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Abstract 

The favored classical variables that are promoted to quantum operators are 
divided into three sets that feature constant positive curvatures, constant zero 
curvatures, as well as constant negative curvatures. This list covers the spin 
variables, the canonical variables, and the affine variables, and these three 
topics will be briefly reviewed. In this discussion, appropriate coherent states 
are introduced which are the principal items that are critical in the unification 
of relevant classical and quantum realms. This analysis can also serve to unify 
classical gravity and quantum gravity without any speculative aspects. 
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1. Introduction 

The rules governing favored classical variables and their sets of favored quantum 
operators lie in three separate divisions, namely, canonical variables, spin va-
riables, and affine variables. This section will introduce the first two sets briefly 
and feature the third set more completely because that set is relevant to the pri-
mary topic of this paper, i.e., affine classical and quantum variables, that arise in 
our study. 

1.1. Canonical Theory Analysis 

The favored classical variables in this section, p and q, have the properties that 
,p q−∞ < < ∞ , and a Poisson bracket given by { }, 1q p = . A pair of quantum 

operators, P and Q, which obey [ ], 1lQ P i=   are paired to create canonical co-
herent states given by , e eiqP ipQp q ω−≡   , where the fiducial unit vector 
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ω  obeys ( ) 0Q iP ω ω+ = , which implies that 0Q Pω ω ω ω= = . 
We choose Q as dimensionless, and P and ω  having the dimensions of  . For 
a general operator, it follows that  

( ) ( ) ( ) ( ) ( ), , , , , , ; ,W p q p q P Q p q P p Q q p q p qω ω≡ = + + = +     .  

If 0→  then 0→ , and the quantum variables in   occupy the same 
position as the classical variables in W, which Dirac proposed [1] as part of the 
rules to identify the favored variables. The final rule of Dirac was that the fa-
vored classical variables should be Cartesian coordinates, although he did not 
prove this last requirement. In an analysis that features the coherent states in 
rays (i.e., independent of any real, operator free, phase factor), it follows [2] [3] 
that  

( ) 2 22 1 2 2d , 2 d , , d , d dp q p q p q p q p qσ ω ω− ≡ − = +  
 , 

establishing that these variables are indeed the favored set. We emphasize that 
the favored variables here exist on a “constant zero curvature”, which is a two- 
dimensional flat space. 

These canonical coherent states possess a completeness that spans the entire 
Hilbert space as , , d d 2 1lp q p q p q π =∫  , and their over completeness leads 
to , , 0p q p q =  for all ,p q  implies that , , 0p q p q′ ′ =  for all 

, , ,p q p q′ ′ , i.e. 0=  [4]. This emerges from the analysis that there is some 
expression ( ),w r s  that leads to ( ), , , d d 2w r s r s r s r s π= ∫  , which there-
fore leads to  

( )

( ) ( ) ( )2 21

2

2

, , , , , d d 2

, e d d 2
r p s q

p q p q w r s p q r s r s

w r s r s
ω ω− − − + −  

π

π

=

=

∫

∫







. 

Hence, if , , 0p q p q =  for all ,p q , then 0= . 
This last property may not hold for eigenfunctions. For example, the set of 

vectors, x , where Q x x x= , lead, with 0c ≠ , to e 0icPx x =  for all x, 
but e 0icPx x′ ≠  when x x c′ = − . 

The principal purpose of this paper is to offer a unification of classical realms 
and quantum realms with smooth and natural procedures. The author’s paper 
[5] outlined such procedures for the three realms of classical analysis, but parti-
cularity featured a “bridge” that unifies the canonical classical and quantum 
realms. For readers interested in that story the author’s previous paper [5] can be 
recommended. The unification of classical and quantum gravity will be treated 
in Sec. 2 of the present paper. 

1.2. Spin Theory Analysis 

The classical variables 2 2θ−π ≤ ≤ π  and ϕ−π < ≤ π  are paired with three 
spin operators 1 2 3, ,S S S  which obey , ,,i j i j k kS S i S  =   , and  

( )2 2 1 1lj sj S s s= +∑  , (with ( )1l 2 1sTr s= + ), where, for ( )2SU  and ( )3SO , 
{ }2 1,2,3,s∈  . The operator 3S  is diagonalized so that 3 , ,S s m m s m=  , 
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where { }, , 1,m s s s∈ − − , and the spin coherent states are  
3 2, e e ,i S i S s sϕ θθ ϕ − −≡   . 

The expectations , ,js m S s m  are 0 for 1, 2j = , for all m, while it is m  for 
3j = . The analog of Cartesian coordinates leads to  

( ) ( )2 22 22 2d , 2 d , , d , d cos dsσ θ ϕ θ ϕ θ ϕ θ ϕ θ θ ϕ   ≡ − = +    
  , 

which describes the surface of a three-sphere with a radius of ( )1 2s . In partic-
ular, the surface here is that of a “constant positive curvature” with a magnitude 
of ( ) 1s −

 . 
The spin coherent states possess a completeness that spans their Hilbert space 

as  

( ) ( ), , 2 1 cos d d 4 1l ssθ ϕ θ ϕ θ θ ϕ =π+∫  [4]. 

Moreover, if G is composed of the three spin operators, and if , , 0θ ϕ θ ϕ =  
for all ,θ ϕ , then 0= . 

The unification of the spin classical realm and the spin quantum realm was 
sufficiently explained in [5], and therefore it will not be repeated again in the 
present paper. 

1.3. Affine Theory Analysis 

Affine quantization is similar to canonical quantization, but they both work well 
for separate sets of problems. Even for a half-harmonic oscillator, where 
0 q< < ∞ , canonical quantization fails and affine quantization succeeds [3] [6]. 
With the limited coordinate 0q > , the momentum operator P cannot be made 
self-adjoint. A new classical variable, d pq≡ , takes the place of p, and so d and 
q are the new classical variables promoted to the operators ( ) 2D PQ QP≡ +  
and 0Q > , which obeys [ ],Q D i Q=  , and observe that we nevertheless will 
still use p and 0q >  as classical variables. The affine coherent states are given 
by (note that “;” replaces “,”)  

( )ln; e e i q DipQp q β−≡ 

 , 

in which we chose q and Q as dimensionless, and thus p, D, and β  have the 
dimensions of  . The fiducial vector is chosen so that  

( )1l 0Q iD β β− + =   ,  

which implies that 1Qβ β =  and 0Dβ β = . The classical variables 
;p q  cannot be Cartesian because 0q > , and we again choose the special me-

tric [2] to find that  

( ) 2 22 1 2 2 2 2d ; 2 d ; ; d ; d dp q p q p q p q q p q qσ β β− − ≡ − = +  
 , 

which is certainly not Cartesian. However, this specific metric has a “constant 
negative curvature” with a value of 2 β− , a property that is not visible in our 
3-dimensional spatial dimensions [7]. 
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The affine coherent states admit a resolution of the identity [4] given by the 
relation  

[ ]; ; 1 2 d d 4 1lp q p q p qβ =π−∫   , 

provided that 2β >  . Once again we find that if ; ; 0p q p q =  for all 
;p q , it follows that 0= . The proof of this claim assumes that ( );w p q  ex-

ists such that  

( ) [ ]; ; ; 1 2 d d 4w p q p q p q p qβ= − π∫   ,
  

again provided that 2β >  . Thus  

( ) [ ]

( )( ) ( ) ( ){ }
[ ]

2

22 2 22

; ; ; ; ; 1 2 d d 4

; 1 1 4

1 2 d d 4 ;

r s r s w p q r s p q p q

w p q sq s q r p

p q

ββ

β

β

β

− −

= −

 = + + − 
×

π

π−

∫

∫




 

 



  

this is all with 0s >  and 0q > . Again, we see that if ; ; 0p q p q =  for all 
;p q , then 0= . 
This strength of a pair of identical coherent states used to generate the expec-

tation value of an arbitrary operator will be drawn on in our unification of clas-
sical and quantum gravity. 

Unification of Affine Classical and Quantum Stories 
Since affine quantization will be the theory used to unify classical and quantum 
gravity, we choose to offer a miniature version of how that effort will appear 
with gravity. We begin our toy example with the introduction of the quantum 
action functional given by 

( ) ( ) ( ) ( )
0

, d ,
T

qA t i t D Q t tψ ψ′= ∂ ∂ −  ∫               (1) 

and stationary variations lead to a form of Schrödinger’s equation 

( )( ) ( ) ( ), .i t t D Q tψ ψ′∂ ∂ =                  (2) 

Next, we introduce a semi-classical action functional for this story given by 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( )( ){ }

( ) ( ) ( ) ( ) ( )( ){ }

0

0

0

, , , d

, d

, d ,

T
sc

T

T

A p t q t i t D Q p t q t t

p t q t Q q t D q t D p t q t Q q t Q t

p t q t H p t q t q t t

β β

′= ∂ ∂ −  

′= − + − +

′= − −

∫

∫

∫



 





   (3) 

where ( ) ( ) ( ), , ; ,H pq q pq q p q′ ′= +   . If 0→  then  
( ) ( ), ,H pq q pq q′ ′= , or ( ); ,p q  may be so small it can be ignored; in that 

case the last line in (3) is considered to be the classical equation. 
The unification of these realms is secured by a mathematical “bridge” 

( ) ( ) ( ); | ; ; , ;B r s r s r s i t D Q r s′ ′ ′ ′ ′≡ ∂ ∂ −               (4) 

which leads to the integrand for the classical action functional or the quantum 
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action functional if the “bridge”1 is coupled to two resolutions of the identity, 
where [ ]1 2 4 0C β− >π≡   , with 

( ) ( ) ( ) ( ) ( )2 ; ; ; | ; ; ; d d d dC p t q t r s B r s r s r s p t q t r s r s′ ′ ′ ′ ′ ′∫∫      (5) 

to lead to the classical action functional integrand (3), or two resolutions of the 
identity with 

( ) ( ) ( )2 ; ; | ; ; d d d dC t r s B r s r s r s t r s r sψ ψ′ ′ ′ ′ ′ ′∫∫           (6) 

to lead to the quantum action functional integrand (1), with integrals in both 
cases over the pair ;r s  as well as the pair ;r s′ ′ . 

Either of these procedures creates a genuine affine action integrand for either 
the classical action functional or the quantum action functional, demonstrating a 
smooth and continuous connection between the classical and quantum realms. 

2. Unification of Classical and Quantum Gravity 

The affine quantization approach that has been chosen to deal with gravity, and 
which the author has used in recent publications dealing with gravity [3] [4] [5] 
[8] [9] [10] [11] [12], will experience a unification unlike any other approach 
toward classical and quantum gravity. The classical formulation of gravity that is 
chosen considers a spacial slice that undergoes a temporal advancement. A pro-
cedure such at that, known as the ADM approach [13], consists of essential va-
riables as well as additional variables that need to be eliminated through the 
presence of various constraints. While constraints are handled well enough clas-
sically, quantizations involving constraints may cause some problems. One such 
constraint is that the Hamiltonian density should vanish, and as a quantum con-
straint that the Hamiltonian operator is limited to Hilbert space vectors that 
have a subset of eigenvalues that vanish. To do so properly, it is necessary that 
the Hamiltonian operator is well defined prior to restricting its physically im-
portant spectrum. Canonical quantization efforts to quantize gravity have en-
countered difficulties in ensuring a proper operator, and, fortunately, affine 
quantization is successful in this issue as will be observed below. Let us now be-
gin our approach to create a smooth and continuous unification of the classical 
and quantum realms. 

2.1. Classical Gravity According to ADM 

The set of classical variables includes the metric ( ) ( )( )ab bag x g x=  and the 
momentum ( ) ( )( )cd dcx xπ π= , where , , , , 1, 2,3a b c d = . The metric is posi-
tive definite, i.e., ( )d d 0a b

abg x x x > , which makes the determinant,  
( ) ( )det 0abg x g x≡ >   , as well. We also introduce the momentric  

( ) ( ) ( )a ac
b bcx x g xπ π≡ .2 The classical action functional is given by 

 

 

1Figure 1 in [5] is a pictorial representation of a “bridge” permitting a smooth and continuous con-
nection between classical and quantum realms. 
2The name momentric is a mix of momentum and metric. 
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( ) ( ) ( ) ( ) ( ) ( ){ } 3
0

, , , , , , d d ,
T ab a

c ab aA g x t x t N x t H x t N x t H x t x tπ= − − −∫ ∫     (7) 

where ( ),aN x t  and ( ),N x t  are Lagrange multipliers that enforce the va-
nishing of the diffeomorphism constraint ( ) ( )|, ,b

a a bH x t x tπ= , where |  de-
notes a covariant derivative, and the Hamiltonian constraint is 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2

1 2

1, , , , , ,
2

, , ,

a b a b
b a a bH x t g x t x t x t x t x t

g x t R x t

π π π π−  = −  

+

       (8) 

where ( ),R x t  is the three-dimensional scalar curvature. 

2.2. Affine Quantization of ADM Gravity 

Canonical quantization of gravity promotes the metric and the momentum fields 
to quantum operators. However, the positivity restrictions on the metric mean 
that the momentum operators cannot be self adjoint. Instead, affine quantization 
promotes the metric and momentric fields, and both operator sets can be self 
adjoint while metric positivity is preserved. Promoted from Poisson brackets, 
these operators have the following commutations 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

3

3

1ˆ ˆ ˆ ˆ, , ,
2

1ˆ ˆ ˆ ˆ, , ,
2

ˆ ˆ, 0.

a a c c a
b d b b d

c c c
ab d a bd b ad

ab cd

x x i x x x x

g x x i x x g x g x

g x g x

π π δ δ π δ π

π δ δ δ

   ′ ′= −   

   ′ ′= +   

′ =  



        (9) 

It follows that the Hamiltonian operator, ( )ˆ ˆ,a
b cdgπ′ , can also be self ad-

joint, as was the goal. 

2.3. Affine Coherent States for Gravity 

We choose the metric and momentric operators to build our coherent states for 
gravity, specifcally,3 

( ) ( ) ( ) ( ) ( ) ( ) 33 ˆ dˆ d; e e ,
a bab

aab bi x x xi x g x xg bη πππ − ∫∫≡ 
            (10) 

where π  stands for { }abπ  and g stands for { }cdg . The fiducial vector b  
satisfies the relation  

( )( ) ( ) ( )ˆ ˆ1l 0c
ab ab dg x i x b x bδ π − + =  , 

which implies that ( )ˆab abb g x b δ=  as well as ( )ˆ 0c
db x bπ = . The choice 

of b  is such that the matrix ( ) ( ){ }a
bx xη η≡  enters the coherent states solely 

in the form given by 

( ) ( ) ( ) ( ) ( )2 2ˆ ˆ; ; e e ,
c dx x

ab cd aba b
g g x g b g x b g xη ηπ π    = ≡        (11) 

which ensures that ( ){ } 0abg x >  as required,4 and this expression helps clarify 

 

 

3Some terms are given a different notation than those used in [3]. 
4Any real, 3 × 3 matrix, like η , that is symmetric, i.e., Tη η= , and which has been exponentiated, 
i.e., eη , becomes a symmetric, positive definite matrix that can serve to become our metric. The 
exponential of η  is a gift from the basic affine operators. 
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the naming of the gravity coherent states. A companion relation is given by 

( ) ( ) ( ) ( )ˆ; ; ,a ac a
b cb bg x g x g x xπ π π π π= ≡             (12) 

which also involves the metric result from (11). As a consequence, the inner 
product of two gravity coherent states is given by 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
1 2 2

1

1
3

; ;

1 1det
2 2exp 2 d ln ,

det det

ab ab ab ab

ab ab

g g

g x g x i b x x x
b x x

g x g x

π π

π π−

′′ ′′ ′ ′

      ′′ ′ ′′ ′+ + −         = −  
   ′′ ′         

∫


 

(13) 

where the scalar density function ( ) 0b x >  ensures the covariance of this ex-
pression. 

To test whether or not we have “favorable coordinates” we examine, with a 
suitable factor J, the Fubini-Study metric [2] given by 

( )

( )( ) ( ) ( ) ( ) ( ){
( )( ) ( ) ( ) ( ) ( )}

2 22

1

3

d ; d ; ; d ;

d d

d d d .

bc da
ab cd

ab cd
bc da

g J g g g

b x g x g x x x

b x g x g x g x g x x

σ π π π π

π π
−

 ≡ −  

=

+

∫







      (14) 

This metric represents a multiple family of constant negative curvature spaces. 
Based on the previous analysis, we accept that the basic affine quantum variables 
have been promoted from basic affine classical variables. 

Much like the resolution of the identity for the coherent states ;p q  in Sec. 
1.3, we are able to obtain a resolution of unity for the gravity coherent states, 
namely by 

1l ; ; ,g g gπ π π= ∫                     (15) 

for a suitable constant  . One way to determine   is to ensure that 

2
1 ; 1l ; ; ; .g g g g gπ π π π π′ ′ ′ ′ ′ ′= = ∫              (16) 

Regularizing the continuum of x into a lattice, followed by a reduction back to 
the continuum, is also a good way to calculate  . 

2.4. The Semi-Classical Affine Gravity Action Functional 

The classical Hamiltonian density suggests the form of the quantum Hamilto-
nian as given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1 2

1 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
2

ˆˆ ,

a a b a b
b cd b a a bg x g x x x g x x

g x R x

π π π π π− −′ = −

+


     (17) 

which leads us to the semi-classical gravity action functional given by 
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( ) ( ){ }

( ) }
( ) ( ) ( ) ( )( ){ }

3
0

2 2
0

2 2 2 2 3

3
0

ˆ ˆ; , ; d d

ˆ ˆe e e

ˆ ˆ ˆe e , e e d d

, , , , , d d

T a
sc b cd

c d bT ab a c
cd b aa b c

e d a ba ac
b ed abc b c d

T ab a
ab b cd

A g i t g g x t

b g

g g b x t

x t g x t H x t g x t x

η η η

η η η η

π π π

π η π

π π

π π

 ′= ∂ ∂ − 

       = − +      

       ′− +         

′= − −

∫ ∫

∫ ∫

∫ ∫











,t

   (18) 

and it follows that ( ) ( ) ( ), , ; ,a a
b cd b cdH g g gπ π π′ ′= +   , leading to the usual 

classical limit as 0→  or   is tiny enough to ignore. 

3. The Unification of Classical and Quantum Gravity 

To begin this section we introduce the quantum affine action functional, in-
cluding only the Hamiltonian, which is given by 

( ) ( ) ( ) ( )( ) ( ){ } 3
0

ˆ ˆ, d d .
T a

q b cdA t i t x g x t x tπ ′= Ψ ∂ ∂ − Ψ ∫ ∫       (19) 

We next introduce a mathematical expression that we call the “bridge”, and 
which is given by 

( ) ( ) ( ) ( )( ) 3ˆ ˆ; | ; ; , ; d .a
b cdB g g g i t x g x g xπ π π π π ′ ′ ′ ′ ′≡ ∂ ∂ − ∫     (20) 

This expression, despite its close appearance to a semi-classical integrand, has 
no role in the physical expressions that belong to the classical or the quantum 
realms. Although we can restore the semi-classical functional integrand simply 
by setting ; ;g gπ π′ ′ → , we instead choose another path to seek the classical 
realm, and we let the “bridge” take us to the expression 

( ) ( ) ( ) ( ) ( ){ }2 ; ; ; | ; ; ; ,N t g t g B g g g t g t g gπ π π π π π π π′ ′ ′ ′ ′ ′∫∫       (21) 

which determines the integrand for the physical classical action functional (18), 
and is ready to provide any contribution needed at this point. 

Finally, we let the “bridge” take us to the quantum realm by the expression 

( ) ( ) ( ){ }2 ; ; | ; ; ,N t g B g g g t g gπ π π π π π′ ′ ′ ′ ′ ′Ψ Ψ∫∫         (22) 

which determines the integrand for the physical quantum action functional (19), 
and is ready to provide any contribution needed at this point. 

The relation in (20) requires more information than the same expression with 
; ;g gπ π′ ′ = , as if ; ; 1g gπ π = , you cannot learn what is ; ;g gπ π ′ ′ . 

Even knowing Ψ Ψ  for all states does not tell you what ; ;g gπ π ′ ′  
is since, for a self-adjoint  , the diagonal term is real while the non-diagonal 
term can be complex. This points to the fact that the “bridge” holds information 
that is outside the classical or quantum realm. Happily, the “bridge” offers us a 
smooth and continuous path between the classical and quantum realms. 

It follows that the “bridge” has introduced a genuine path that unifies the 
classical and quantum realms, as promised by the title of this paper. 
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Additional Items 

Diffeomorphism constraint 
This constraint, when quantized, is ( )|ˆ a

b a xπ , and in the semi-classical form it 
becomes 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ } ( )

2 2
|

|

||

ˆ ˆ; : e e

.

d ex xa ac
b a dec b a

ac a
cb b aa

g x g b x g x b

x g x x

η ηπ π π π

π π

   =    

= =
    (23) 

Lagrange multipliers 
The Lagrange multipliers, ( )N x  and ( )bN x  remain c-numbers in the 

quantization and enforce the facts that ( ) ( )( )ˆ ˆ,a
b cdx g xπ′ , and ( )|ˆ a

b a xπ  both 
require a reduction in Hilbert space vectors in which all of their eigenvectors 
involve vanishing eigenvalues. 

Schrödinger’s representation 
The equations offered in (9) permit ( ) ( )ˆab abg x g x→  and 

( ) ( ) ( )( ) ( )( ) ( )1ˆ .
2

a
b bc ac ac bcx i g x g x g x g xπ δ δ δ δ → − +       (24) 

For the Schrödinger equation, see Eq. (46) in [3]. Regularization of the spatial 
variable x as a discrete, three-dimensional lattice proves useful, which appears, 
e.g., in [14]. 

4. Remaining Issues to Complete the Quantization of Gravity 

This paper has been devoted to ensuring a proper Hamiltonian operator for the 
quantization of gravity by following similar procedures developed in [5]. Even 
though the Hamiltonian constraint retains only the eigenfunctions that are fo-
cused on zero eigenvalues, it is necessary to establish that the Hamiltonian oper-
ator is well defined. The Hamiltonian constraint, as well as the diffeomorphism 
constraint, can both be incorporated into a general constraint procedure [14] 
[15] that overcomes the usual difficulties found when dealing with constraints, 
such as second-class constraints. In addition, the paper [14] also introduces a 
Thiemann-like master constraint expression [16]. 
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