstract 
In this study, we investigate a pine wilt transmission model with general non-
linear incidence rates and time-varying pulse roguing. Using the stroboscopic 
map and comparison theorem, we proved that the disease-free equilibrium is 
global attractive determined by the basic reproduction number 1 1R < , and in 
such a case, the endemic equilibrium does not exist. The disease uniformly 
persists only if 2 1R > . 
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1. Introduction 

Pine wilt disease (PWD) is a dramatic disease of pine caused by the pinewood 
nematode (Bursaphelenchus xylophilus), which constitutes a major threat to 
forest ecosystems worldwide, from both the economical point of view and the 
environmental perspective [1]-[8]. PWD is vector-born disease which is trans-
mitted by pine sawyer beetle. The healthy host pine trees are usually killed with-
in a few months by nematodes [4]. The first visible symptom is lack of resin ex-
udation of bark wounds. The foliage becomes light grayish green, then becomes 
yellow, and finally it becomes reddish brown. The pine trees affected by pine wilt 
disease totally lack resin and wood becomes dry [9]. During the 20th century, 
the greatest losses have occurred due to pine wilt disease and it had a devastating 
impact, spreading among highly susceptible Japanese Black Pine and Japanese 
red pine forest. In addition, it spread from Japan to neighboring East Asian 
countries such as China and Korea in 1982 and 1988, respectively, and it was 
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detected in Portugal in 1999 [10]. Pine wilt disease is a grave threat to forests 
worldwide and will potentially become a global epidemic. 

Mathematical models play an important role in understanding the epidemi-
ology of pine wilt diseases, control disease, and gain a deeper insight into the 
disease transmission dynamics in a population. There are many authors that es-
tablish mathematical models to describe the transmission of plant disease. In 
[11], Lee introduced a mathematical model on pine wilt disease and discussed 
the stability of pine wilt disease with optimal control. X. Y. Shi and G. H. Song 
[12] formulated a four-dimensional system involving only the pine and Mono-
chamus alternatus and analyzed global dynamics of the model. The model is as 
follows:  

d ,
d
d ,
d
d ,
d
d .
d

S Yb S S
t X Y
I Y S I
t X Y
X Ia k X X
t S I
Y Ik X Y
t S I

β α

β δ

µ

µ

 = − − +
 = − +

 = − −
 +

 = −

+

                   (1) 

Lee and Lashari introduced a mathematical model that incorporated the ex-
posed class in the pine tree population and made a detailed discussion on the 
stability and optimal control. Ozair presented a mathematical model of the dy-
namics of pine wilt disease by dividing the host pine trees and vector beetles into 
susceptible and infected classes with nonlinear incidence and horizontal trans-
mission [13]. The classical epidemiological models are developed by the assump-
tion of bilinear incidence rate SIβ  and the standard incidence rate SI

N
β . Ca-

passo and Serio [14] introduced a saturated incidence rate ( )g I S  in an epi-
demic model. Liu [15] [16] investigated nonlinear incidence rates of the form 

p qS Iβ , and proposed a Holling-type nonlinear incidence function given by  

1

p

p

SI
I

β
α+

. A variety of nonlinear incidence rates has been utilized in epidemic  

models [17]-[22]. In the real world, farmers’ experiences include replanting, and 
rouging diseased plants to control the disease spread. What’s more, the disease 
transmission is infected by season and temperature, et al. To address the 
time-varying impulse of dynamic model with general nonlinear, incidence rate 
has been analyzed. 

The paper is organized as follows. In the next section, an impulsive epidemic 
model with general nonlinear incidence rate is formulated. In Sections 3 and 4, 
we proved the sufficient condition for the global attractivity of the disease-free 
equilibrium and the permanence of the model, respectively. 

2. Model Formulation and Preliminary 

In this section, we introduced a more advanced model that the pine trees popu-
lation is subdivided into three groups: susceptible pine trees ( )S t , asympto-
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matic carrier pine trees ( )A t  and infected pine trees ( )I t . We assume that 
roguing asymptomatic carrier pine trees and infected pine trees at the same time. 
Additionally, we consider the disease mortality in the symptomatic pine trees 
population and assume that roguing asymptomatic and symptomatic group at 
different rate. Motivated by the above reasons, we build the epidemic model with 
general nonlinear incidence rate and time-varying impulse as follows:  
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

d
, , , , ,

d
d

, , , , ,
d

d
, , ,

d

,

1 , , .

1 ,

k

k k

k

S t
K S t A t I t f t S A g t S I S t

t
A t

f t S A E t t t k N
t

I t
g t S I I t I t

t

S t S t

A t p A t t t k N

I t I t

α γ

γ

γ µ

θ

+

+

+

 
= − − − − − − 

 
 

= − ≠ ∈ 
 
  = − − 


 = 

 = − = ∈


= −  

 (2) 

The following assumptions are satisfied for the model. 
(H1) ( )S t , ( )A t  and ( )I t  are left continuous for [ )0 ,t +∞ , that is 
( ) ( )0

lim
h

S t S t h+→
= − , ( ) ( )0

lim
h

A t A t h+→
= − , ( ) ( )0

lim
h

I t I t h+→
= − . 

(H2) There is a maximum pine trees population size 0K > . Replant the pine 
trees population at a rate 0α > . 

(H3) 0γ >  denotes the natural death rate of pine trees, 0µ ≥  is the disease 
induced death rate. 

(H4) kθ  is symptomatic pine wilt disease at fixed time kt t= , and k q kθ θ += . 
(H5) kt  is pulse time. There exist a positive integer q and a positive ω  such 

that k q kt t ω+ = +  for all k N∈ . 
(H6) ( ), ,f t S A  and ( ), ,g t S I  are both piecewise continuous and positive 

ω -periodic functions, which means incidence rates about group A and I, re-
spectively. The form of it is as follows:  

( )
( ) ( ]

( ) (

1 0 1

1

, , , , ,
, , =

, , , , ,q q q

f t S A t t n t n
f t S A

f t S A t t n t n

ω ω

ω ω−

 ∈ + +


 ∈ + + 

  

and 

( )
( ) ( ]

( ) (

1 0 1

1

, , , , ,
, ,

, , , , ,q q q

g t S I t t n t n
g t S I

g t S I t t n t n

ω ω

ω ω−

 ∈ + +
= 
 ∈ + + 

  

for all nonnegative integer n, and ( ) ( ),0, , ,0 0i if t A f t S= = ,  
( ) ( ),0, , ,0 0i ig t I g t S= =  for 1, 2, ,i q=  . 

3. The Disease-Free Periodic Solution Is Global Attractive 

From system (2), we can easily obtain that ,0,0Kα
α γ
 
 + 

 is the disease-free  
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periodic solution. To analyze the global attractiveness of the disease-free period-
ic solution, we give the hypothesis as follows: 

(B1) There exist two piecewise continuous and positive ω -periodic function 
( ) ( ),i it tξ β , that is ( ) ( ) ( ) ( ),i i i it t t tξ ξ ω β β ω= + = + , for 1,2, ,i q=  , such 

that ( ) ( ) ( ) ( ), ,i if t S A t S t A tξ≤ , ( ) ( ) ( ) ( ), ,i ig t S I t S t I tβ≤  for all 0t t≥ . 
Let 

( )

( )
11

1

1

d

ln 1

i

i

tq
ii t

q
ii

K t t
R

a

α ψ
α γ
γω

−=

=

+=
− −

∑ ∫

∑
 

and 

{ } ( ) ( ) ( ){ }min , , max , , 1, 2, , .i i i i i ia p t t t i qθ ψ ξ β= = =          (3) 

It’s easy to see that ,0,0Kα
α γ
 
 + 

 is the disease-free periodic solution of sys-
tem (1). 

Theorem 1. If system (2) satisfies 1 1R <  and the (B1), then the disease-free 
periodic solution is globally attractive. 

Proof: Let ( ) ( ) ( )( ), ,S t A t I t  be any solution of system (2), since 1 1R < , we 
have  

( ) ( )
1

1
1 1

exp d ln 1 ,i

i

q qt
i it

i i

Kt t aαψ ε γω
α γ−= =

   
Ω + + − −   +    

∑ ∑∫       (4) 

where 1 0ε >  is a sufficiently small number. 
From the first equation of (2), we have ( ) ( ) ( )

d
d
S t

K S t S t
t

α α γ≤ − − . By the 
comparison theorem, for arbitrarily small number 1ε , there exists a positive 
constant ( )0t t′ > , such that  

( ) 1, for all .KS t t tα ε
γ

′< + ≥                     (5) 

Therefore, let 1 0ε → , we can obtain that ( ) ( )( )*lim 0t S t S t→∞ − = . 
Next, from (5) and the second equation of system (2), for  
( ]( )1 , 1, 2, ,i it t n t n i qω ω−∈ + + =   and t t′≥ , we have  
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γ
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≤ + + − +

  
≤ + − +  

  

 

where ( )( )1,2, ,i t i qψ =   is same as (3). Thus  
( ) ( )
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 (6) 
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where ( )1,2, ,ia i q=   is same as (3). 
By the similar method, we get that for ( ]1 ,i it t n t nω ω−∈ + + .  
( ) ( )

( ) ( )( ) ( )( )
( ) ( ) ( )1

0 1

1
0 01

1 1 0

1
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i
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∏
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  (7) 

Especially, we obtain that  
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i it t
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∑ ∑∫     (8) 

when ( )0 1t t n ω= + + . 
Then, for an any positive integer s, we obtain  

( )( )( ) ( )( )( )
( )( ) ( )( )

0 0

0 0 ,s

A t n s I t n s

A t n I t n

ω ω

ω ω

+ +

+ +

+ + + + +

 ≤ Ω + + +  

 

It follows from (4) and (8), we have that  

( )( ) ( )( )0 0 0, asA t n s I t n s sω ω
+ +   + + + + + → → +∞      

       (9) 

From (7) and (8), we obtain that  

( ) ( )( )lim 0,
t

A t I t
→+∞

+ =                      (10) 

that is, for any arbitrarily small number 1ε , there exists ( )2 1t t> , such that 
( ) ( ) 1A t I t ε+ <  for 2t t> . Then, from the first equation of system (2), we 

know that  
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )*
1 1

d
, , , ,

d
S t

K A t I t g t S A f t S I S t
t

K S t

α γ

α ε ψ ε α γ

= − − − − −

≥ − − + +
     (11) 

for 2t t> , where ( ) [ ]*
1 0 0max , ,i q i t t t tψ ψ ω≤ ≤= ∈ + . Solving the differential in-

equality, we can obtain  

( ) ( ) ( ) ( ) ( )( )

( )

2 *
11 12

* *
1 1

2

e

, for .

t tK K
S t S t

S t t t

ψ ε α γα ε α ε
ψ ε α γ ψ ε α γ

− − + +− − 
≥ + − + + + + 
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     (12) 
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Combining (5) with (12), we get that  

( ) ( ) ( )2
1, for .KS t S t t tα ε

α γ
≤ ≤ + >

+
             (13) 

Because 1ε  is an arbitrary positive small number, (12) means that  

( )lim .
t

KS t α
α γ→+∞

=
+

 

By (10) and (13), we know that the disease-free periodic solution  

,0,0Kα
α γ
 
 + 

 is global attractive. 

4. Permanence 

In this section, the sufficient conditions of system (2) for the permanence are 
obtained. At firstly, we give the hypothesis (B1) as following: 

(B2) There exist two piecewise continuous and positive ω -periodic functions 
( ) ( ),i it tς η , such that ( ) ( ) ( ) ( ), ,i if t S A t S t A tς≥ , ( ) ( ) ( ) ( ), ,i ig t S I t S t I tη≥ , 

for all 0t t≥ . 
Let  

( )

( ) ( )
11

2

1

d

ln 1

i

i

tq
ii t

q
ii

K t t
R

b

α ϕ
α γ
µ γ ω

−=

=

+=
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∑ ∫

∑
 

and  

{ } ( ) ( ) ( ){ }max , , min , , 1, 2, , .i i i i i ib p t t t i qθ ϕ ς η= = =         (14) 

Theorem 2. The system (1) is permanence, when 2 1R >  and the assump-
tions (B1) and (B2) hold. 

Proof: We have 2 1R > , there exists an arbitrarily small number 2 0ε >  such 
that  

( ) ( ) ( ) ( )
1

2
21

1
1 exp d 1.i

i

q tq
i ii t

i

K
b t t

α ε
ε ϕ µ γ ω

α γ −=
=

 − 
Λ − − − + >  

+   
∑∏ ∫  (15) 

For proving the conclusion, we prove the disease is uniformly weakly persistent, 
firstly. There exists a constant 0δ > , such that ( ) ( )( )limsupt A t I t δ→+∞ + ≥ . By 
contradiction, for 2 0ε > , there exists 2 0t >  such that ( ) ( ) 2A t I t ε+ <  for 

2t t> . 
In view of the hypothesis (B1) and the first equation of model (2), we have  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )*
1 2

d
, , , ,

d
S t

K S t A t I t g t S A f t S I S t
t

K S t

α γ

α ε ψ ε α γ

= − − − − − −

≥ − − + +
 

for all 3t t> , where *ψ  is defined in (10). Consider the following auxiliary 
system:  

( ) ( ) ( )*1
2 2 1

d
.

d
y K y t
t

α ε ψ ε α γ= − − + +              (16) 
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( )1y t  is the solution of system (16), it is easy to know that ( ) ( )2
1 *

2

K
y t

α ε
ψ ε α γ

−
→

+ +
  

as t → +∞ . By the comparison theorem, we get ( ) ( )1S t y t≥ . Therefore, for 
any arbitrarily small 2ε , there have an integer * 0n > , such that  

( ) ( ) ( )2 3 *
1 2*

2

, for .
K

S t y t t t n
α ε

ε ω
ψ ε α γ

−
≥ ≥ − > +

+ +
           (17) 

For above 2t t′+  and a positive integer 1n , we have 2
1n t tω ′≥ + . Therefore, 

for all ( )1 1, , 1, 2, ,i in t t n t n N i qω ω−+ < < + ≥ =  , according to the second equ-
ation of system (2) and (17), we get  

( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )2
2*

2

d d
d d

, , , ,

i i

i

i

A t I t
t t

f t S A g t S I A t I t I t

t S t A t t S t I t A t I t I t

t S t A t I t A t I t A t I t

K
t A t I t

γ µ

ς η γ µ

ϕ γ µ

α ε
ϕ ε γ µ

ψ ε α γ

+

= + − + −

≥ + − + −

≥ + − + − +

 − 
≥ − − − +  

+ +   

      (18) 

where ( ) ( ) ( ){ } ( )min , , 1, 2, ,i i it t t i qϕ ς η= =   is same as (14). Furthermore, 
from the system (2), we obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1i i iA t I t p A t I t b A t I tθ+ ++ = − + − ≥ − +  

where { } ( )max , , 1, 2, ,i i ib p i qθ= =   can be seen in (14). 
Then, we consider the following auxiliary impulsive system:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2
2 2*

2

2 2

2 0 0 0

d
, , ,

d

1 , , .

0.

k k

k k

y t K
t y t t t k N

t

y t b y t t t k N

y t A I

α ε
ϕ ε γ µ

ψ ε α γ
+

+

  − 
= − − + ≠ ∈   

+ +    
 = − = ∈


= + >

 

By solving the impulsive differential equation, we infer that for  
( )1 1, , 1, 2, ,i it n t t n n n i qω ω− + < < + ≥ =  , 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( )
1 1

1 2
2 0 0 2*=1

2

1
01

1 exp

d d .j

j i

in
jj

t ti
j jj t t n

K
y t A I b

t t t t t t n
ω

α ε
ε

ψ ε α γ

ϕ ϕ γ µ ω
− −

−

−

= +

 − 
= + − − 

+ + 


⋅ + − + − − 


∑ ∏

∑ ∫ ∫
  (19) 

Thus, from (15) and (19), we get  

( )2 , as ,y t n→ +∞ → +∞  

that is to say, as t → +∞ , we have ( )2y t → +∞ . By the comparison theorem, 
we have ( ) ( )( )limt A t I t→+∞ + = +∞ , which is a contradiction to  

( ) ( ) 20 A t I t ε< + < . Thus the claim is proved. 
By the claim, we need to consider the following two possible cases. The prov-

en method is same as to [23]. 
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Case 1. ( ) ( ) 2A t I t ε+ >  for all large t; 
Case 2. ( ) ( )A t I t+  oscillates about 2ε  for all large t. 
Obviously, the conclusion is evident in Case 1. For Case 2, set t  and 3t t>  

be large enough such that  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2, , and , for , .A t I t A t I t A t I t t t tε ε ε+ ≥ + = + < ∈  

There are two possible subcases for t . 
Subcase (I). If it t nω= +  (n is a nonnegative integer and 1, 2, ,i q=  ), then 
( ) ( ) 2A t I t ε+ >  and ( ) ( ) ( ) ( )( ) ( ) ( )2 21 1i ib b A t I t A t I tε ε+ +− < − + ≤ + < , 

where ib  is same as (18). It’s easy to know that there have a positive constant m, 
such that ( ) ( )A t I t m+ ≥ , for all ( ),t t t∈ . Then, we consider two possibilities 
in the size of t  and t . 

1) If *t t n ω− ≤ , where *n  is same as (17), then from system (2), we have  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

d d
, , , ,

d d
, , ,

1 , , .

k

k k

A t I t
f t S A g t S I A t I t I t

t t
A t I t t t k N

A t I t b A t I t t t k N

γ µ

µ γ
+ +


+ = + − + −


 ≥ − + + ≠ ∈

 + ≥ − + = ∈

    (20) 

From (20), we get 

( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( )

*

*

1

1

1
*

21

1 exp[

1 exp ,

nq
ii

nq
ii

A t I t b A t I t t t

b n m

γ µ

ε γ µ ω

+

=

+

=

 + ≥ − + − + − 

   ≥ − − +  

∏

∏ 

 

for all [ ],t t t∈ . 
2) If *t t n ω− ≥ , in view of the discussion in (i), we have ( ) ( )A t I t m+ ≥  

for all *,t t t n ω ∈ +  . Next, we show that ( ) ( )A t I t m+ ≥  for all  

( * ,t t n tω ∈ +  . Otherwise, there exists a constant * 0t >  such that  
( ) ( )A t I t m+ ≥ , for all )* *,t t t t n ω∈ + + ,  

( ) ( )* * * *A t t n I t t n mω ω+ + + + + ≥  and ( ) ( )A t I t m+ < , for  

( )* *0 1t t t n ω< − + +  . 
Next, we consider two possibilities separately: 
a) For any k N∈ , * *

kt t n tω+ + ≠ . 
Obviously, system (18) holds on * ,t n tω +  . Then, we can choose a proper 

0ρ > , such that ( ) ( ) ( )* * * *
0 0A t n t I t n t A I mω ω ρ+ + + + + ≥ + ≥ . Using the 

comparison theorem, we have  

( ) ( )
( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

* * * *

2 * *
1*

2

2 * *
0 0 1*

2

exp

exp ,

A t I t

A t t n I t t n

K
t t t n

K
A I t t t n

ω ω

α ε
ε γ µ ω

ψ ε γ α

α ε
ρ ε γ µ ω

ψ ε γ α

+

> + + + + +

 − 
⋅ − − + − + +  

+ +   
 − 

≥ + − − + − + +  
+ +   

 

when ( )* *0 1t t t n ω< − + +  . 
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In addition, (15) implies that  

( ) ( ) ( )( )2 * *
2*

2

exp 1
K

t t t n
α ε

ε γ µ ω
ψ ε γ α

 − 
− − + − + + ≥  

+ +   
 

Then, we have  

( ) ( )

( ) ( ) ( ) ( )( )
( )

2 * *
0 0 2*

2

0 0

exp

A t I t

K
A I t t t n

A I m

α ε
ρ ε γ µ ω

ψ ε γ α

ρ

+

 − 
≥ + − − + − + +  

+ +   
≥ + ≥

 

Then ( ) ( )A t I t m+ ≥ , for ( )* *0 1t t t n ω< − + +  , which is a contradiction. 
Therefore, ( ) ( )A t I t m+ ≥  for all [ ],t t t∈ . 

b) We have a k N∈  such that * *
kt t n tω+ + = . The proof of (b) is same as 

to (a), we omit it. 
Subcase (II). If for any , kk N t t∈ ≠ , then ( ) ( ) 2A t I t ε+ = . Using the same 

methods of subcase (I), it is easy to get a positive constant m, such that 
( ) ( )A t I t m+ ≥ , for all [ ],t t t∈ . 
Thus, we get that ( ) ( )A t I t m+ ≥  for all [ ],t t t∈ . Since the interval [ ],t t  

is chosen in an arbitrary way, we have that ( ) ( )A t I t m+ ≥  for all large t. 
From the above analysis, m is independent of the positive solution of model 

(2), and we have proved that the solution of system (2) satisfies ( ) ( )A t I t m+ ≥  
for sufficiently large t, that is to say, ( ) ( )( )liminft A t I t m→+∞ + ≥ . We can easily 
see that, there exists a positive constant *S , such that ( ) *liminft S t S→+∞ ≥ . 
Therefore, the permanence of system (2) is proved. 

5. Conclusion 

In this paper, we studied a pine wilt disease epidemic model with general nonli-
near incidence rate and pulse rouging strategy. According to the above analysis 
of the systems, we know that the disease-free equilibrium is globally attractive 
determined by the basic reproduction number 1 1R < , and in such a case, the 
endemic equilibrium does not exist. In Section 4, we proved that the disease un-
iformly persists only if 2 1R > . 
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