

ISSN Online: 2327-4379 ISSN Print: 2327-4352

On the Caginalp for a Conserve Phase-Field with a Polynomial Potentiel of Order 2p - 1

Narcisse Batangouna, Cyr Séraphin Ngamouyih Moussata, Urbain Cyriaque Mavoungou

Faculté des Sciences et Techniques Université Marien Ngouabi Brazzaville, République du Congo Email: banarcissess@yahoo.fr, csmoussath@gmail.com, urbainmav@gmail.com

How to cite this paper: Batangouna, N., Moussata, C.S.N. and Mavoungou, U.C. (2020) On the Caginalp for a Conserve Phase-Field with a Polynomial Potentiel of Order 2p - 1. *Journal of Applied Mathematics and Physics*, **8**, 2744-2756.

https://doi.org/10.4236/jamp.2020.812203

Received: August 26, 2020 Accepted: December 4, 2020 Published: December 7, 2020

Copyright © 2020 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Our aim in this paper is to study on the Caginalp for a conserved phase-field with a polynomial potential of order 2p-1. In this part, one treats the conservative version of the problem of generalized phase field. We consider a regular potential, more precisely a polynomial term of the order 2p-1 with edge conditions of Dirichlet type. Existence and uniqueness are analyzed. More precisely, we precisely, we prove the existence and uniqueness of solutions.

Keywords

A Conserved Phase-Field, Polynomial Potentiel of Order 2p-1, Dirichlet Boundary Conditions, Maxwell-Cattaneo Law

1. Introduction

The Caginalp phase-field model

$$\frac{\partial u}{\partial t} - \Delta u + f(u) = \theta \tag{1}$$

$$\frac{\partial \theta}{\partial t} - \Delta \theta = -\frac{\partial u}{\partial t} \tag{2}$$

proposed in [1], has been extensively studied (see, e.g., [2]-[7] and [8]). Here, u denotes the order parameter and θ the (*relative*) temperature.

Furthermore, all physical constants have been set equal to one. This system models, e.g., melting-solidification phenomena in certain classes of materials.

The Caginalp system can be derived as follows. We first consider the (total) free energy

$$\psi(u,\theta) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + f(u) - u\theta - \frac{1}{2}\theta^2 \right) dx, \tag{3}$$

where Ω is the domain occupied by the materiel.

We then define the enthalpy H as

$$H = -\frac{\partial \psi}{\partial \theta} \tag{4}$$

where ∂ denotes a variational derivative, which gives

$$H = u + \theta. \tag{5}$$

The governing equations for u and θ are then given by (see [9])

$$\frac{\partial u}{\partial t} = -\frac{\partial \psi}{\partial u},\tag{6}$$

$$\frac{\partial H}{\partial t} + divq = 0, (7)$$

where q is the thermal flux vector. Assuming the classical Fourier Law

$$q = -\nabla \theta, \tag{8}$$

we find (1) and (2).

Now, a drawback of the Fourier Law is the so-called "paradox of heat conduction", namely, it predicts that thermal signals propagate with infinite speed, which, in particular, violates causality (see, e.g. [10] and [11]). One possible modification, in order to correct this unrealistic feature, is the Maxwell-Cattaneo Law.

$$\left(1 + \frac{\partial}{\partial t}\right) q = -\nabla \theta, \tag{9}$$

In that case, it follows from (7) that

$$\left(1 + \frac{\partial}{\partial t}\right) \frac{\partial H}{\partial t} - \Delta \theta = 0,$$

hence,

$$\frac{\partial^2 \theta}{\partial t^2} + \frac{\partial \theta}{\partial t} - \Delta \theta = \frac{\partial^2 u}{\partial t^2} + \frac{\partial u}{\partial t}.$$
 (10)

This model can also be derived by considering, as in [12] (see also [13]-[20]), the Caginalp phase-field model with the so-called Gurtin-Pipkin Law

$$q(t) = -\int_0^{+\infty} k(s) \nabla \theta(t - s) ds.$$
 (11)

for an exponentially decaying memory kernel k, namely,

$$k(s) = e^{-s}. (12)$$

Indeed, differentiating (11) with respect to t and integrating by parts, we recover the Maxwell-Cattaneo Law (9).

Now, in view of the mathematical treatment of the problem, it is more convenient to introduce the new variable

$$\alpha = \int_0^t \theta(s) ds, \quad \theta = \frac{\partial \alpha}{\partial t},$$
 (13)

and we have, integrating (10) with respect to $s \in [0,1]$.

$$\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = -\frac{\partial u}{\partial t}$$
 (14)

where

$$\alpha(t,x) = \int_0^t T(\tau,x) d\tau + \alpha_0(x)$$
 (15)

is the conductive thermal displacement. Noting that $T = \frac{\partial \alpha}{\partial t}$, we finally deduce from (33) and (36)-(37) the following variant of the Caginalp phase-field system (see [17]):

$$\frac{\partial u}{\partial t} - \Delta u + f\left(u\right) = \frac{\partial \alpha}{\partial t} \tag{16}$$

$$\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = -\frac{\partial u}{\partial t}$$
 (17)

In this paper, we consider the following conserved phase-field model:

$$\frac{\partial u}{\partial t} + \Delta^2 u - \Delta f(u) = -\Delta \frac{\partial \alpha}{\partial t}$$
 (18)

$$\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = -\frac{\partial u}{\partial t}$$
 (19)

These equations are known as the conserved phase-field model (see [21]-[30]) based on type II heat conduction and with two temperatures (see [3] and [4]), conservative in the sense that, when endowed with Neumann boundary conditions, the spatial average of the order parameter is a conserved quantity. Indeed, in that case, integrating (18) over the spatial domain Ω , we have the conservation of mass,

$$\langle u(t)\rangle = \langle u(0)\rangle, \quad t \ge 0$$
 (20)

$$\langle \cdot \rangle = \frac{1}{vol\Omega} \int_{\Omega} dx \tag{21}$$

denotes the spatial average. Furthermore, integrating (19) over, we obtain

$$\langle \alpha(t) \rangle = \langle \alpha(0) \rangle, \quad t \ge 0$$
 (22)

Our aim in this paper is to study the existence and uniqueness of solution of (17)-(39). We consider here only one type of boundary condition, namely, Dirichlet (see [31] [32] [33]).

2. Setting of the Problem

We consider the following initial and boundary value problem

$$\frac{\partial u}{\partial t} + \Delta^2 u - \Delta f(u) = -\Delta \frac{\partial \alpha}{\partial t}$$
 (23)

$$\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = -\frac{\partial u}{\partial t}$$
 (24)

$$u|_{\Gamma} = \Delta u|_{\Gamma} = \alpha|_{\Gamma} = 0, \text{ on } \partial\Omega,$$
 (25)

$$u\big|_{t=0} = u_0, \ \alpha\big|_{t=0} = \alpha_0, \ \frac{\partial \alpha}{\partial t} = \alpha_1$$
 (26)

As far as the nonlinear term f is concerned, we assume that

$$f \in C^{\infty}(R), f(0) = 0 \tag{27}$$

Consider the following polynomial potential of order 2p-1

$$f(s) = \sum_{i=1}^{2p-1} a_i s^i, p \in N^*, p \ge 2; a_{2p-1} = 2pb_{2p} \ge 0$$
 (28)

The function f satisfies the following properties

$$\frac{1}{2}a_{2p-1}s^{2p} - c_1 \le f(s)s \le \frac{3}{2}a_{2p-1}s^{2p} + c_1, \tag{29}$$

$$f'(s) \ge \frac{1}{2} a_{2p-1} s^{2p-2} - c_2 \ge -k, \forall s \in R, k \ge 0$$
 (30)

where

$$F(s) = \int_{0}^{s} f(\tau) d\tau \tag{31}$$

such as

$$\frac{1}{4p}a_{2p-1}s^{2p} - c_3 \le F(s) \le \frac{3}{4p}a_{2p-1}s^{2p} + c_3 \tag{32}$$

Remark 2.1. We take here, for simplicity, Dirichlet Boundary Conditions. However, we can obtain the same results for Neumann Boundary Conditions, namely,

$$\frac{\partial u}{\partial v} = \frac{\partial \Delta u}{\partial v} = \frac{\partial \varphi}{\partial v} \quad \text{on } \Gamma$$
 (33)

where v denotes the unit outer normal to Γ . To do so, we rewrite, owing to (23) and (24), the equations in the form

$$\begin{split} \frac{\partial \overline{u}}{\partial t} + \Delta^2 \overline{u} - \Delta \Big(f \left(u \right) - \left\langle f \left(u \right) \right\rangle \Big) &= -\Delta \frac{\partial \overline{\alpha}}{\partial t} \\ \frac{\partial^2 \overline{\phi}}{\partial t^2} + \frac{\partial \overline{\phi}}{\partial t} - \Delta \overline{\phi} &= -\frac{\partial \overline{u}}{\partial t}, \end{split}$$

where $\overline{v} = v - \langle v \rangle$, $|\langle v_0 \rangle| \leq M_1$, $|\langle v_0 \rangle| \leq M_2$, for fixed positive constants M_1 and M_2 . Then, we note that

$$v \to \left(\left\| \left(-\Delta \right)^{\frac{-1}{2}} v \right\|^2 + \left\langle v \right\rangle^2 \right)^{\frac{1}{2}}$$

where, here, $-\Delta$ denotes the minus Laplace operator with Neumann boundary conditions and acting on functions with null average and where it is understood that

$$\langle \cdot \rangle = \frac{1}{vol(\Omega)} \langle \cdot, 1 \rangle_{H^{-1}(\Omega), H^{1}(\Omega)}$$

Furthermore

$$v \mapsto \left(\left\| \overline{v} \right\|^2 + \left\langle v \right\rangle^2 \right)^{\frac{1}{2}},$$

$$v \mapsto \left(\left\| \nabla v \right\|^2 + \left\langle v \right\rangle^2 \right)^{\frac{1}{2}},$$

$$v \mapsto \left(\left\| \Delta v \right\|^2 + \left\langle v \right\rangle^2 \right)^{\frac{1}{2}},$$

are norms in $H^{-1}(\Omega)$, $L^{2}(\Omega)$, $H^{1}(\Omega)$ and $H^{2}(\Omega)$, respectively, which are equivalent to the usual ones.

We further assume that

$$|f(s)| \le \varepsilon F(s) + c_{\varepsilon}, \ \forall \varepsilon > 0, \ s \in R,$$
 (34)

which allows to deal with term $\langle f(u) \rangle$.

3. Notations

We denote by $\|\cdot\|$ the usual L^2 -norm (with associated product scalar (.,.) and set $\|\cdot\|_{-1} = \left\|(-\Delta)^{\frac{-1}{2}}\cdot\right\|$, where $-\Delta$ denotes the minus Laplace operator with Dirichlet Boundary Conditions. More generally, $\|\cdot\|_X$ denote the norm of Banach space X.

Throughout this paper, the same letters c_1 , c_2 and c_3 denote (generally positive) constants which may change from line to line, or even a same line.

4. A Priori Estimates

The estimates derived in this subsection will be formal, but they can easily be justified within a Galerkin scheme. We rewrite (23) in the equivalent form

$$\left(-\Delta\right)^{-1} \frac{\partial u}{\partial t} - \Delta u + f\left(u\right) = \frac{\partial \alpha}{\partial t}.$$
 (35)

We multiply (35) by $\frac{\partial u}{\partial t}$ and have, integrating over Ω and by parts;

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \nabla u \right\|^2 + 2 \int_{\Omega} F(u) \, \mathrm{d}x \right) + 2 \left\| \frac{\partial u}{\partial t} \right\|_{-1}^2 = 2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right) \tag{36}$$

We then multiply (24) by $\frac{\partial \alpha}{\partial t}$ to obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \nabla \alpha \right\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \right) + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 = -2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right)$$
(37)

Summing (36) and (37), we find the differential inequality of the form

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \nabla u \right\|^2 + 2 \int_{\Omega} F(u) \, \mathrm{d}x + \left\| \nabla \alpha \right\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \right) + 2 \left\| \frac{\partial u}{\partial t} \right\|_{-1}^2 + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 = 0 \tag{38}$$

Integrating from 0 to t with $t \in [0,T]$ we obtain

$$\int_{0}^{t} \left(\frac{\mathrm{d}}{\mathrm{d}t} \|\nabla u\|^{2} + 2 \int_{\Omega} F(u) \, \mathrm{d}x + \|\nabla \alpha(s)\|^{2} + \left\| \frac{\partial \alpha(s)}{\partial t} \right\|^{2} \right) \mathrm{d}s$$
$$+ 2 \int \left\| \frac{\partial \alpha(s)}{\partial t} \right\|^{2} \, \mathrm{d}s + 2 \int \left\| \frac{\partial u(s)}{\partial t} \right\|^{2} \, \mathrm{d}s = 0$$

of (35) we deduce

$$F(u_0) \le \frac{3}{4n} a_{2p-1} u_0^{2p} + c_3$$

which involves

$$2\int_{\Omega} F(u_0) dx \le \frac{3}{2p} a_{2p-1} \|u_0\|_{L^{2p}}^{2p} + 2c_3 |\Omega|$$

still of (35) we have

$$\frac{3}{4p}a_{2p-1}u_0^{2p} - c_3 \le F(u)$$

which involves

$$\frac{1}{2p}a_{2p-1} \left\| u_0 \right\|_{L^{2p}}^{2p} - 2c_3 \left| \Omega \right| \le F(u)$$

where

$$E(t) + 2\int_{0}^{t} \left(\left\| \frac{\partial \alpha(s)}{\partial t} \right\|^{2} + \left\| \frac{\partial u(s)}{\partial t} \right\|_{-1}^{2} \right) ds \le C$$

with

$$E(t) = \|\nabla u(t)\|^{2} + \frac{1}{2p} a_{2p-1} \|u(t)\|_{L^{2p}}^{2p} + \left\|\frac{\partial \alpha(t)}{\partial t}\right\|^{2} + \|\nabla \alpha(t)\|^{2}$$
(39)

and
$$C = \|\nabla u_0\|^2 + \frac{3}{2p} a_{2p-1} \|u_0\|_{L^{2p}}^{2p} + \|\alpha_1\|^2 + \|\nabla \alpha_0\|^2 + C_3$$
.

Finally, we conclude that

$$u\in L^{\infty}\left(R^{*};H_{0}^{1}\left(\Omega\right)\cap L^{2p}\left(\Omega\right)\right);\alpha\in L^{2}\left(0,T;H^{-1}\left(\Omega\right)\right);$$

$$\frac{\partial u}{\partial t} \in L^{2}\left(0,T;H^{-1}\left(\Omega\right)\right); \frac{\partial \alpha}{\partial t} \in L^{\infty}\left(R_{+}^{*};L^{2}\left(\Omega\right)\right) \cap L^{2}\left(0,T;L^{2}\left(\Omega\right)\right) \quad \forall T > 0$$

Theorem 4.1. (Existence) We assume

 $(u_0, \alpha_0, \alpha_1) \in (H_0^1(\Omega) \cap L^{2p}(\Omega)) \times H_0^1(\Omega) \times L^2(\Omega)$ then the system (18)-(19) possesses at least one solution (u, α) such that

$$u\in L^{\infty}\left(R^{*};H_{0}^{1}\left(\Omega\right)\cap L^{2p}\left(\Omega\right)\right);\alpha\in L^{2}\left(0,T;H^{-1}\left(\Omega\right)\right)$$

$$\frac{\partial u}{\partial t} \in L^{2}\left(0, T; H^{-1}\left(\Omega\right)\right); \frac{\partial \alpha}{\partial t} \in L^{\infty}\left(R_{+}^{*}; L^{2}\left(\Omega\right)\right) \cap L^{2}\left(0, T; L^{2}\left(\Omega\right)\right)$$

Theorem 4.2. (Uniqueness) Let the assumptions of Theorem 4.1 hold. Then, the system (18)-(19) possesses a unique solution (u, α) such that

$$u \in L^{\infty}\left(R^{*}; H_{0}^{1}(\Omega) \cap L^{2p}(\Omega)\right); \alpha \in L^{2}\left(0, T; H^{-1}(\Omega)\right)$$
$$\frac{\partial u}{\partial t} \in L^{2}\left(0, T; H^{-1}(\Omega)\right); \frac{\partial \alpha}{\partial t} \in L^{\infty}\left(R_{+}^{*}; L^{2}(\Omega) \cap L^{2}(0, T; L^{2}(\Omega)\right)$$

$$\forall T > 0$$

Let $\left(u^{(1)}, \alpha^{(1)}, \frac{\partial \alpha^{(1)}}{\partial t}\right)$ and $\left(u^{(2)}, \alpha^{(2)}, \frac{\partial \alpha^{(2)}}{\partial t}\right)$ be two solutions (23)-(25) with

initial data $\left(u_0^{(1)},\alpha_0^{(1)},\alpha_1^{(1)}\right)$ and $\left(u_0^{(2)},\alpha_0^{(2)},\alpha_1^{(2)}\right)$, respectively. We set

$$\left(u,\alpha,\frac{\partial\alpha}{\partial t}\right) = \left(u^{(1)},\alpha^{(1)},\frac{\partial\alpha^{(1)}}{\partial t}\right) - \left(u^{(2)},\alpha^{(2)},\frac{\partial\alpha^{(2)}}{\partial t}\right)$$

and

$$(u_0, \alpha_0, \alpha_1) = (u_0^{(1)}, \alpha_0^{(1)}, \alpha_1^{(1)}) - (u_0^{(2)}, \alpha_0^{(2)}, \alpha_1^{(2)})$$

Then, (u, α) satisfies

$$\frac{\partial u}{\partial t} + \Delta^2 u - \Delta \left(f\left(u^{(1)}\right) - f\left(u^{(2)}\right) \right) = -\Delta \frac{\partial \alpha}{\partial t} \tag{40}$$

$$\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial \alpha}{\partial t} - \Delta \alpha = -\frac{\partial u}{\partial t}$$
(41)

$$u|_{\Gamma} = \Delta u|_{\Gamma} = \alpha|_{\Gamma} = 0, \text{ on } \partial\Omega,$$
 (42)

$$u\big|_{t=0} = u_0, \ \alpha\big|_{t=0} = \alpha_0, \ \frac{\partial \alpha}{\partial t} = \alpha_1$$
 (43)

We multiply (40) by $\left(-\Delta\right)^{-1} \frac{\partial u}{\partial t}$, we have

$$\left\| \frac{\partial u}{\partial t} \right\|_{-1}^{2} + \left(\frac{\partial u}{\partial t}, -\Delta u \right) + \left(-\Delta \left(f \left(u^{(1)} \right) - f \left(u^{(2)} \right) \right), \left(-\Delta \right)^{-1} \frac{\partial u}{\partial t} \right) = \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| \nabla u \right\|^{2} + 2 \left\| \frac{\partial u}{\partial t} \right\|_{-1}^{2} = -2 \left(f \left(u^{(1)} \right) - f \left(u^{(2)} \right), \frac{\partial u}{\partial t} \right) + 2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right). \tag{44}$$

We multiply by (41) by $\frac{\partial \alpha}{\partial t}$, we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \nabla \alpha \right\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \right) + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 = -2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right) \tag{45}$$

Now summing (44) and (45) we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \nabla u \right\|^{2} + \left\| \nabla \alpha \right\|^{2} + \left\| \frac{\partial \alpha}{\partial t} \right\|^{2} \right) + 2 \left\| \frac{\partial u}{\partial t} \right\|_{-1}^{2} + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^{2}$$

$$= -2 \left(f \left(u^{(1)} \right) - f \left(u^{(2)} \right), \frac{\partial u}{\partial t} \right) \tag{46}$$

We know that

$$f(u^{1}) - f(u^{2}) = \sum_{k=1}^{2p-1} a_{k}(u^{(1)k}) - \sum_{k=1}^{2p-1} a_{k}(u^{(2)k}) = \sum_{k=1}^{2p-1} a_{k}(u^{(1)k} - u^{(2)k})$$

which involves

$$\left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \leq \sum_{k=1}^{2^{p-1}} \left| a_{k} \right| \left| u^{(1)k} - u^{(2)k} \right|$$

$$\leq \sum_{k=1}^{2^{p-1}} \left| a_{k} \right| \left| u^{(1)} - u^{(2)} \right| \left| u^{(1)} \right|^{k-1} + \sum_{j=1}^{k-2} \left| u^{(1)} \right|^{k-1-j} \left| u^{(2)} \right|^{j} + \left| u^{(2)} \right|^{k-1}.$$

Based on Young's inequality, we have

$$\sum_{j=1}^{k-2} \left| u^{(1)} \right|^{k-1-j} \left| u^{(2)} \right|^j \leq \sum_{j=1}^{k-2} \left(\frac{k-j-1}{k-1} \left| u^{(1)} \right|^{k-1} + \frac{j}{k-1} \left| u^{(2)} \right|^{k-1} \right)$$

with $p = \frac{k-1}{k-j-1}$ and $q = \frac{k-1}{j}$ such as $\frac{1}{p} + \frac{1}{q} = 1$. So

$$\sum_{j=1}^{k-2} \left| u^{(1)} \right|^{k-1-j} \left| u^{(2)} \right|^j \leq \frac{1}{k-1} \sum_{j=1}^{k-2} \left(k-1 \right) \left| u^{(1)} \right|^{k-1} + \frac{1}{k-1} \sum_{j=1}^{k-2} j \left(\left| u^{(2)} \right|^{k-1} - \left| u^{(1)} \right|^{k-1} \right).$$

As

$$\sum_{i=1}^{k-2} j = \frac{(k-2)(k-1)}{2}$$

then

$$\begin{split} \sum_{j=1}^{k-2} \left| u^{(1)} \right|^{k-1-j} \left| u^{(2)} \right|^{j} &\leq \left(k-2 \right) \left| u^{(1)} \right|^{k-1} + \frac{k-2}{2} \left| u^{(2)} \right|^{k-1} - \frac{k-2}{2} \left| u^{(1)} \right|^{k-1} \\ &\leq \frac{k-2}{2} \left(\left| u^{(1)} \right|^{k-1} + \left| u^{(2)} \right|^{k-1} \right). \end{split}$$

We know that

$$\forall k \in \mathbb{N} ; k-2 \le k \text{ then } \frac{k-2}{2} \le \frac{k}{2} \le k$$

$$\sum_{i=1}^{k-2} \left| u^{(1)} \right|^{k-1-j} \left| u^{(2)} \right|^{j} \le k \left(\left| u^{(1)} \right|^{k-1} + \left| u^{(2)} \right|^{k-1} \right)$$

which gives

$$\left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \leq \sum_{j=1}^{k-2} \left| a_{k} \right| \left| u^{(1)} - u^{(2)} \right| \left(\left(k+1\right) \left| u^{(1)} \right|^{k-1} + \left(k+1\right) \left| u^{(2)} \right|^{k-2} \right)$$

$$\leq \left| u \right| \sum_{j=1}^{k-2} \left(k+1\right) \left| a_{k} \right| \left(\left| u^{(1)} \right|^{k-1} + \left| u^{(2)} \right|^{k-1} \right)$$

 $\exists k > 0$ such as

$$(k+1)|a_k| \le k$$
; $\forall k \in 1, 2, \dots, 2p-1$

so

$$|f(u^1) - f(u^2)| \le |u| k \sum_{k=1}^{k-2} (|u^{(1)}|^{k-1} + |u^{(2)}|^{k-1}).$$

Based on Young's inequality, we have $\forall k \ge 2$

$$\left|u^{(1)}\right|^{k-1} \le \frac{k-1}{2p-2} \left(\left|u^{(1)}\right|^{k-1}\right)^{\frac{2p-2}{k-1}} + \frac{2p-k-1}{2p-2}$$

and

$$\left|u^{(2)}\right|^{k-1} \le \frac{k-1}{2p-2} \left(\left|u^{(2)}\right|^{k-1}\right)^{\frac{2p-2}{k-1}} + \frac{2p-k-1}{2p-2}$$

that involve

$$\left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \leq \left| u \right| \frac{k}{2p - 2} \sum_{k=1}^{2p - 1} \left(\left(k - 1\right) \left(\left| u^{(1)} \right|^{2p - 2} + \left| u^{(2)} \right|^{2p - 2} \right) + 2 \left(\frac{2p - k - 1}{2p - 2} \right) \right) \\
\leq c \left| u \right| \left(\left| u^{(1)} \right|^{2p - 2} + \left| u^{(2)} \right|^{2p - 2} + 1 \right).$$

We finally

$$\int_{\Omega} \left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \left| \frac{\partial u}{\partial t} \right| dx \le c \int_{\Omega} \left| u \right| \left(\left| u^{(1)} \right|^{2p-2} + \left| u^{(2)} \right|^{2p-2} + 1 \right) \left| \frac{\partial u}{\partial t} \right| dx. \tag{47}$$

The second member of (45) is increased in R^n for n = 1, 2, 3.

If
$$n = 1$$
; $u^{i} \in H_{0}^{1}(\Omega) \subset H^{1}(\Omega) = W^{1,2}(\Omega)$ for $i = 1, 2$.

Thanks to the continuous injection $H^1(\Omega) \subset C(\overline{\Omega})$, then is C > 0, by applying Holder's inegality, we get

$$\int_{\Omega} \left| u \right| \left(\left| u^{(1)} \right|^{2p-2} + \left| u^{(1)} \right|^{2p-2} + 1 \right) \left| \frac{\partial u}{\partial t} \right| \mathrm{d}x \le C \left\| u \right\| \left\| \frac{\partial u}{\partial t} \right\|,$$

which involves using the compact injection $H^1(\Omega) \subset L^2(\Omega)$, we have

$$\int_{\Omega} \left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \left| \frac{\partial u}{\partial t} \right| dx \le C \left\| u \right\|_{H^{1}} \left\| \frac{\partial u}{\partial t} \right\| \tag{48}$$

If n = 2 then $H^{1}(\Omega) \subset L^{q}(\Omega)$, $\forall q \in [1, \infty]$.

Based on Holder's inequality, we have

$$\int_{\Omega} \left| u \right| \left(\left| u^{(1)} \right|^{2p-2} + \left| u^{(1)} \right|^{2p-2} + 1 \right) \left| \frac{\partial u}{\partial t} \right| \mathrm{d}x \le C \left\| u \right\|_{L^{3}} \left\| \frac{\partial u}{\partial t} \right\|.$$

Finally

$$\int_{\Omega} \left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \left| \frac{\partial u}{\partial t} \right| dx \le C \left\| u \right\|_{H^{1}} \left\| \frac{\partial u}{\partial t} \right|$$

If n = 3, then $H^1(\Omega) \subset L^q(\Omega)$ with $q \in [1, 6]$ In this case, we also

$$\int_{\Omega} \left| u \right| \left(\left| u^{(1)} \right|^{2p-2} + \left| u^{(1)} \right|^{2p-2} + 1 \right) \left| \frac{\partial u}{\partial t} \right| dx \le C \left\| u \right\|_{L^{6}} \left\| \frac{\partial u}{\partial t} \right\|.$$

So

$$\int_{\Omega} \left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \left| \frac{\partial u}{\partial t} \right| dx \le C \left\| u \right\|_{H^{1}} \left\| \frac{\partial u}{\partial t} \right\|.$$

We notice that in \mathbb{R}^n for n = 1, 2, 3, we have

$$\int_{\Omega} \left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \left| \frac{\partial u}{\partial t} \right| dx \le C \left\| u \right\|_{H^{1}} \left\| \frac{\partial u}{\partial t} \right\|.$$

Using Young's inequality, we have

$$\int_{\Omega} \left| f\left(u^{1}\right) - f\left(u^{2}\right) \right| \left| \frac{\partial u}{\partial t} \right| dx \le C \left\| u \right\|_{H^{1}}^{2} + \left\| \frac{\partial u}{\partial t} \right\|^{2} \tag{49}$$

Inserting (49) into (46), we find

$$\frac{\mathrm{d}}{\mathrm{d}t}E_2 + 2\left\|\frac{\partial u}{\partial t}\right\|_{-1}^2 + 2\left\|\frac{\partial \alpha}{\partial t}\right\|^2 \le c' \left\|u\right\|_{H^1}^2 + \left\|\frac{\partial u}{\partial t}\right\|^2$$

and recalling the interpolation inequality $\left\| \frac{\partial u}{\partial t} \right\|^2 \le c \left\| \frac{\partial u}{\partial t} \right\|_{-1} \left\| \nabla \frac{\partial u}{\partial t} \right\|_{-1}$

with
$$E_2 = \|\nabla u\|^2 + \|\nabla \alpha\|^2 + \|\frac{\partial \alpha}{\partial t}\|^2$$

Finally

$$\frac{\mathrm{d}}{\mathrm{d}t}E_2 + c'' \left\| \frac{\partial u}{\partial t} \right\|_{-1}^2 + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \le CE_2, \quad C > 0$$
(50)

Theorem 4.3. (Second theorem of the solution's existence) The existence and uniqueness of the solution (23)-(25) problem being proven, now we seek the solution of (23)-(25) with more regularity.

Assume
$$\frac{\left(u_{0},\alpha_{0},\alpha_{1}\right)\in H^{2}\left(\Omega\right)\cap H_{0}^{1}\left(\Omega\right)\cap L^{2p}\left(\Omega\right)}{\times\left(u_{0},\alpha_{0},\alpha_{1}\right)\in H^{2}\left(\Omega\right)\cap H_{0}^{1}\left(\Omega\right)\cap L^{2p}\left(\Omega\right)\times H_{0}^{1}\left(\Omega\right)}, \text{ then the}$$

(23)-(24) system admits a unique (u,α) solution such as

$$u\in L^{\infty}\left(0,T;H^{2}\left(\Omega\right)\cap H_{0}^{1}\left(\Omega\right)\right),\alpha\in L^{\infty}\left(0,T;H^{2}\left(\Omega\right)\cap H_{0}^{1}\left(\Omega\right)\right),$$

$$\frac{\partial \alpha}{\partial t} \in L^{\infty}\left(0, T; H^{2}\left(\Omega\right) \cap H_{0}^{1}\left(\Omega\right)\right) \cap L^{2}\left(0, T; H^{2}\left(\Omega\right) \cap H_{0}^{1}\left(\Omega\right)\right),$$

and

$$\frac{\partial u}{\partial t} \in L^2(0,T;H^{-1}(\Omega))$$

Theorems of existence (23) and uniqueness (24) being proven then $u \in L^{\infty}\left(0,T;H^{2}\left(\Omega\right)\cap L^{2p}\left(\Omega\right)\right), \quad \alpha \in L^{\infty}\left(0,T;H^{1}_{0}\left(\Omega\right)\right),$

$$\frac{\partial \alpha}{\partial t} \in L^{\infty}\left(0,T;L^{2}\left(\Omega\right)\right) \cap L^{2}\left(0,T;L^{2}\left(\Omega\right)\right) \text{ and } \frac{\partial u}{\partial t} \in L^{\infty}\left(0,T;H^{-1}\left(\Omega\right)\right), \ \forall T>0 \ .$$

We multiply (23) by $\left(-\Delta\right)^{-1}\frac{\partial u}{\partial t}$ and have, integrating over Ω , we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \nabla u \right\|^2 + 2 \int_{\Omega} F\left(u\right) \mathrm{d}x \right) + 2 \left\| \frac{\partial u}{\partial t} \right\|_{-1}^2 = 2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right) \tag{51}$$

Multiplying (24) by $\frac{\partial \alpha}{\partial t}$, we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \nabla \alpha \right\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \right) + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 = -2 \left(\frac{\partial u}{\partial t}, \frac{\partial \alpha}{\partial t} \right)$$
 (52)

Now summing (51) and (52) we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \nabla u \right\|^2 + 2 \int_{\Omega} F(u) \, \mathrm{d}x + \left\| \nabla \alpha \right\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2 \right) + 2 \left\| \frac{\partial u}{\partial t} \right\|_{-1}^2 + 2 \left\| \frac{\partial \alpha}{\partial t} \right\|^2 = 0 \tag{53}$$

where

$$E_{3} = \left\| \nabla u \right\|^{2} + 2 \int_{\Omega} F(u) dx + \left\| \nabla \alpha \right\|^{2} + \left\| \frac{\partial \alpha}{\partial t} \right\|^{2}$$

finally

$$\left\|\nabla u\left(t\right)\right\|^{2}+c\left\|u\left(t\right)\right\|_{L^{2p}}^{2p}+\left\|\nabla \alpha\left(t\right)\right\|^{2}+\left\|\frac{\partial \alpha}{\partial t}\right\|^{2}+2\int_{0}^{t}\left(\left\|\frac{\partial \alpha\left(s\right)}{\partial t}\right\|^{2}+\left\|\frac{\partial u\left(s\right)}{\partial t}\right\|^{2}\right)ds\leq c_{1}.$$

We infer that

$$u\in L^{\infty}\left(0,T;H^{2}\left(\Omega\right)\cap L^{2p}\left(\Omega\right)\right),\ \alpha\in L^{\infty}\left(0,T;H_{0}^{1}\left(\Omega\right)\right),$$

$$\frac{\partial \alpha}{\partial t} \in L^{\infty}\left(0,T;L^{2}\left(\Omega\right)\right) \cap L^{2}\left(0,T;L^{2}\left(\Omega\right)\right) \text{ and } \frac{\partial u}{\partial t} \in L^{\infty}\left(0,T;H^{-1}\left(\Omega\right)\right).$$

We multiply (24) by $\frac{\partial^2 \alpha}{\partial t^2}$, we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left\| \frac{\partial \alpha}{\partial t} \right\|^2 + \left\| \nabla \alpha \right\|^2 \right) + \left\| \frac{\partial^2 \alpha}{\partial t^2} \right\|^2 \le \left\| \frac{\partial u}{\partial t} \right\|^2.$$

We infer from this that $\frac{\partial^2 \alpha}{\partial t^2} \in L^2(0,T;L^2(\Omega))$.

5. Conclusion

In this work we have studied the existence and uniqueness of the solution of a conservative-type Caginalp system with Dirichlet-type boundary conditions. Finally we have also succeeded in this work to establish the existence theorems of the solution of this system with low regularity and more regularity. As a perspective, we plan to study this problem in a bounded or unbounded domain with different types of potentials and Neumann-type conditions.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- [1] Altundas, Y.B. and Caginalp, G. (2005) Velocity Selection in 3D Dendrites: Phase Field Computations and Microgravity Experiments. *Nonlinear Analysis*, **62**, 467-481. https://doi.org/10.1016/j.na.2005.02.122
- [2] Babin, A.V. and Vishik, M.I. (1992) Attractors of Evolution Equations. Vol. 25 of Studies in Mathematics and Its Applications, North-Holland Publishing Co., Amsterdam
- [3] Batangouna, N. and Pierre, M. (2018) Convergence of Exponential Attractors for a Time Splitting Approximation of the Caginalp Phase-Field System. *Communications on Pure & Applied Analysis*, 17, 1-19. https://doi.org/10.3934/cpaa.2018001
- [4] Bai, F., Elliott, C.M., Gardiner, A., et al. (1995) The Viscous Cahn-Hilliard Equation. I. Computations. Nonlinearity, 8, 131-160. https://doi.org/10.1088/0951-7715/8/2/002
- [5] Bates, P.W. and Zheng, S.M. (1992) Inertial Manifolds and Inertial Sets for the

- Phase-Field Equations. *Journal of Dynamics and Differential Equations*, **4**, 375-398. https://doi.org/10.1007/BF01049391
- [6] Brezis, H. (1973) Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, London, American Elsevier Publishing Co. Inc., New York.
- [7] Brochet, D., Hilhorst, D. and Chen, X. (1993) Finite-Dimensional Exponential Attractor for the Phase Field Model. *Applicable Analysis*, **49**, 197-212. https://doi.org/10.1080/00036819108840173
- [8] Brokate, M. and Sprekels, J. (1996) Hysteresis and Phase Transitions. Vol. 121 of Applied Mathematical Sciences, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-4048-8
- [9] Landau, L.D. and Lifshitz, E.M. (1980) Statistical Physics I. 3rd Edition, Butterworth-Heinemann, Oxford.
- [10] Caginalp, G. and Socolovsky, E.A. (1989 Efficient Computation of a Sharp Interface by Spreading via Phase Field Methods. *Applied Mathematics Letters*, 2, 117-120. https://doi.org/10.1016/0893-9659(89)90002-5
- [11] Caginalp, G. (1986) An Analysis of a Phase Field Model of a Free Boundary. Archive for Rational Mechanics and Analysis, 92, 205-245. https://doi.org/10.1007/BF00254827
- [12] Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968) A Note on Non-Simple Heat Conduction. *Journal of Applied Physics (ZAMP)*, 19, 969-970. https://doi.org/10.1007/BF01602278
- [13] Chepyzhov, V.V. and Vishik, M.I. (2002) Attractors for Equations of Mathematical Physics. Vol. 49 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence. https://doi.org/10.1090/coll/049
- [14] Chill, R., Fašangová, E. and Prüss, J. (2006) Convergence to Steady State of Solutions of the Cahn-Hilliard and Caginalp Equations with Dynamic Boundary Conditions. *Mathematische Nachrichten*, 279, 1448-1462. https://doi.org/10.1002/mana.200410431
- [15] Dupaix, C., Hilhorst, D. and Kostin, I.N. (1999) The Viscous Cahn-Hilliard Equation as a Limit of the Phase Field Model: Lower Semicontinuity of the Attractor. *Journal of Dynamics and Differential Equations*, **11**, 333-353. https://doi.org/10.1023/A:1021985631123
- [16] Doumbe, B. (2013) Etude de modeles de champ de phase de type Caginalp. PhD Thesis, Université de Poiters.
- [17] Efendiev, M., Miranville, A. and Zelik, S. (2000) Exponential Attractors for a Non-linear Reaction-Diffusion System in R³. Comptes Rendus de l'Académie des Sciences—Series I—Mathematics, **330**, 713-718. https://doi.org/10.1016/S0764-4442(00)00259-7
- [18] Efendiev, M., Miranville, A. and Zelik, S. (2004) Exponential Attractors for a Singularly Perturbed Cahn-Hilliard System. *Mathematische Nachrichten*, **272**, 11-31. https://doi.org/10.1002/mana.200310186
- [19] Elliott, C.M. and Stuart, A.M. (1993) The Global Dynamics of Discrete Semilinear Parabolic Equations. *SIAM Journal on Numerical Analysis*, **30**, 1622-1663. https://doi.org/10.1137/0730084
- [20] Miranville, A. and Quintanilla, R. (2009) Some Generalizations of the Caginalp Phase-Field System. Applicable Analysis, 88, 877-894. https://doi.org/10.1080/00036810903042182
- [21] Miranville, A. (2014) Some Mathematical Models in Phase Transition. Discrete &

- Continuous Dynamical Systems Series S, 7, 271-306. https://doi.org/10.3934/dcdss.2014.7.271
- [22] Miranville, A. and Quintanilla, R. (2016) A Caginalp Phase-Field System Based on Type III Heat Conduction with Two Temperatures. *Quarterly of Applied Mathematics*, **74**, 375-398. https://doi.org/10.1090/qam/1430
- [23] Penrose, O. and Fife, P.C. (1990) Thermodynamically Consistent Models of Phase-Field Type for the Kinetics of Phase Transitions. *Journal of Physics D*, **43**, 44-62. https://doi.org/10.1016/0167-2789(90)90015-H
- [24] Quintanilla, R. (2009) A Well-Posed Problem for the Three-Dual-Phase-Lag Heat Conduction. *Journal of Thermal Stresses*, **32**, 1270-1278. https://doi.org/10.1080/01495730903310599
- [25] Temam, R. (1997) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Vol. 68 of Applied Mathematical Sciences, 2nd Edition, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-0645-3
- [26] Mavoungou, U.C. (2016) Existence and Uniqueness of Solution for Caginal Pyperbolic Phase-Field System with a Singular Potential.
- [27] Fakih, H. (2015) A Cahn Hilliard Equation with a Proliferation Term for Biological and Chemical Applications. *Asymptotic Analysis*, **94**, 71-104. https://doi.org/10.3233/ASY-151306
- [28] Ntsokongo, A.J. and Batangouna, N. (2016) Existence and Uniqueness of Solutions for a Conserved Phase-Field Type Model. AIMS Mathematics, 1, 144-155. https://doi.org/10.3934/Math.2016.2.144
- [29] Raugel, G. (2002) Global Attractors in Partial Differential Equations. In: Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 885-982. https://doi.org/10.1016/S1874-575X(02)80038-8
- [30] Stuart, A.M. and Humphries, A.R. (1996) Dynamical Systems and Numerical Analysis. Vol. 2 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.
- [31] Temam, R. (1969) Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Archive for Rational Mechanics and Analysis, 33, 377-385. https://doi.org/10.1007/BF00247696
- [32] Zhang, Z. (2005) Asymptotic Behavior of Solutions to the Phase-Field Equations with Neumann Boundary Conditions. *Communications on Pure & Applied Analysis*, **4**, 683-693. https://doi.org/10.3934/cpaa.2005.4.683
- [33] Zhu, C. (2015) Attractor of a Semi-Discrete Benjamin-Bona-Mahony Equation on R¹. Annales Polonici Mathematici, 115, 219-234. https://doi.org/10.4064/ap115-3-2