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Abstract

In this paper, the dynamics of a stochastic ratio-dependent predator-prey
system with markovian switching and Lévy noise is studied. Firstly, we show
the existence condition of global positive solution under the given positive in-
itial value. Secondly, sufficient conditions for system extinction and persis-
tence are obtained through some assumptions. Then, the sufficient conditions
of stochastically persistence are obtained by combining stochastic analysis
technique and M-matrix analysis. In addition, under appropriate conditions,
we demonstrate the existence of a unique stationary distribution for a system
without Lévy jumps. Finally, the empirical and Mlistein methods are used to
verify the theoretical results through numerical simulation.
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1. Introduction

As far as we know, rate-dependent predator-prey system models have become the
focus of mathematical ecology and have been extensively studied in recent years
(see e.g., [1] [2] [3]). The dynamic relationship between predator and prey is ubi-
quitous in ecology and mathematical ecology [4]. The relationship between two
species is usually thought of as competition, predation and cooperation. Here is

the Lotka-Volterra model of a predator-predator with intra-species competition:

dx
W ax—bx*—cxy,
(1.1)
dy 2
E: =8,y —b,y" +C,xy,
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where x(t) and y(t) represent the population density of prey species and
predators species at time £ parameters &, a,, C, and C, are all positive
constants describing the interaction of two species. The positive constants b,
b, represent the effect of one species on the other. It is well known that the so-
lution of system (1.1) is asymptotically stable.

In the study of biological phenomena, there are many factors affecting the
dynamic properties of biological and mathematical models, and functional reac-
tion is one of the common nonlinear factors [4]. System (1.1) assumes the prey
biomass is enough and a individual predator consume the prey with functional
response of type C,X. When predators face an increase in the density of their
local prey, they usually change their consumption rate. The concept of function-
al response was first proposed by Solomon and later discussed in detail by Hol-

ling. Holling [5] proposed three types of functional responses, i.e., Hollings type

I of ax, Hollings type II of ﬁax and Hollings type III of ox -
+X X

Propor-

tional-dependent functional responses are a better description of how predators
must find food and therefore must share or compete for it. Based on Holling
type II function, Arditi and Ginzburg [2] first proposed a rate-dependent func-

tional response model:

ax C—bx? — C, Xy

gt X+ ey (12)
ay _ —a,y+ C, Xy
dt X+ ey

where parameters C,C,,e are all positive constants, representing capturing
rate, conversion rate and half capturing saturation constant, respectively.

These papers are all deterministic models, which do not consider the impact
of environmental fluctuations, nor the impact of population randomness. Popu-
lation dynamics in nature will inevitably be affected by environmental noise in
the ecosystem. More recently, a number of authors have looked at stochastic
predator-prey models with white noise and revealed how white noise affects
population systems, such as [4] [6] [7] [8]. Considering that the environmental
fluctuation is mainly manifested as the fluctuation of the internal growth rate of
the predator population and the mortality rate of the predator population [9],

they supposed parameters @ and a, were perturbed with
a, > a +0,B(t),a, »>a, +0,B(t), (1.3)
where B(t) isa standard Brownian process defined on a complete probability

space (Q,F,P) with a filtration {7}

and o7 represent the intensities of the white noise.

satisfying the usual conditions, &/

Nguyen and Ta [7] introduced intra-specific competition into the stochastic
rate-dependent model to obtain the model (4), and considered the correspond-
ing non-autonomous stochastic system, and estimated the high population

growth rate and exponential mortality rate. The stochastic predator-prey system
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with rate-dependent functional response can be expressed as follows:

Gy
= —px——2r B
dx x{a1 b x ” ey}dt oyxdB(t),

(1.4)
dy = y{—az “byy+—2
X+ey

}dt+0'2ydB(t).

Furthermore, from a biological point of view, population dynamics may en-

counter sudden environmental disturbances that cannot be described by white

noise, such as earthquakes, epidemics, floods and hurricanes. In this case, there

are many references to stochastic differential equations with jumps (see e.g., [9]

[10] [11] [12] [13]), and Lévy jumping into a potential population system may

be a reasonable method to describe these phenomena. Therefore, this paper con-

siders the random ratio-dependent model with jumps:

—bx(t —ﬂ +0 + u)N u
% -h(t) x(t)+ey(t)}lt B()+ [, 72 (u) N (dt du) .
y(t) —az—bzy(t)+$(:};)(t_)}dt+azd8(t)+kyz(u)l\](dt,du) ,

where X(t’) and y(t’) represent the left limit of x(t) and y(t), re-
spectively: the parameters a, (i), b (i), ¢ (i), e(i) and o (i)(1=12) are

all positive constant, V is a poisson counting measure with compensator N

and characteristic measure A on a measurable subset Y of (O,oo) with
A(Y) <o, and N (dt,du) = N (dt,dut)— A(du)dt, the function
7 :Yx(0,0) >R is bounded and continuous with respect to A and is
B(Y)x A -measurable, 1=1,2.

Now let’s go one step further and add another environmental noise that is

Telegraph noise. Telegraph noise can be described as a random switch between

two or more environmental states that differ in factors such as nutrition or rainfall

[14] [15]. The stochastic differential equations driven by a continuous-time Mar-
kov chain have been used to model the population system [16] [17] [18] [19] with
this type of noise. Suppose the Markov chain on the state space S=1{1,2,---,S}
controls the switching between the environmental regimes. Then the prey-predator

model with two types of noise can be described by the following stochastic diffe-

rential equation
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with initial data
X (0)=(x(0),y(0))eR2,r(0)es, (1.7)

where r(t) isa right-continuous Markov chain, taking values in S=1{1,2,---,S}.
System (1.6) will switch from one mode to another according to the law of Mar-
kov chain. If r(0)=1i,, then system (1.6) obeys

dx(t) =x(t") {al(i)—bl(i)x(t)_ X(tcl)(iligi(ty)(t)]dt

+0,(1)dB(t)+ [ 7 (ui)N (dt,du)}

o (1.8)
dy(t)=y(t") {—az(i)—bz(i)y(t)+X(tf2)8)e)((i(ty)(t_)]dt
+az(i)dB(t)+IYy2(u,i)N(dt,du)}
with i=i, until time 7; when Markov chain jumpsto i from i,;the system
will then obey (8) with i=i, from 7, to 7z, when the Markov chain jumps to

i, from i. The system will continue to switch as long as the Markov chain
jumps. In other words, system (8) can be regarded as system (6) switching from
one to another according to the law of the Markov chain. If the switching be-
tween environmental regimes disappears, then system (6) degenerates into sys-
tem (8).

More recently, several authors have discussed the effects of environmental
fluctuations on populations [16] [20] [21] [22] [23]. C. Ji et al [21] studied a
stochastic predator-prey system with white noise and concluded that the preda-
tor population and ratio-dependent functions were stable on average time. M.
Ouyang, X. Li [22] studied stochastic predator-prey systems with Markovian
switching, and obtained that the stable distribution of Markov chains was related
to the parameters of subsystems, and the switching between subsystems made
them neither permanent nor dissipative. L. Bai et al [23] studied a stochastic
predator-prey system with Lévy noise and revealed that Lévy noise and white
noise can have an impact on biological systems. But previous results were insuf-
ficient to reveal the effects of Markovian switching and Lévy noise on prey and
predators. Thus, these factors let do investigate the dynamics of the stochastic
random predator-prey system described in system (1.8). Till now, the available
tools for analyzing stochastic population models with Markovian switching are
limited [24] [25]. The key methods used in this paper are m-matrix analysis
(e.g., [18]) and stochastic analysis of Lyapunov functions developed by Khas-
minskii (see e.g., [18] [26]).

This paper is organized as follows: In Section 2, we give the global existence

and positive properties of the solutions of system (1.8). In section 3 and section
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4, we give sufficient conditions for the non-persistence, weak persistence and ex-
tinction and stochastic permanence respectively. In Section 5, we demonstrate
that system (5.1) has a unique stationary distribution under some appropriate
conditions when Lévy jumps are not present. Finally, we illustrate our main re-

sults with two examples.

2. Preliminaries

Throughout this paper, let (Q,]—" AR }IZO , P) be a complete probability space
with a filtration {7}
nuous and F; contains all P-null sets). Let B(t), t>0, be a scalar standard

satisfying the usual conditions (Ze. it is right conti-

Brownian motion defined on this probability space. We also denote by R? the
positive cone in R?, and denote by R? the nonnegative cone in R”.

Let r(t) be a right-continuous Markov chain on the probability space, tak-
ing values in a finite state space S = {1, 2, S} with the generator I' = ( Yi )st
given by
7y +0(<), i # j;
1+7ij§+o(§), i=],

where ¢ >0.Here y; represents the transition rate from 7to jand y; >0, if
i# ] while

(2.1)

P(r(t+§):j|r(t):i):{

s .
Vi = _ijl,j# Vi VIES. (2.2)

We assume that the Markov chain r(-) is independent of the Brownian mo-
tion B(-) and is irreducible. Under this condition, the Markov chain has a
unique stationary (probability) distribution ¢ =(¢,@,, -, ¢5)e R™®  which
can be determined by solving the following linear equation

ol =0, (2.3)

subject to
' g=1and ¢ >0, VieS. (2.4)

Next, let x(t) e R? be a solution of the stochastic differential equation with

regime-switching jump-diffusion processes taking the form
dx(t) = F(x(t"),t,r(t))de+G(x(t ).t r(t))dB ()
+[H (x(t‘),t‘, r(t‘),u) N (dt, du),
where F:R’xR, xS —>R?*, G:R*xR, xS —>R* and
H:R*xR, xSxY — R? are measurable functions. Moreover, let
C? (Rz xR, XS;R) denote the family of all real-valued function V (Xx,t,i) on

R*xR, xS which are continuously twice differentiable in x. For each
VeCc? (Rz xR, xS; R+) , we define an operator LV by

LV (x,t,1) =V, (x,t,1)+V, (xt,i)F (xt,i)

(2.5)

jL%trexce[GT (X Li)V, (X 11)G(x,11) ]
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AV (x+H (% 4iv),6i) =V (i) =V, (X i) H (X, t,i,v)} A(du)

+Zqijv (%t ),
=1

where
Vt(x’t'i)ZW’
o[V (xti) oV, (xti)
VX(X,t,I)—[ o ]

V., (x i) = oV, (x.t,1)
AT axox vy

Then the generalized 1t6’s formula with jumps is given by
dV (x,t,i) =LV (xt,i)dt+V, (x,t,i)G(xt,i)dB(t)
+j{ (x+H( x,t,i,ui),t,i)—V(x,t,i)}N(dt,du).

For convenience and simplicity in the following discussion, define

(F(O) = f (s)ds, (£(1)) =timsup(f (1)), (f (1)), =liminf ( (1),

t—>+o0

B.(i)= al(i)_GlT(l)—IY[h(ﬂai)_In(1+71(,”:i))}1(dﬂ)'

Bz(i)=cz(i)—a2(i)—0222(i)—jv[yz(ﬂ,i)—ln(uyz(y,i))p,(dﬂ),
B(i)=min;.., (8;(1) B=2,,0B(). B = 3,08, (D),
Ci= Zilwicj (i)’ O =MaXig 4, {|aj (|)|},

b (i)=max{b(i)},b(i)=min{b(i)}.
(1) =2, (1)~ 07 (1) (1) =2 (1)~ ().

In this paper, we impose the following assumptions:

(2.6)

Assumption 1. There is a constant ¢ >0 such that

L{[In(1+7z(r(t),u))]zﬂ(du)gc,

Assumption 2. a;(i), b;(i), e(i), c;(i) are all positive constant, and
there exists 7] > ;. ()> -1 such that y,. ()S}/ (ui)<yi(i)(ueY),

VieS, j=12.

Assumption 3. For some ieS, a;(i)>0, b;(i)>0, e(i)>0, ¢;(i)>0
and there exists y|>y.(i)>-1 such that y.(i)<y, (u i)<yi(i)(ueY),
j=12.

Assumption 4. Forsome J€S, y, >0, Vi#j.
Assumption 5. e(i)>0, VieS,and Y ¢ /(i)>0, where

_ o) [ai)-o, |}
B(i)=B(i)- e(i) - 5 .

Lemma 2.1. If Assumption 1 holds, then for any given initial data
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(X(O), y(O)) eR?, r(0)eS, system (6) has a unique solution (X(t), y(t)) on
t>0 a.s.
Proof. The proof is standard (see e.g., [27] [28]) and hence is omitted.

3. The Persistence and Extinction of Populations

Definition 3.1. Let x(t) be a solution of system (1.6). Then
1) the species X(t) is said to be extinct, if lim,_,, x(t)=0,a.s;
2) the species x(t) is said to be weakly persistent in the mean a.s., if

limsup,_,... %j; x(t)ds >0, a.s;

3) the species X(t) is said to non-persistence in mean a.s., if
lim,, %j; x(t)ds=0, as.

Lemma 3.1. (see Lipster [29]). Suppose that M (t),t >0 isalocal martingale
with M (0)=0. Then

lim p,, (t) <o = lim =0 as,

t—>o t—w

M) _
Tt

where

Pu (t):.[tw t>0,

0 (1+s)2 o

and (M)(t):=(M,M)(s) is Meyer’s angle bracket process.
Lemma 3.2. If Assumption 1 holds, then for any given initial value
(X(O), y(0), r(O)) eR? xS, the solutio (X(t), y(t)) to system (1.6) has the

following property
<m> SO<M> <0 )
t Nt ) '

Proof. Applying the generalized It®’s formulato €'Inx and e'Iny leads to

e'Inx(t)—-Inx(0)

nx(s)+ of(r(s))_ a(r(s)y(s)
.[ {l (s)+a,(r(s))- 2 x(s)+e(r(s))y(s)
_jy[)q(u,r(s))—ln(1+71(u,r(s)))}l(du)—bl(r(s))x(s)}ds+Nlj(t),

e'Iny(t)-Iny(0)

=[e |:|ny r(S))—GZZ(;(S))+ ca (" (( ))SX)()Sy) (3.2)
(

[ [72(ur(s)-In(1+, (ur(s )))]z(du) b, (r (5)) ¥ (s) |ds + Ny, (1),

where

N, (t)= j;eso—,. (r(s))dB(s),

Ny, (t):=[.], e In(1+7; (u.r(t)))N(ds,du), j=12,
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are local martingale with the quadratic variations
2
(Nj)(t)= J’;esaj (r(s))dB(s)s%(ez‘ -1) as.
<Nj2>(t) — J';J'Y e*In (1+ 7, (u, r(t))) N (ds,du) < %(e2t —1) as.

In view of the exponential martingale inequality, for any positive number
alﬂlT )

P{sup [Nj (t)—%(NJ}(t)} >ﬂ}geaﬂ.

0<t<T

Let T=yk, a=e"*, B==E™Ink, we can get

P{ sup {Nj(t)—e: <Nj>(t)}>§e’k Ink}skii (i=12),

0<t<yk

where y>1 and & >1. Applying the Borel-Cantelli Lemma, we can obtain
that for all @ eQ, there is a random integer k, =k, () such that for each
k>ky (o),

-k

e V4
sup {Nj(t)— 5

0<t<yk

<Nj>(t)} <& Ink.

Namely, we have shown

Nj(t)s%eﬂwj (t))+ée™ Ink, 0=t < 7k (j=1,2).

Substituting the above inequalities into (3.2) leads to

e'Inx(t)-Inx(0)
Sfoes[lnx(s)+a1(r(s)) > _x(s)+e(r(s))y(s)
[ L7 () =In(2+ 7 (u.r(s))) |2 (du) -ty (v (s)) x(s) s

+%e”k J';ezso-f (r(s))ds +%ce’7" j;ezsds +2£e7 Ink

oi(r(s) a(r(s)y(s)

2 x()re(r(9)y()
1, [ (0 ()= In (L 2 (0 () A (u)+ e o (1(5))
~Zo{L-e )by (r()x(5)]ds + 2z Ink
<fye[nx(s)+a i)+ [,[[7(0)] +[In (1+7 (w))] ] 2(du)

—(1-es )%0'12 (i)—%c(l—e”k )] ds+2&e”™ Ink,

e Tinx(e)a(r(e)) -2 0D __alrEINe)

e'lny(t)-Iny(0)

sj;es[ln y(s)-a,(r(s))- S
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—L{[;/z (ur(s))- In(l+ 72 (u, r(s)))}l(du)—b2 (r(s)) y(s)]ds

+%e’7k f; o (r(s))ds +%ce’7k J'; e®ds+2&e” Ink

= [ [Iny(s)-a(r(s))- 2(2( ))+X(5)24(re((r)()s)()y)(s)
L) (e wr @) e ok r(5)
_gc@ o k) (1) (e 226

<[te*[Iny(s)-a, (i)+ ], [ |72 (u)]in 2+ 7, (u))] 2 (cu)
+@<->—%<1 BT e

It is easy to find that for any 0<s<yk and X>0,y>0, there exists two

AC
1
2°

constants C, and C, which are independent of ksuch that

Inx(s)+a(s)+ |, (|y1 |In(1+;71(u))|)i(du)

ERIE r
Iny(s)-a,(s)+C, (s j(|y2 )|+|In(l+72(u))|)/l(du)
el ) elie )z,

In other words, for any 0<t<yk, k >k;,, we obtain
Inx(t)<e"Inx(0)+C, (1—e’t ) +260e7'e Ink,
Iny(t)<e'Iny(0)+C,(1-e")+20e e Ink.

Letting t — oo, we get

<mxt(t)>* go,<lni(t)>* <0

This proof is completed.

Theorem 3.1. Let Assumption 1 hold, if B <0 and B, <0, then species
x(t) and y(t) ofsystem (1.6) will tend to be extinct.
Proof. By the generalized Itd’s formula, we derive from (1.6) that

()= (0)- 2O [ e 0)- (2 4 (1) 00
LSOO
@ re(r()ym 0K
+al(r(t))dB(t)+ YIn[l—i-;/l(y r( ))] (dt d,u) (3.3)
oz (r(1) '
diny(t)=[-a,(r(t))- . [, [ 72 (v (©) = (147, (a7 (1)) ] A(dee)
c, (r(t))x(t)

~b, (r (1)) y(t) ]t
)+L{ In [1+ 7, (,u, r(t))} N (dt,dg).
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Then

Inx(t)-Inx(0)
= [[inx(s)+a,(r(s))-= (Q(S))—I [72(u.r ()~ In(1+ 4 (ur(5))) ] 2(cu)

- e (r())y(s) —b, (r(s))x(s) |ds+ M,

x(s)+e(r(s))y(s) by(r (s))x(s) Jds+ My (1) »
Iny(t)-Iny(0) .
- iny(©)-2u(r(6)- 25 [ (o)l o)) 2(00)

A UO)LIO RN

x(s +e(r(S))Y(S)d b, (1 ()) y(s) ]+ May (1)

where

{Mu(t) = Jyo1(r(s))dB().
M, (t):= f;J'Y In(1+7; (u,r (t))) N (ds,du),
are local martingale with the quadratic variations
{<M11>(t):£ o, (r(s))dB(s)< ot as
(Mp,)(t)= j;jY In(L+7; (u,r(t)))N(ds,du) <ct as.
It follows from Lemma 3.1 that
M; (1)

lim —!
t

X—>+00

-0,j=1,2, as. (3.5)

Dividing by #on both sides of (18) and then taking the superior limit, we obtain

<M>* < <B1 (r(t))> =B <0, (3.6)

t

<'“3;ﬁ> < <B2 (r(t))>* =B, <0, (3.7)

that is
limx(t)=0, tIim y(t)=0, as.

too

This proof is completed.
Theorem 3.2. Let Assumption 1 hold, if B =0 and B, =0, then species
x(t) and y(t) ofsystem (1.6) will be non-persistent in the mean.

Proof. Due to the fact that lim supr%J.; B,(r(t))ds =5 and (3.5), for any

given ¢ >0, there is a positive constant 7'such that

t
—J.O Bl(r(t))ds Sl’3’1+£=£,t >T.
t 2 2

Then for any ¢ >0 and sufficiently large t>T , we have
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Inx(t)-Inx(0)< f;[Bl(r(s))—bl(r(s))x(s)}ds+ M, (t)
<et-h, [ x(s)ds

Let u(t)=J';x(s)ds for t>T , then one gets

n{%ﬁjsa_qUaynnxmy
which shows that
e™)du < x(0)e"dt, t > T.
Integrating the above inequality from 7'to ¢results in

é(eblu(t) _eblu(T)) < m(est —efT )'

&

which implies

ebiu(t) < eblu(T) + X(O)bl et X(O)bl .r:T.

Taking the logarithm on both sides, we have

U(t) <é|n |:eblu(T) + X(O)bl et _ X(O)bl gT:|_

e
& &

Then letting t — oo, and making use of the L’Hospital’s rule results in

&g

(x ()> —Ilmsup J' s)ds <Ellrtn_)s;uptlnblx( )e e =y as.

By the arbitrariness of ¢, we can get

(x(t)) <0,
which is the desired assertion for x(t). The corresponding result of y(t) can

also be proved by the same method, so it is omitted. Thus the proof of Theorem
3.2 is completed.

Theorem 3.3. Let Assumption 1 hold, if BB, >C,, then species X(t) of sys-
tem (1.6) will be weakly persistent in the mean.

Proof. By the generalized Itd’s formula, and dividing by ¢ on both sides, we
have

Inx(t)—Inx(0)
g _a(r(s)y(s)
k| Bu(r(s) x(s)+e(r(s))y(s)
_J' [Bl ( (s))-by(r(s )) ]ds+T,
Taking the superior limit and combining with (3.1), (3.5), we conclude

lim suplnXT(t) > <Bl(r(t))>* —<cl(r(t))>* =B -C >0, as.

t—>o

=
A
—
~—

DOI: 10.4236/jamp.2020.811195 2642 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2020.811195

X. G. Zhang et al.

The proof is completed.

Corollary 3.1. According to Theorem 3.1, the solutions of subsystems (1.8)
can be obtained with the following properties:

1) If B (i)<0, B,(i)<0, then both x(t) and y(t) tend to extinction
as., Ze, lim_, x(t)=0 and lim__ y(t)=0;

2) If B(i)=0, B,(i)=0, then both x(t) and y(t) will be non-persistent
in the mean a.s.;

3)If By(i)>c,(i),then x(t) isweakly persistent in the mean a.s.

4. Stochastic Permanence

In the study of population dynamics, stochastic permanence is one of the most
important properties. We first introduce the definition of stochastic permanence
[6], which is widely used in the field of population dynamics (see e.g., [22] [28]).
In this section, we shall discuss this property.

Definition 4.1. System (1.6) iIs stochastically permanent if for any ¢ >0,
there exist 6. =05.(¢)>0 and & =6 (¢)>0 such that

liminf P{x(t)> 6.} >1-¢, liminf P{y(t)2 6.} >1-¢, (4.1)

t—oo

liminf P{x(t)< 6"} 21—, liminf P{y(t) <&’

I\

l-c. (4.2)

Lemma 4.1. Suppose Assumption 2 hold, let ( (t),y(t)) be the solution to
system (1.6) with initial value ((X(O) y(0)),r(0 )) eR?*xS, then for any
(6,,6,) e R?, there exists K(6,,0,)>0 such that

IimsupE[x9l (t)+y” (t)]g K(6,.6,). (4.3)

Proof. Define W (X,y,i)=x%+y®. By the generalized It6’s formula, we de-
duce

LW (xy.0)]= 26,8107 ()04 + L6, (0,-1)02 ()"
+elx@[a1<i>—bl<i>x—ﬂ}
]

)y
+0,y* —az(i)—bz(i)y+%} (4.4)

+x4 jy[(1+ 7t u))g1 ~-1-6y, (t,u)}l(du)

v | (72 (L))" ~1-67 (t) | 2(aw),

dropping ¢from x(t) and y(t). We notice that both coefficients of the higher
x4, y%*! are negative. From (4.4) and b (i) > 0,i =12, we derive that there

exists a positive constant K (6,,6,) such that
L[W (x, y.i) [+ W (x, y.i)

x4 {1+%91(01—1)af (i)w{ai(i)-bl(i)x-L)_)yy}
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+IY[(1+ " (t,u))g1 -1-6y, (t,u)}%(du)}
A {1+%€2(62_1)022(i)+92[_a2(i)_b2(i)Y+%}
+, [(1+7/2 (t,u)) -1- szz(tu)}l(du)}

<x91{1+ 6,(6,-1)a} (i)+6,[a (i), (i)x]
[ @ n ) -1-an(t u)]/l(du)}
+y92{1+%HZ(02—1)a§(i)+¢92[—az(i)—bz(i)y+cz(i)] (4.5)

j[(1+y2(t u)* ~1-0,, (1, u)]/l(du)}

<YK (8)=K(8,6,).

According to (4.5) and the generalized It6’s formula, we obtain
L[e‘W (x,y, |)J ='W (x,y,i)+e'L[W(x y,i)]<e'K(6.6,).

Integrating d (etW (x(t), y(t), r(t))) from 0 to 7 and taking expectations of
both sides, we obtain that

e‘E[xal (t)+y” (t)] <x*(0)+y” (0)+e'K(6,.6,),

which implies the required assertion (4.3).
To state our main result, we give some notations. Let C be vector or matrix.

By C >0 we mean all elements are positive. Let
z¥ ={C=(c;), G, <OVijeS,i= jf.

Lemma 4.2. (see Lemma 5.3 in [18]). If C =(cij ) e 2% has all of its row
sums positive, that is
S
D.c; >0 forall 1<i<S.
=1
Then detA>0.
Lemma 4.3. (see Lemma 5.3 in [18]). If C e Z%°, then the following state-
ments are equivalent:
1) Cis nonsingular M-matrix.
2) All of the principal minors of are positive; that is
Cu Cp - Gy

C. C ees C
aoze %|>0 forevery keS.

Cqa G - Oy

3) Cis semi-positive; that is, there exists x>0 in R" such that Cx>0.
The proof of the stochastic permanence is rather technical, so we prepare sev-
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eral useful lemmas.
Lemma 4.4. Assumptions 3 and 4 imply that there is a constant 0, >0 such
that for 0< 0 < 6,, the matrix

G(6)=diag( ()& (0),.& (6))-T,

is a nonsingular M-matrix, where

§(0)=08(i)-5 0% -], [t max{y; (i)} 4 (cu)

j=1,2

I {(H min (e (i })_9 _1}1(‘“)'

and f(i) is defined in Assumption 5.

Proof. The proof is rather standard and hence is omitted (see [15]).

Lemma 4.5. If e(i)>0 and there exists a constant 6 >0 such that G(6)
is a nonsingular M-matrix, then the solution (X(t), y(t)) of system (1.6) with
initial value ((X(O), y(0)),r (0)) €R?>xS has the property that

. 1 . 1
limsupE| — |<H,, limsupE| —— |[<H,.
s [x‘g(t)J 1 TSP [y”(t)J 2
Proof. Define
1 1
U=—U,=—U=U,+U,. 4.6
1 X 2 y 1 2 ( )

Applying the generalized 1t6’s formula, we have

dul:ul{‘am(t))mf<r<t>>+fvwl

1+ (u, (t))
+b1(r(t))+ ¢ (r(t))y, }dt—Gl(r(t))UldB(t)

(du)

U, U,+e(r(t)u,

71(u'r(t)) X
_IY—1+yl(u,r(t)) N (dt,du).

du, =U2{az(r(t))+o-f(r(t))+J'YM/1(du)

L+7,(u,r(t))
b,(r(1)) _c(r(t)Y,
+ U, s }dt—az(r(t))UZdB(t)

U, +e(r(t)

—jymu N (dt, du).

2
L+7,(u,r(t))
Noting that G(¢) is a nonsingular M-matrix, thank to Lemma 4.3, there ex-

ists P=(p,, P, Ps) >0 such that G(0)P >0, namely, for every ie§,

S
&(0)p =D 7;p; >0. So there exists x>0 such that

j=1

( )P, ZyupJ p, >0, Vies.
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With the help of 1t6’s formula, we have
L[e"p (1+U) | =€ {xp, (1+U)" L] p (140}, (47)
where

wp (L+U)" + L] p(1+U)" ]

DYAXEE [p {12”—(0)] “p <1+u)9]z<du>

U U
I 71 (u' I‘(t))Ul +7, (u' r(t))uz

f, y z(w)}
+[(1+U ) u? —U"} 0(0-1) p, [Gl(r(t))ul 0, (r(t))UZ}

2 U

4

2 Uj 0_ 2 UJ'
*""Yﬁ“ﬁ(lw,<u.ra>>>] P
K(U)

T 0. Based on Jensen’s inequality, we derive

A(du).

It is obvious that lim

U —>+0

S U U 92 2
T[U”J <K+ %P; - piHBl(r(t))Ul— piHBz(r(t))Uz+ D, 26
=

DOI: 10.4236/jamp.2020.811195 2646 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2020.811195

X. G. Zhang et al.

S . , 0’
SKP; +§{7’ij P - piHE}Q{Bj (r(t))}+ Po B3

+p [, [((1+l;l)u +(1+L;:)U3J9—1+€In(l+w%;/2wﬂi(du)
a(r(1)

2U,U

+p,6 TN po[ o (r(t)-o,(r(1)] #

ol {(1+m|n{yl })

=Kp +Z7/ij P; — P& (0)’

_1+49In(1+ rJn{r;{yJ (|)})}1(du)

that is
) s
T[U ]::xpi+2yijpj—pi§(9). (4.9)
i
In view of (4.7), (4.8) and (4.9), there exists 'H(B) >0 such that
clep (1+0)" | <1 (0)e, (4.10)
Integrating (4.10) from 0 to #and taking expectation of both sides, we have

E|ep (1+U (1) | SM(eKt 1)+ p, (1+U(0))’.

K

This means that

lim E[(1+U( )’ J (o) (4.11)
e Kn.l'sn p,
Base on (4.11), we obtain
. . H(6)
| E[U £)+U, (t "]sl E[l U (t }
imsupE| (U; (t)+U, (1))" | < limsupE| (1+U (1)) cminp,
le
From (4.6), we have
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fimsup E(xﬁlt)J MO

to> ( xmin p,
= (4.12)
2
limsup E 01 < H(9) =H,,
to> y’(t) min p,

which is the required assertion.
Theorem 4.1. Under assumptions 2 and 4, if B >0, then system (1.6) is sto-
chastically permanent.

Proof. By Lemma 4.4 and Lemma 4.5, we know
limsup E[x(t)fg] <H, (0),limsup E[y(t)fq <H,(6).
t—o0 t—oo

Based on Chebyshev’s inequality, for any ¢ e(0,1), there exists

5. = {ﬁ}o >0 such that
) <) =5 o (0 e 2 |

IlmsupP(|x t)|<5) SH (0) <,

t—o

So

Proof of y(t) using the same method, namely,

liminf P(|x(t)2 &.) 21~ liminf P(|y(t)| 2 6.) 21-c.

Finally, (4.2) is obtained by combining lemma 4.1 and Chebyshev inequality.
Therefore, the system (1.6) is stochastically permanent.

In the same spirit as in the proof of Theorem 4.1, we yield the result of the
subsystem (1.8) as follows.

Corollary 4.1. Under assumption 3, if f(i)>0, then the subsystem (8) is
stochastically permanent.

Proof. Note that for some ieS, B(i)>0. We can choose 6, >0 so small
thatfor 0<0<§,,

&(0)= Hﬂ(i)—%ﬁzaz —ijln(1+ r}fg{y}(i)})z(du)
-1, {(u min {7, i )})_H —1}1(du)>0

So, G(0) is a positive constant and is also a nonsingular M-matrix. Ac-
cording to Lemma 4.4 and Theorem 4.1, subsystem (1.8) is stochastically per-

manent.

5. Stationary Distribution

As far as we know, the existence of the ergodic stationary distribution of a sto-

chastic competition model with high order stochastic perturbations has not been
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obtained theoretically. Therefore, this section mainly studies the existence and
uniqueness of the stationary distribution of system (1.6) without Lévy jumps,

namely system (5.1).

+0oy(r(t))x(t)dB(t), (5.1)
dy (t) = y(t){{_az (r(0)-ba(r() y(0)+ (r(t))X(t)(t)}dt}
+0,(r(t))y(t)dB(t).

Next, from the theorem in [30] we have the following lemma, we will use this

lemma to prove ergodic stationary distribution.
Lemma 5.1. If the following conditions are satisfied:
1) 7; >0 forany i#j;
2) foreach keS, D(xk) issymmetric and satisfies

Al <¢™D(x k)¢ < Ag[ forall ¢ e R,

with some constant A e (0,1] forall xeR";

3) there exists a bounded open subset D of R" with a regular boundary satis-
fying that, for each k €S there exists a nonnegative function V (- k):D° - R
such that V (-,k) is twice continuously differential and that for some ¢ >0,

LV (X, k) < -, (X, k) e D° xS.
then (X(t), y(t), r(t)) of system (5.1) is positive recurrent and ergodic. That is

to say, there exsist a unique stationary distribution x(-,-) such that for any

Borel measurable function f(-):R"xS — R satisfying
ol (6K 22 (x k) dx < o0,
keS

we have
P(!L’T.!% 1 (x().r(5)) = X, f (x,k),u(x,k)dszl.

Theorem 5.1. Under z¢, >0, then for any given initial value
((X(O), y(0)), r(O)) e R? xS, system (5.1) has a unique ergodic stationary dis-
tribution pu(-) on RZxS.
Proof. Definea C’-function V:R?>xS >R, by
V(% Yy, 1) =V, (X y,i)+V, (X, y,i),

where
; 8, .9 . 1 1
Vi(xy,i)=x"+y ,0<19<1;V2(x,y,|):X_9+7.
Then
LV, (X, y.1)
) . c(i)y 1 )
=9 4 — __ANJr L= 9-1 2
<la)-n ) x+e(i)y+2( Jor (1)
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o' . 0)-b )y 200 L0002
+JZ;7JX9 +J§}/ly9
“n ()t eox ) SO Lot )
sy ooy a0 20 do-et )
+ éyijxg + ;7“ y’ (5.2)

S—bl(i),9x9+1+x9 {gai(i)“Lg(‘g—l)Uf(i)+27i,}

j#i

b, (i) 9y +y* {—Saz (i)+9c, (i)—g(&l—l)az2 (i)+27"},

and
LV, (X, y,i)
=-0X 0(6\1(0 chil()i;/y (9;1)612(0]4.)(1 Ogbl(l)_,_jzr:ij 9
oy a1 S e oy i Sy

1
+0y 9{_((/520)——02 (|)j+b2(|)y+52yj}
j=1
(_)’ (5.3)
0 1 c (i
=0x "{{mﬁl—gaf(|)+5§7U}+W}+9bl(l)xl ¢
+0y 0[—{@}2 0;(I)+%i}/ijJ:|+9b2(l)yl 0
j=1
where
. 1
d(i)=a, (i) =500 (1).4, (1) = -8 (1) =502 (i)
Choose a constant 0< @ <6, such thatforany 0<0<8,
) 0 ,,., 1 .
@ = ——of (i)+=D 7, >0,ieS1=12
2 04
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Then

LV, (x,y,i) < -0x"’ [wl +wJ +0by (i) X7 =0y "a, + 0b, (i) y"°.

e(i)

Combining (5.2) and (5.3), we obtain

j#i

LV (x,y,i) < b () 9x" +x° {Sai(i)+§(l9—l)af(i)+27”}

—HX'”[wﬁ%}ew—b2<i>9y9+1

+y? {—Saz(i)+302(i)—g(g—l)azz(i)+;7ij}

-0y ’m, +0b,(i)y’
=h(x)+g(y),

where

(y)—> -, asx—0",
g(y)—>-», asy—>0",
“(y)—> -, asx — +o,
g(y) > oo, asy— +wx,

where
e =supes, (), 9% =supi, ().

To sum up, when X —>0" or y—>0", x—>0" or X—>+w or y—+w,

we can derive LV — —oo. Consequently, take k >0 sufficiently small and let

K = {g,l} x{g,l} , one can see that
S S

LV (%, y,i)<-1,(x,y,i)e K°xS.

That is to say, the condition (3) in Lemma 5.1 is satisfied. On the other hand,
Assumption 3 indicates the condition (1) that satisfies Lemma 5.1, and the diffu-
sion matrix D(X, Y, i) = diag{O'l2 (i)X2 , 0'22 (I) yz} of system (5.1) is positive de-
finite, which implies that condition (2) in Lemma 5.1 holds. According to lemma
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5.1, system (5.1) is ergodic and has a unique stationary distribution. The proof is

completed.

6. Conclusions and Example

The stochastic persistence and extinction of a stochastic ratio-dependent preda-
tor-prey system with Markovian switching and Lévy noise are studied. Our main
results are as follows: Theorem 3.1 gives sufficient conditions on extinction and
non-persistent in mean of each population. Theorem 3.3 gives sufficient condi-
tions for each population to be weakly persistent. Further, Corollaries 3.1 tells us
that for some ieS, if B (i)>c(i), system (1.8) is weakly persistent, and if
B,(i)<0,B,(i) <0, system (1.8) is extinct. Theorem 4.1 gives sufficient condi-
tion for the stochastic permanence of (1.6). Theorem 4.1 and Corollaries 4.1 tell
us that if some subsystems are stochastically persistent and others are extinctive,
then as the result of the Markovian switch, the system (1.6) is still stochastically
persistent. Finally, when there is no Lévy jump, a sufficient condition for the ex-
istence of ergodic stationary distribution of system (5.1) is established under
certain conditions.

Next, two examples are introduced to support our theoretical analysis results.

Example 6.1. First of all, we will discuss the effect of Markov switches on
population dynamics. Consider (1.8) with the Markov chain r(t) taking value
in the state space value S= {l, 2} , be deemed to have been the result of the
switching between

( ) (6.1)
) ) c, (1)x(t
dy(t)=y(t") { 3, (1)-b, (1) y(t )+x(t)+e . y(t)]dt
+, (DB (t)+ [, 7 ()N (dt,du)},
and
ax(t) = x(t ) _a1(2)—b1(2)x(t‘)— (2)y(t) }dt
I x(t’)+e(2 y( t)
+al(2)dB(t)+jyy1(u,2)N~(dt,du)},
_ i (6.2)
dy(t)zy(t‘) _ a,(2) b2(2)y(t )+X(tC2)Erze XZ()ty)(t)]dt
+o-2(2)dB(t)+_[Yh(u,2)N~(dt,du)},
where A(Y)=1, the initial value x(0)=4,y(0)=2 and the coefficients
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4,e(1)=3,0,(1)=2,7,(Lu) =1 6.3)
ai(z)zs’bl(z): ,01(2):4,8(2) 20—1( ) 17’1(2 u) 1 .
8,(2)=05,b,(2)=3.¢,(2) =5.6(2) =3.0,(2) =L 7, (2.u) =
Case 1. Let the generator of Markov chain r(t) be
S
r= .
1 -
Solving (2.3) yields the unique stationary distribution
14
¢=(¢1,¢2):(g,§}
Based on (6.3), we compute
B,(1)=-1.4319<0, B, (1)=-1.3069 < 0, B(1) =-1.4319 <0,
B,(2)=4.1931>0, B, (2)=3.6931>0, B(2) =3.6931> 0, (6.4)

B =2.6681> 0.

From (6.4) and Corollary 4.2, it is easy to find that the subsystem (6.1) is ex-
tinct, but subsystem (6.2) is persistent. According to Theorem 4.1, system (1.6) is
stochastically permanent. This example shows that although some subsystems
are impermanent, the overall behavior of system (1.6) is stochastically perma-
nent as a result of Markovian switching. Thus, Markovian switching may con-
tribute to permanence to some extent. The numerical result is shown in Figure
1(a), Figure 1(b) and Figure 1(c).

Case2. Let T'= 11 and Q= ((Z) . ) = L We obtain
. = = , =|=,—1. i
3 -3 v 4 4

B, =-0.02565 < 0,
B, =—0.0569 < 0.

According to Theorem 4.1, system (1.6) is extinctive (see Figure 1(d)).
Example 6.2. Next, we explain the impacts of Lévy jumps on population dy-
namics. Consider (1.6) with Markov chain r(t) taking value in state space

S={1,2}. Let F:(_zl _:sz and q):(%,%):[%,%), A(Y)=1, and the

coefficients
a(1)=05b(1)=1c(1)=Le(l)=2,0,(1)=07,
8(2)=031,(2) =16 (2)=Le(2)=2.0,(2) =07
az(l):O.l,bz(l):ZC (1)=2e(1)=3,0,(1)=05,
=3,c (2)—2,e(2)—3,0'2(2)=0.5.

Case 1. Under the condition of without Lévy jumps effect, a simple computa-

tion yields
Bl( ) =0.2550, B, (l) =1.7750,
B, (2) =0.0550, B, (2) =1.6250,
B, =0.188333> 0,
B, =1.71167 > 0.
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Figure 1. Time series of system (6) for y,(Lu)=y,(Lu)=7(2u)=7,(2,u)=1, Y=(0,x), A(Y)=1, step size At=0.02, the
initial data x(0)=4, y(0)=2. (a) is with a(1)=2, bl(l)z s ¢()=c,(1)=4, e()=2, 0'1(1)=2.5 » 3,(1)=3,

b,(1)=2, e(1)=3. (b) is with a(2)=5, b(2)=1, ¢, (2)=4, e(2)=2, a,(2)=05, b,(2)=3, c,(2)=5, e(2)=
0,(2)=0,(2)=1. ((c), (d)) The parameters are the same as in (a) and (b). These two sets of figures suggest that populations may

switch between extinction and persistence as a result of the Markovian switch.

Therefore, by Theoerm 4.1, system (6) is stochastically permanent (see Figure
2(a)).

Case2. When y,(Lu)=-0.4, »(2,u)=-0.6, 7,(Lu)=-05,
7,(2,u) =-0.3, that is, there is jump noise. By calculation

B, (1) = -1.0613, B, (1) = 0.5819,

B, (2)=-1.1381, B, (2) = ~0.8608,

B, =-0.9243<0, B, = —0.0300667 <0,
@B, =—0.243233 <0, B, = ~1.04567 <.
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Figure 2. Time series of system (1.6) for a (1)=05, a(2)=03, b(1)=b(2)=1, ¢ (1)=c(2)=1, e(1)=e(2)=2,
0,(1)=0,(2)=0.7, a,(1)=0.1, a,(2)=0.25, b,(2)=3, b,(1)=2, c,(1)=c,(2)=2, e(l)=e(2)=3, o,(1)=0,(2)=

step size At=0.02, the initial data x(0)=4, y(0)=2. (a) is with y,(Lu)=p(2,u)=y,(Lu)=7,(2,u)=0. (b) is with
7n(Lu)=-04, »(2u)=-0.6, »,(Lu)=-05, y2(2,u):—0.3. These two sets of figures show that Lévy jumps suppression

population of persistent.

By Theoerm 3.1, system (1.6) is extinctive. This example suggests that Lévy
jumps may suppress the permanence (see Figure 2(b)). The results suggest that

Lévy jumps may suppress for the persistence of species.
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