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Abstract

Our aim in this paper is to study on the Caginalp for a conserved phase-field
with a polynomial potentiel of order 2p — 1. In this part, one treats the conserv-
ative version of the problem of generalized phase field. We consider a regular
potential, more precisely a polynomial term of the order 2p — 1 with edge con-
ditions of Dirichlet type. Existence and uniqueness are analyzed. More precise-
ly, we precisely, we prove the existence and uniqueness of solutions.
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1. Introduction

The Caginalp phase-field model
ou

E—Au+f(u)=9 (1)
9O _pg=-N )
ot ot

proposed in [1], has been extensively studied (see, e.g., [2]-[7] and [8]). Here, u
denotes the order parameter and & the (relative) temperature.
Furthermore, all physical constants have been set equal to one. This system
models, e.g., melting-solidification phenomena in certain classes of materials.
The Caginalp system can be derived as follows. We first consider the (total)

free energy

w(u,9)=fg(%|Vu|z+f(u)—u@—%@zjdx, (3)
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where () isthe domain occupied by the materiel.
We then define the enthalpy Has

oy
H=—— 4
50 (4)
where O denotes a variational derivative, which gives
H=u+6. (5)
The governing equations for zand 6 are then given by (see [9])
ou 0
==L ©)
ot ou
oH .
—+divg =0, 7
po q )
where gis the thermal flux vector. Assuming the classical Fourier Law
q=-Vé, (8)

we find (1) and (2).

Now, a drawback of the Fourier Law is the so-called “paradox of heat conduc-
tion”, namely, it predicts that thermal signals propagate with infinite speed, which,
in particular, violates causality (see, e.g. [10] and [11]). One possible modification,

in order to correct this unrealistic feature, is the Maxwell-Cattaneo Law.
[1+2jq——v¢9 9)
ot ’

In that case, it follows from (7) that

1 2)2 a0
ot) ot

hence,

0*6 30, ,_ du

==+ 10
ot ot ot ot (10)

This model can also be derived by considering, as in [12] (see also [13]-[20]),

the Caginalp phase-field model with the so-called Gurtin-Pipkin Law
q(t):—'[(;wk(s)ve(t—s)ds. (11)
for an exponentially decaying memory kernel &, namely,
k(s)=e". (12)
Indeed, differentiating (11) with respect to ¢ and integrating by parts, we re-
cover the Maxwell-Cattaneo Law (9).
Now, in view of the mathematical treatment of the problem, it is more conve-
nient to introduce the new variable

a = 0(s)ds, 0=—" (13)

and we have, integrating (10) with respect to s [0,1].
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2
a_?Jra_a_M:_a_u (14)
ol at ot

where

a(tx) = [T (r,x)dr+ay (x) (15)

is the conductive thermal displacement. Noting that T = 86_(:’ we finally deduce

from (33) and (36)-(37) the following variant of the Caginalp phase-field system
(see [17]):
au oa

——Au+f(u)=— 16
ot (1) ot (16)
2
6_a+8_a_Aa=—6_u (17)
ot ot ot
In this paper, we consider the following conserved phase-field model:
ou oa
—+AU-Af (U)=-A— 18
ot (1) ot (18)
2
a_a+a_a_Aa=—6_u (]_9)
ot? ot ot

These equations are known as the conserved phase-field model (see [21]-[30])
based on type II heat conduction and with two temperatures (see [3] and [4]),
conservative in the sense that, when endowed with Neumann boundary condi-
tions, the spatial average of the order parameter is a conserved quantity. Indeed,
in that case, integrating (18) over the spatial domain Q , we have the conserva-

tion of mass,

(u(®)

1
. d 21
( > volQ -[9 X =
denotes the spatial average. Furthermore, integrating (19) over, we obtain
(a(t))=(a(0)), t=0 (22)

Our aim in this paper is to study the existence and uniqueness of solution of

(u(0)), t=0 (20)

(17)-(39). We consider here only one type of boundary condition, namely, Di-
richlet (see [31] [32] [33]).

2. Setting of the Problem

We consider the following initial and boundary value problem

ou oa

—+A%u—-Af (U)=-A—= (23)
ot ( ) ot
o° 0 ou
2.2 ha=-Z (24)
ot ot ot
ul. =Aul. =a|. =0, onoQ, (25)
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oa
u|t:0 = Up, a|1=o =, ot =0 (26)

As far as the nonlinear term f is concerned, we assume that

feC”(R),f(0)=0 (27)
Consider the following polynomial potential of order 2p — 1
2p-1 .
f(s)=> as',peN’,p>2a,,,=2ph,, >0 (28)

i=1

The function f satisfies the following properties

Eazp_ls“—cls f(s)ssgazp_lsz"+cl, (29)
f’(s)z%azpflsz’)’z—c2 >k, VseRk>0 (30)
where
F(s)= :f(r)dr (31)
such as
ia2 132"—C3SF(s)sia2 S°P+c, (32)
4p " 4p "

Remark 2.1. We take here, for simplicity, Dirichlet Boundary Conditions.
However, we can obtain the same results for Neumann Boundary Conditions,
namely,

o _dp

onT (33)
ov ov Ov

where v denotes the unit outer normal to I'. To do so, we rewrite, owing to (23)

and (24), the equations in the form

%T-;-AZU—A( f (u)—(f (u)>) :_Aaat_o_{

p op _ ou

TELEY A=

aa T A
where V = V—(V) R |<VO>| <M,
and M, . Then, we note that

(V)| <M,, for fixed positive constants M,

zw]z

where, here, —A denotes the minus Laplace operator with Neumann boundary

=

Vo [H(—A) 2V

conditions and acting on functions with null average and where it is understood
that

Furthermore
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o [+
Vo (||vV||2 +(vY? )3 ,

Vi (||Av||2 + <v>2)

are norms in H*(Q), L*(Q), H'(Q) and H?(Q), respectively, which are
equivalent to the usual ones.

We further assume that

|t (s)|<eF(s)+c,, V>0, seR, (34)
which allows to deal with term <f (u)> .

3. Notations

We denote by |||| the usual *-norm (with associated product scalar (.,.) and
-1
(-a)7

richlet Boundary Conditions. More generally, ""x denote the norm of Banach

set ||||_1 = , where —A denotes the minus Laplace operator with Di-

space X.
Throughout this paper, the same letters C,,C, and c; denote (generally

positive) constants which may change from line to line, or even a same line.

4. A Priori Estimates

The estimates derived in this subsection will be formal, but they can easily be

justified within a Galerkin scheme. We rewrite (23) in the equivalent form

(_A)*lgt_“_Aw f (u):%"‘. (35)

We multiply (35) by Z—Ltj and have, integrating over Q and by parts;

d (1o aulf L (ou o
E("W" +2], F(u)dx)+2 5_1_2(5’5) (36)
. oa .
We then multiply (24) by ra to obtain
2 2
E(uwuz a2 J+2 i =_z(@_“,a_“j (37)
dt ot ot ot ot

Summing (36) and (37), we find the differential inequality of the form

2 2

d oalf au )
— ||Vu||2 +2_[ F (u)dx+||Voc||2 A 2 2l =0 38)
dt Q ot oty ot
Integrating from 0 to t with t €[0;T] we obtain
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I;[%||VU||2+2_[QF(u)dx+||Va(s)"2+ 5067(5) z]ds
+sz a(s ”H e
of (35) we deduce
F(uo)sjp

which involves

3
ZIQF(UU)dX 20 S 1"”0||sz +2¢,|Q)

still of (35) we have
4—pa2p,lu§p —c; <F(u)

which involves

1
2p op ol —2¢, 10 < F (u)
where
2 2
E(t)+2.[;[aa—(s) +au_(s) stsC
ot a |,
with
oa (t)|f
()= [P # sy oo O+ +vaf @)

and C —||Vu0|| oo 20 azp 1"U0"L2P +||a1||2 +||V0‘0||2 +Cs.

Finally, we conclude that
uel” (R HG (N (Q))ix e (0,T;H(Q));
G ] 0 u(pr
a—Lt‘e L*(0,T:H 1(Q));Eo‘e L* (R L2(Q)NLE(0.TiL2(Q)) VT >0

Theorem 4.1. (Existence) We assume
(Upr g, 0) € (Hg (Q)NLP(Q))x Hy (Q)x L’ (Q) then the system (18)-(19)
possesses at least one solution (u, a) such that

uel”(R:Hg(Q)NL(Q));a e P (0,T;H(Q))

ou_ L(0.T;H*(Q)); %‘t”

L” (R L2(Q))N L (0.T: L (Q))
vT >0

Theorem 4.2. (Uniqueness) Let the assumptions of Theorem 4.1 hold. Then,
the system (18)-(19) possesses a unique solution (u, a) such that
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uel”(RHg(Q)NLP(Q));a e P (0,T;H(Q))
Zt—”e *(o,T; H’l(Q));%e L (R L(Q)NLOT; 2 (Q))

vT >0

® ()
Let (u(l),a(l),agt j and (u(z)’a(z),agt J be two solutions (23)-(25) with

initial data (uél) al, al(l)) and (u(()z) al?, al(z)) , respectively. We set
@ @
[u,a,a_"‘j: W g 0 [ o) 0
ot ot ot

(o) = (0 2l )~ (o, P )

and

Then, (u, a) satisfies

ou _ W) _ ¢ (y@)) = _p %%
E+A2u A(f(u ) f(u ))— AE (40)
2
6_?+6_a_Aa:_a_u (41)
ot ot ot
ul. =Aul. =a|. =0, onoQ, (42)
0
u|t:0 = Uy, a|t:0 = 0o, Ea:al (43)

10U

We multiply (40) by (-A) i have
A CA(F ()= f (u@)) ()t M) (U 0
+(6t' Auj+( A(f(u ) f(u ))( A) o

2 :—2(1‘ (u<1>)— f (u<2>),g—‘:j+2[%,%} (44)

We multiply by (41) by % , we have

2

ou
at

-1

9 vulf +2
dt

ou
at

2 2
i{"w”% oo }z oo :_z(a_”,a_“j (45)
dt ot ot ot ot
Now summing (44) and (45) we obtain
2 2 2
i[||w||2+||vg||2+ L }z L] ) id
dt at al, et
(46)
ol £ (u®) - f (4@ ,a_“j
(1) (0 2
We know that
f (ul)— f (uz): 2:11:;1k (u(l)k )_kallak (u(z)k ) = kallak (u(l)k _u(2)k)
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which involves

‘f (ul)_ f (uz) S2§1|ak| u®k _

<2i1|ak 2|y 1 S0 @ @]
[
Based on Young’s inequality, we have
S 2 '<z(k I, +Lu<z>“)
j=1 j=1 k-1
with p= d q= such as 1+——l So
e ] P q
k-2 K—1-j i 1 k=2 k-1 k-2 k-1 k-1
® A « 1 S @t ( @ _|,® )
S i = Sl e S e
As
k2 (k=2)(k-1
S
j=1
then
k—2u(l)k_1_J u(z)jg(k—Z u(l)k1+k 2 kl_k_2
j=1 2
S—k_z(‘u(l)‘k 1+‘u(2)‘k4j
2
We know that
VkeN; k-2<k then kgzs;sk
S o =)
i
which gives
@[kt

‘f(ul)—f(uz)

|ak|‘ —u ‘((k+1)
s|u|z Dl (o] +fu
=1

+(k+1)‘u(

)

(k+1)la|<k; Vkel2,,2p-1
k=2 k-1 k-1
f(u')-f(u®) <ulk (u(l) ® )
HORI RS
Based on Young’s inequality, we have V k >2

R ] 20—kl
2p-2 2p-2

2) kfzj

3k >0 suchas

SO
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and

‘u(z)‘k—l < %Ou(z)‘kljkl N

that involve

1 0)- () <l | k-

k=1

2p-2

2p-2

U I

< c|u|(‘u(”‘2p72-+‘u(2w2p72—rlj.

We finally

(o

dx<ﬁ|u(

The second member of (45) is increased in R" for n=1,2,3.

2p—2
+

e

2p-2 —k-—
o j+z(_

u@

Ifn=1; u e Hé(Q)c HI(Q):WLZ(Q) for i=12.
Thanks to the continuous injection H'(Q)c C(ﬁ), then is C >0, by ap-

plying Holder’s inegality, we get

Tl (o a2 S

which involves using the compact injection H'(Q)c L? (Q) , we have

GRS

Ifn=2then H'(Q)cL'(Q), Vqe[l,

Based on Holder’s inequality, we have

Zp 2

Il

Lol (v

Finally

292 )au
ot

Wiy < 0 |2

ou

dx < CW"

o

If n=3,then H'(Q)cL'(Q) with qe[1,6]

In this case, we also

Tl ) S

So

Jal  (w)= £ (%)

ou

ot

x<Cl,

We notice thatin R" for n=1,2,3, we have

Jal F (0) = £ ()5

Using Young’s inequality, we have

ou

x<Cl,

dx < C Jul =

2p-k-1
2p-2

2p-2
’ +1j—
ot

ou

at i

ou
<l |5

dx£C||uL6§E

)

(47)

(48)
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aul’
fof £ (u \ dx < Clufl, + 2 (49)
Inserting (49) into (46), we find
d —E, +2|— au +2 oaf <culf + = ou
dt ot ot "o et
and recalling the interpolation inequality HZ—L: <c %j ’ V%‘
with E, =[Vuff + Vel +[2%
Finally
9 oM auf +2 dalf <CE,, C>0 (50)
dt ot ot

Theorem 4.3. (Second theorem of the solution’s existence) The existence and
uniqueness of the solution (23)-(25) problem being proven, now we seek the so-
lution of (23)-(25) with more regularity.

(Uo'ao:%) e H? Q)N He Q)N L2P (Q)
><(uo'O‘o’Oﬁ) eH? (Q)n Ho Q)N L*? (Q)x Ho (@) ’

(23)-(24) system admits a unique (u, a) solution such as

uel”(0.T;H?*(Q)NH;(Q)),a e L (0,T;H* (Q)NH; (Q)),

Assume then the

6—aeL”(O,T;HZ(Q)HHé(Q))ﬂLZ(O,T;HZ(Q)OHé(Q)),
and
E;Ltl (0.T;H™(Q))

Theorems of existence (23) and uniqueness (24) being proven then
uel”(0,T;H*(QNL*(Q)), ael”(0.T;H;(Q)),
oa . . . ou . o
b (0.T;12(Q))NL*(0,T;* () and Fal (0.T;H?(Q)), VT >0.

We multiply (23) by (-A)" Zt_u and have, integrating over €, we have

ou oa
=2| = =
(at’atj (51)

(||vU|| +2[ F(u)dk)+2 g”

-1

Multiplying (24) by aa—f , we have

2 2
i(||w||2+ Oa }2 Oa :_z[a_“,a_“j (52)
dt ot ot ot ot

Now summing (51) and (52) we obtain
2
J +2|—
6t

aul?
ot

dalf
ot

%{"V“"z”fﬁ Jax+[val + o0 &Y
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where
2
E, = [Vuf + 2], F (u)dx+ |V +|22
finally
2 2 2
[wu(of oo ol waf +|22] +af] |22 N o<,
-1

We infer from this that

We infer that

uel”(0,T;H*(Q)NL**(Q)), ael(0,T;H;(Q)),

%Ze L (0.T;(Q))NL*(0,T;*(Q)) and gt—“e L (0,T;H(Q)).

2

We multiply (24) by 3—? , we have

2 2

2 2
o’a

e’ (0,T;L°(Q)).

atz

5. Conclusion

In this work we have studied the existence and uniqueness of the solution of a

conservative-type Caginalp system with Dirichlet-type boundary conditions. Fi-

nally we have also succeeded in this work to establish the existence theorems of

the solution of this system with low regularity and more regularity. As a pers-

pective, we plan to study this problem in a bounded or unbounded domain with

different types of potentials and Neumann-type conditions.
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