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Abstract 
For thousands of years, cities have been the center of civilization. According 
to that, detecting, monitoring and controlling urban growth became the most 
urgent need in urban planning and urban development process to get the ex-
pected results that can build a concrete base for decision makers to drive the 
polices toward best track. The issue of this paper is about urban growth and 
planning models and techniques such as geographic information system 
(GIS), cellular automata (CA), genetic algorithm (GA), regression model (R 
model) and etc. The main objective of this paper is to summarize the 70 
scientific papers concern about urban growth to make a review and find out 
the most important objective, factors, techniques and results for best ap-
proach to studying urban growth. The criteria of choosing the papers are that 
each paper should focus mainly on urban growth modeling and techniques, 
also, using wide variety of data and factors. This paper aims to fill the gap of 
absence of the best methods for studying urban growth, as there is a diversity 
in the methods used, and there is also an absence of exemplary methods or 
optimal methods for using analytical tools to study urban growth. So, this 
paper tries to make it easy for researcher to mix the suitable techniques to get 
acceptable result for their hypothesis. The results assert combining two or 
more than two techniques and model to assure that the simulation or predic-
tion models can give real and right approaches. However, most researches 
focused on combining specific techniques with models such as Cellular Au-
tomata CA-Markov Chain MC Model-Logistic regression or Cellular Auto-
mata CA-Markov Chain MC model or GIS-MCDM or GIS Based AHP etc. 
Although, in many references some of these techniques were combined to-
gether to extract best result. However, the rule that defines the best combina-
tion relies on project criteria, the infinite factors, analysis tools, the nature 
and quality of these models. On the other hand, whether the project needs a 
simulation or prediction models, all these models can achieve better result 
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when integrated with quantitative models such as analytic hierarchy process 
(AHP), the Markov chain analysis or multi-criteria decision making (MCDM) 
techniques. Also, using remote sensing, satellite images and land use and land 
cover maps as basic data for analysis were the most common factors according 
to this review. 
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1. Introduction 

Urbanization refers to a form of paved surface growth in response to increasing 
human activities with implications of economic, social, and political forces and 
to the physical geography of an area [1]. While urbanization has been long rec-
ognized as a fundamental element of the process of economic development, sus-
tainable urbanization has become one of the main and more pressing challenges 
for developing countries. Millions live in these countries lacking adequate access 
to basic services like electricity, clean water and sanitation [2]. Rapid urbaniza-
tion combined with a spiraling population growth in the cities of developing na-
tions creates land resource demands which lead to serious environmental issues. 
Urban development is characterized by drastic land use and land cover changes, 
rooted in urban population growth, with concomitant anthropogenic stressors 
contributing to global climate changes [3]. A better understanding of the urban 
growth process and its effect on the environment is essential for efficient urban 
management. Urban modeling has emerged as part of the effort to quantify the 
growth process based on scientific principles [4].  

Evaluation of plan implementation is important because it reflects the extent 
to which a plan succeeds in predicting, guiding, and controlling future urban 
development. One common way to determine what a plan has accomplished is 
to measure the conformance degree between the actual outcomes or impacts and 
the proposed plans. By doing so, planners can acquire insights on how the plan-
ning decision-making process operates and validate whether planning efforts do 
contribute to goal achievement [5]. 

This paper provides a critical review for previous studies on modelling of ur-
ban planning and controlling. Also, it discusses the factors considered in each of 
these studies, how the researchers deal with these factors and the final results. 
This paper aims to help researchers and practitioners in their way towards 
achieving results and solutions for urban growth problems. This paper discusses 
a major problem which is the absence of the best methods for studying urban 
growth, as there is a diversity in the methods used, but there is also an absence of 
exemplary methods or optimal methods for using analytical tools to study urban 
growth. Also, pursuing to answer important questions such as: What are the best 
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practices nowadays to control or to predict urban growth? And what are the 
most important results that could be useful for urban planner to control urban 
growth, and finally to what extent each of these models could be able to work 
with each other to give the researchers the objective results. The importance of 
this study comes from the time wasted to find the best practice to manage urban 
growth among all these choices of techniques and models. So, this research 
aimed to find best techniques combination of urban growth problems. The 
structure of this paper depends on summarizing and extracting the most impor-
tant information to form the best practice and best approach to study urban 
growth modelling and planning as represented by Figure 1.  

2. Urban Growth Literature Review 
Countries and Techniques 

Following the literature, and according to references [1]-[70] some countries 
focus on urban planning growth compare to other countries as represented by 
Figure 2. According to Figure 2 a country as China is obviously concerned 
about urban growth development issues followed by India, the USA and Iran. 
These Asian countries have high rate of population growth or urbanization 
growth. So, finding the most useful way to predict and manage this growth was 
the main reason to make all these researches on this topic. In addition to that, 
19% of other countries from the 70 scientific papers give the topic of urban 
growth a concrete research to solve critical problems. Overall view, if all these 
countries put this topic as a basic topic to research that’s means making acritical 
review on urban growth is just another step on the right track.   

Referring to Figure 3, and according to references [1]-[70] researchers mostly 
prefer to use remote sensing and satellite images, regression model, GIS and CA 
model for studying urban growth issues. Moreover, using SA, MC and GEOMOND 
model also took much concern mainly by combining these models together or 
 

 
Figure 1. Illustrate study structure. 
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Figure 2. Published papers ratios from same country on urban growth subject. 

 

 
Figure 3. The most important used repetitively models and techniques for studying urban growth. 

 
with other models or techniques. In addition to that, during 2016 and 2017 these 
models rise as a reasonable tool to estimate or to simulate and predict urban 
growth. All in all, using those models is such an essential and fundamental part 
to build a concrete management plan for urban growth.   

3. The Most Important Factors and Data 

By reviewing the literature and references [1]-[70], there are some important 
and specific data used for urban growth with simulating and predicting models 
as showing by Table 1. Land use and land cover change maps mainly used for 
the majority of simulation and prediction model followed mainly by geospatial 
data set and land use index. But obviously, there are some set of data that must  
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Table 1. The most important data used repetitively for urban growth with simulating and predicting models. 
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GIS ✓ ✓ ✓ ✓ ✓ ✓ ✓        7 

CA      ✓  ✓       2 

GEOMOD model         ✓ ✓ ✓ ✓ ✓ ✓ 6 

MC ✓     ✓  ✓       2 

Remote sensing (RS) 
and satellite images ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ ✓    9 

No. of models used for 
each type of data 

3 2 2 2 2 4 1 3 1 2 2 1 1 1  

 
be integrated together to get a better result such as using land use and land cover 
change maps or index, Model split change index, Urban trips density index, 
Road density index, Road conjunction and census data and Population density 
index as a fundamental data with GIS. Also, data as Distance map from down 
town, Map of the bare lands and agricultural lands, Slope map, Water course 
zooning map, Distance map from the connective routes and Restriction map ad-
vised to be used with GEOMOND Model. Added to that, all GIS data mentioned 
before and Geospatial data set (land sat thematic mapper—land sat en-
hanced—thematic mapper) images, Map of the bare lands and agricultural lands 
and Slope map were used with Remote sensing(RS) and satellite images. Overall, 
using a specific model demand knowing which data set must be used to get the 
ultimate result. 

In addition to that, and by studying the literature from references [1]-[70] 
some factors have been used for urban growth with simulating and predicting 
models more than other factors as represented by Table 2. Value of urban ex-
pansion pattern takes place in most researches and as main factors for most 
models, followed by the factor of intersection between the buffer zone and 
the spots or between the buffer zone and the empty areas. Also, land use and 
land cover change, probability of: (organic growth—spontaneous growth—new 
spreading center) and Land use and land cover change were used with a specific 
model. Furthermore, MC Model, remote sensing (RS) and satellite images were 
used more data combination to get results. Overall view, knowing which data 
should use mainly or specifically with which model properly to lead to a reasona-
ble and accurate result.  

4. Urban Growth Objectives and Techniques 

One of the critical issues in urban planning is the determination of appropriate  
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Table 2. The most important factors used repetitively for urban growth with simulating and predicting models. 

 
 
Types of data 
 
 
 

Simulating 
And 
predicting models 

U
rb

an
 sp

at
ia

l e
xp

an
sio

n 

Tr
an

sp
or

ta
tio

n 
in

fr
as

tr
uc

tu
re

 

V
al

ue
 o

f t
he

 u
rb

an
 e

xp
an

sio
n 

 
pa

tte
rn

 (E
le

va
tio

n,
 sl

op
e,

 so
il 

 
te

xt
ur

e,
 p

op
ul

at
io

n 
de

ns
ity

, 
 

di
st

an
ce

 to
 (r

oa
d,

 h
ig

hw
ay

s, 
 

ra
ilw

ay
s, 

po
w

er
 li

ne
s, 

st
re

am
s, 

 
di

st
an

ce
 to

 w
at

er
, d

ist
an

ce
  

to
 a

irp
or

t, 
in

du
st

ria
l, 

re
sid

en
tia

l, 
 

co
m

m
er

ci
al

, e
du

ca
tio

na
l a

re
as

) 

Pr
ob

ab
ili

ty
 o

f: 
(o

rg
an

ic
  

gr
ow

th
—

sp
on

ta
ne

ou
s 

 
gr

ow
th

—
ne

w
 sp

re
ad

in
g 

 
ce

nt
er

) 

In
te

rs
ec

tio
n 

be
tw

ee
n 

th
e 

 
bu

ffe
r z

on
e 

an
d 

pa
tc

he
s 

 
or

 b
et

w
ee

n 
th

e 
bu

ffe
r z

on
e 

 
an

d 
va

ca
nt

 a
re

as
 

Ra
di

om
et

ric
 p

re
-e

la
bo

ra
tio

n.
 

G
eo

m
et

ric
 p

re
-e

la
bo

ra
tio

n 

C
ity

 b
ou

nd
ar

y 
an

al
ys

is.
 

Q
ua

rr
y 

an
d 

du
m

p 
an

al
ys

is
 

La
nd

 u
se

 a
nd

 la
nd

 c
ov

er
 c

ha
ng

e 

N
o.

 o
f f

ac
to

rs
 u

se
d 

f 
or

 e
ac

h 
m

od
el

 

GIS ✓ ✓ ✓        3 

CA   ✓ ✓ ✓      3 

GEOMOD model          ✓ 1 

MC   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8 

SA   ✓ ✓ ✓      3 

Remote sensing(RS) and 
satellite images ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓ 8 

No. of models used for 
each type of factors 

2 2 5 3 3 2 2 2 2 3  

 
locations for urban growth in marginal areas adjacent to large-scale develop-
ment [6]. Understanding trends in urban growth is crucial to realize sustainable 
development. In recent years, different studies have quantitatively modeled the 
spatiotemporal changes in different land uses and have provided guidance for 
urban sustainable management [7]. Among these studies, the empirical estima-
tion method and dynamic simulation are two major approaches used during the 
past two decades for predictive land use modeling. Empirical estimation models 
use statistical methods to create a probability map to capture the complexity of 
LUC in the real world and identify the contributions of explanatory variables 
based on historical data [7].  

5. Models Integration 

As the subjects and objectives differ, the used models and models integration 
follow. Referring to Table 3 and according to mentioned references, CA model, 
GIS program, RS, MC model and regression model are the most used model to ana-
lyze urban growth. Obviously, some of the model work together very well such as 
CA-MC or GIS-regression analysis or CA-MC-AHP, GIS-RS, CA-RS-MC-(RT or 
LR), GIS-MC-RS, all these models integrations developed to get better result. 
Most researches depend basically on GIS, CA model, RS, satellite images and re-
gression models to predict or simulate urban growth. Also, land cover/use 
change model worked basically with GIS and CA and regression models.  

Moreover, using regression models take a fundamental part to predict or si-
mulate urban growth. According to Table 4 and references [1]-[70], using re-
gression models as a technique demand definite type of data and factors. These 
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Table 3. The most important models and techniques worked together repetitively for simulating and predicting urban growth 
patterns. 

Models and 
techniques 
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[1]  ✓   ✓      ✓ (LR)    

[3]          ✓     

[4]  ✓             

[6] ✓       ✓       

[7]  ✓   ✓          

[8]  ✓             

[9]  ✓   ✓   ✓       

[11]          ✓     

[12]  ✓     ✓        

[13] ✓      ✓      ✓  

[14]  ✓           ✓  

[15] ✓      ✓        

[18]       ✓   ✓     

[19]  ✓    ✓         

[20]  ✓   ✓  ✓  ✓ (RT)    ✓  

[21]       ✓        

[32] ✓         ✓     

[34]  ✓             

[35] ✓ ✓            ✓ LUCC 

[38]   ✓        ✓ SVR   ✓ LCC 

[41]  ✓             

[43]             ✓ ✓ LUC 

[44]         ✓ (BRT)      

[45]       ✓        

[46] ✓    ✓  ✓        

[56]  ✓             

[57]   ✓ ✓           

[58] ✓      ✓        

[59] ✓              

[63]            ✓ ✓  

Note: these models can have combined with many other models but here we focus on the most important model and techniques. (GIS) Geographic informa-
tion system, (CA) Cellular Automata, (GA) genetic algorithm, (MC) Markov chain, (SA) Survival analysis, (RS) Remote sensing, (AHP) Analytical Hie-
rarchy Process, (BRT) Boosted regression trees, (RT) regression trees, (LR) Linear regression, (SVR) support vector regression, (LR) Logistic Regression, 
(LUC) land use/cover maps, (LCC) land cover change model, (LUCC) land use/cover change model. 
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Table 4. The most important regression models factors used repetitively for simulating 
and predicting urban growth patterns. 

Regression models types 

Boosted regression  
trees (BRT) 

Regression analysis Linear regression Spatial Regression 

Factors and data 

- Transportation network 
- Special interactions in the 

form of neighborhood  
indices. 

- The topography 
- Access 
- Slope. 
- Disturb. 
- Urban map 

- City size. 
- Transportation cost. 
- State capital dummy 
- Health care 
- Climate 
- Initial schooling public 

services. 
- Density—land use and 

land cover change 
- Land transactions 
- Road junctions— 

population change 

- Demographical and 
annual average air 
temperature data. 

- Patch density 
- Land scape shape 

index. 
- Aggregation index 
- Total area 
- A multi temporal 

land sat TM/ETM 
imagery time series, 
data set coverage. 

 
data and factors should have connected to land use/change maps, density, urban 
maps geographical maps and census data. But, all these depend on research topic 
and objectives. Using quantitative techniques such as regression models, these 
studies helped identify the effects of particular variables (e.g. planning and polit-
ical elements like UGBs, built environments, and socioeconomic attributes) on 
urban expansion or land development. Ideally, one could look into the land use 
data to examine the land use changes [5].  

5.1. Cellular Automata (CA) Model 

Cellular automata (CA) have been extensively employed to model urban growth 
since Tobler first applied this concept to geographic modeling. These dynamic 
changes are influenced by natural and socio-economic factors and their interac-
tions on different spatio-temporal scales. Given that CA can use simple rules to 
simulate complicated spatio-temporal dynamic processes and can be easily inte-
grated with high-resolution images and geographical information systems, CA 
and CA-based models have shown immense potential in simulating urban 
growth in the past years [8]. 

5.2. GIS-MCDM 

GIS techniques have become a significant tool for controlling and monitoring 
changes in urban development and their impact on ecosystems. Land suitability 
analysis based on GIS environments is a process that aims to identify the best 
locations of development while considering environmental sustainability. In set-
ting the importance of the criteria used and computing the weights of factors, 
GIS tools must be integrated with other methods to improve the results of land 
suitability analysis. The integration of GIS tools and multi-criteria decision 
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analysis is a powerful approach for evaluating land suitability. The concept of 
sustainability generally leads to improved suitability analysis, which is a complex 
operation due to various types of factors and criteria that must be considered in 
the process [6].  

5.3. GIS Based AHP 

Previous studies and expert opinions were used to identify the significant factors 
that influence the determination of appropriate sites for urban growth. For sui-
tability analysis using GIS-AHP, it is important to assign scores to each of the 
factors based on their suitability for urban growth. For suitability analysis using 
GIS-AHP, it is important to assign scores to each of the factors based on their 
suitability for urban growth. To do this, a pairwise comparison matrix using 
Saaty’s nine-level scale for identifying relative weights was used. The calculation 
of factor weights was applied after the formation of the pairwise comparison 
matrix. The next step involves the computation of Consistency Ratio (CR), 
which is used to measure the consistency between the experts’ opinions. The ac-
ceptable Consistency Ratio (CR) should be CR < 0.10, which refers to a reasona-
ble level of consistency in the pairwise comparisons. In contrast, CR > 0.10 refers 
to ratio values that are indicative of inconsistent judgments [6]. 

5.4. GIS Based AHP 

Previous studies and expert opinions were used to identify the significant factors 
that influence the determination of appropriate sites for urban growth. For sui-
tability analysis using GIS-AHP, it is important to assign scores to each of the 
factors based on their suitability for urban growth. For suitability analysis using 
GIS-AHP, it is important to assign scores to each of the factors based on their 
suitability for urban growth. To do this, a pairwise comparison matrix using 
Saaty’s nine-level scale for identifying relative weights was used. The calculation 
of factor weights was applied after the formation of the pairwise comparison 
matrix. The next step involves the computation of Consistency Ratio (CR), 
which is used to measure the consistency between the experts’ opinions. The ac-
ceptable Consistency Ratio (CR) should be CR < 0.10, which refers to a reasona-
ble level of consistency in the pairwise comparisons. In contrast, CR > 0.10 refers 
to ratio values that are indicative of inconsistent judgments [6]. 

AHP has been integrated with GIS tools to identify the importance of the cri-
teria used and to calculate weights by using a scale of importance and the opi-
nion of experts. AHP is commonly applied to identify the weights of influencing 
factors on urban growth on the basis of the analysis functions of GIS. AHP is al-
so a structured approach that can be used for complex cases of making decisions 
that include competing criteria. The weights of factors in AHP can commonly be 
identified by using driven knowledge and driven data. The weights of factors can 
also be calculated by using a questionnaire given to specialists who have consi-
derable experience in the field of urban growth and can then be determined by 
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using pairwise comparison method to measure their relative importance 
vis-à-vis one another [6]. The results confirm that the GIS-AHP model is a use-
ful technique for environmental management and urban planning [6]. 

5.5. Cellular Automata CA-Markov Chain MC Model-AHP 

The creation of an accurate simulation of future urban growth is considered one 
of the most important challenges in urban studies that involve spatial modeling. 
The purpose of this study is to improve the simulation capability of an inte-
grated CA-Markov Chain (CA-MC) model using CA-MC based on the Analyti-
cal Hierarchy Process (AHP) and CA-MC based on Frequency Ratio (FR), both 
applied in Seremban, Malaysia, as well as to compare the performance and ac-
curacy between the traditional and hybrid models. Various physical, so-
cio-economic, utilities, and environmental criteria were used as predictors, in-
cluding elevation, slope, soil texture, population density, distance to commercial 
area, distance to educational area, distance to residential area, distance to indus-
trial area, distance to roads, distance to highway, distance to railway, distance to 
power line, distance to stream, and land cover [9]. 

5.6. Cellular Automata CA-Markov Chain MC Model-GIS-RS 

Currently, various types of models and methods within the RS and GIS tech-
niques are generally being employed for modeling urban growth trends and in 
the simulation of land use changes [9]. There are studies that have used tradi-
tional models, which depend on the assessment of the dynamic growth of urban 
areas, such as the Cellular Automata (CA) models [9]. Some of these studies 
have also relied on quantitative models, such as Logistic Regression (LR), for 
simulation and prediction [9]. Other studies have relied on the incorporation of 
various types of models, such as the CA and the Markov Chain (MC) models, to 
achieve accurate and realistic results [9]. The modeling of urban growth patterns 
based on RS and GIS techniques is conducted to understand the spatial process 
for urban movement within a specific time toward the creation of future policies 
of sustainable development [9]. The Cellular Automata (CA) model has an open 
structure and can be integrated with other models to simulate and predict urban 
growth patterns [9]. Flexibilities, clarity, and the capability to integrate dynamic 
and spatio-temporal aspects of the urbanization processes, as well as the capabil-
ity to model complex dynamic systems are major reasons for the widespread uti-
lization of the CA model in the prediction and simulation of urban expansion 
trends and future land use and cover changes in recent years [9]. 

5.7. Cellular Automata CA-Markov Chain MC Model-Logistic  
Regression 

The significance of using the integrated CA-Markov Chain model is that it plays 
an important role in modeling urban growth, especially in developing countries, 
which have different urban features. However, it is important to assert that the 
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urban growth driving forces such as physical, environment, socioeconomic, and 
utilities forces should be applied in the prediction process of the CA-Markov 
chain model, so as to obtain a better understanding of the change in urban 
growth patterns. For this purpose, the CA-Markov chain model should be inte-
grated with other models such as the Analytic Hierarchy Process (AHP), Fre-
quency ratio (FR), and logistic regression (LR) models to further improve its ca-
pability [9]. CA-Markov is an open structure spatial model which can be used to 
improve the capability of urban growth simulation [9]. In [9] study, the 
CA-Markov model was applied to simulate and predict future urban growth in 
study area. The optimal CA transition rules for the model were computed using 
the appropriate iteration numbers (i.e. 10, 40, and 60) together with a contiguity 
filter of 5 × 5 because the highest values of accuracy were obtained using these 
iteration numbers and the chosen contiguity filter. After that, these iteration 
numbers and the contiguity filter were used to predict land use in 2020 and 
2030. According to the successful model validation, the future urban and 
non-urban land-use maps of 2020 and 2030 were generated using the actual map 
of 2000 and 2010, respectively [9]. 

A Markov-logistic-CA model was developed to simulate the LUC processes of 
an urban system. This model is a dynamic urban LUC model that was created by 
incorporating an MC and neighborhood interactions. Three types of driving 
forces (influence of transportation, zoning impacts, and physical suitability) 
were classified through the socioeconomic dataset and converted into unrelated 
variables using principle component analysis (PCA). Their influences were later 
measured through logistic regression models. Transfer potentials for each cell 
were calculated using the MCE method and LUC according to the allocation 
rule, to satisfy the balance between supply and demand for each land use in each 
year of simulation. Recently, a combination of empirical estimation and dynam-
ic simulation has been widely adopted in urban modeling studies. 

CA is a typical representative dynamic simulation model. In terms of LUC, 
CA models simulate dynamic processes based on the assumption that the land 
use of the central cell changes through the interaction of land uses in the neigh-
borhood, and can identify how cities have developed by incorporating various 
social and economic factors into transition rules. Several statistical methods, in-
cluding regression, Markov chain (MC), and classification algorithms based on 
machine learning theory, have been coupled with CA models to simulate the 
dynamic process of urban growth applied a first-order MC to a CA model to 
predict complex LUC under continuous urbanization. For larger areas, with 
multiple administrative districts and complex urban land use patterns, further 
study is needed to improve model performance. [7]. The CA-Markov model was 
integrated with AHP, and then integrated with FR to improve its capability in 
simulating and predicting urban growth. The inclusion of driving forces of ur-
ban growth in the simulation process is the main idea for integrating the 
CA-Markov model with the AHP and FR models [9]. 
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6. Results Discussion and Recommendations 
6.1. Discussion  

The results of this study confirm that a realistic simulation should include realis-
tic driving forces of urban growth patterns, which take into account the interna-
tional, national, and local scales. These driving forces should include so-
cio-economic, spatiotemporal, quantitative, and dynamic aspects. However, the 
findings of the study show that identifying the significant influencing factors of 
urban growth trends in the study area is not enough to generate a perfect simu-
lation process; [9]. Moreover, the most important result came by combining two 
or more than two techniques and models to assure that the simulation or predic-
tion models can give real and right approaches. Most researches focused on com-
bining specific techniques with models such as Cellular Automata CA-Markov 
Chain MC model-Logistic regression or Cellular Automata CA-Markov Chain MC 
model or GIS-MCDM or GIS Based AHP etc. 

6.2. Recommendations 

As a recommendation, researchers might have to focus on taking a definite 
process as Figure 4 and Figure 5 show. This process designed to get better re-
sults started with defining objectives until finding best practice to use. According 
to Figure 3, and Tables 1-4, the study of urban growth should take a specific 
flow starting with the fundamental needs for any research or study which is 
theoretical & technical framework followed by study objectives. After that, then 
choose the most relative and best practice data and factors to the best combina-
tion of models for more specific results. Besides, Figure 4 represents the factors, 
data which work together well with model combination. Generally speaking, 
Figure 5 shows the whole process to study urban growth, but, Figure 5 illustrates  
 

 
Figure 4. Illustrates best choosing of urban growth best practice of data, factors, techniques & models. 
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Figure 5. Illustrates best approach for each study structure of urban growth model 
process. 
 
the time limit which generates the validation of the whole study and may define 
the furthered gabs according to study feedback. 
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