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Abstract 

The objective of this article is to make a contribution relating to the model-
ing, control, simulation and stabilization of a complex system, with six de-
grees of freedom of a particular drone which presents many advantages and 
challenges. On the technological, military, political and other levels with an 
enormous and beneficial social contribution, it is a quadrotor which is a non-
linear, strongly coupled and unstable system. Such a structure is difficult to 
master, because the control is multivariable in the sense that six degrees of 
freedom are to be controlled simultaneously and operating in an environment 
subject to disturbances. Two commands, in particular Backstepping and PID, 
will be applied to obtain the stabilization of the quadcopter at the desired 
values, in attitude and in altitude. This article presents the comparative re-
sults of the performance of the quadcopter under the two controls. The effect 
of the parameters of each command on the response time of the system is 
elucidated under the Matlab/Simulink environment. For a simulation time of 
up to 10 seconds minimum with a less good response time of almost 2 
seconds for the PID control, these results prove the robustness of the Back-
stepping command. 
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1. Introduction 

Unmanned Aerial Vehicle (UAV) is commonly known as drones, constituting 
the flagship of the aerospace industry. Its applications are as visible, useful and 
remarkable in military projects, as regards surveillance, intelligence or combat 
missions, remote sensing, destruction of targets and any other task that would 
put a crew in danger. Drones have also proven to have a very high potential for 
civilian applications, such as surveillance and observation of risk areas, infra-
structure management, customs, the environment, field mapping, scientific ex-
periments, intervention in hostile sites etc. [1]. 

A quadrotor is a miniature rotary-wing drone with four rotors. It has been the 
subject of several research projects focusing on its ease of implementation, ver-
tical take-off and landing, and its efficiency in hovering. One of its major cha-
racteristics is stabilization in attitude and altitude. This stabilization allows the 
quadcopter to be steered to the desired position (x, y, z) or the desired angle (ϕ, 
θ, ψ) [2]. The literature is full of several mathematical models describing the 
translational and rotational dynamics of a quadrotor, with six degrees of free-
dom, as well as the control algorithms. Among defined, the linear controls PID 
[1] [2] [3], LQR, H∞ [4] applied to a linearized model (around an operating 
point using the Jacobian method). The nonlinear controls take into account the 
important nonlinearities of the vehicle dynamics. We can cite the hierarchical 
control [5], the sliding mode control [6], the Backstepping algorithm [7]-[12]. 
Other commands exploit visual data extracted from acquired images; we will 
speak of visual serving or command by vision [13]. Some have also been inter-
ested in author’s flight commands based on neural networks and fuzzy logic 
[13]. In this article, we will focus on two approaches to controlling a quadcopter. 
This is the Backstepping controller first, and the PID controller second. Each of 
the commands will be simulated in the Matlab/Simulink environment. The re-
sults will be compared by analyzing their performances in terms of system re-
sponse time, stabilization, convergence towards the desired setpoints and their 
behavior in the face of disturbances. The article is divided into three parts: the 
first describes the dynamic model of the quadrotor according to the New-
ton-Euler formalism. The proposed control strategies will find their applications 
in the second part. In the third part, the discussion of the results and the analysis 
of the performance of each control algorithm will be given. 

2. Dynamic Model 

 The flight dynamics of a quadrotor are complex and strongly coupled. To 
develop a dynamic model close to the real physical model, taking into ac-
count the effects of the environment, we make these assumptions: 

 The structure of the quadrotor is assumed to be rigid and symmetrical, which 
implies that the inertia matrix will be assumed to be diagonal. 

 The propellers are supposed to be rigid in order to be able to neglect the ef-
fect of their deformation during rotation. 
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 The center of mass and the origin of the coordinate system linked to the 
structure of the quadrotor coincide. 

 The lift and drag forces are proportional to the squares of the rotational 
speed of the rotors, which is a very close approximation of aerodynamic be-
havior. 

1) Definition of benchmarks (Figure 1) 
 The movement of a quadrotor is described by two reference marks: 
 The Earth Inertial frame noted E: 

( );, ;e e eE O x y z=  
 The mobile mark (in English Body frame) noted B: 

( );, ;b b bB G x y z=  
2) Euler angles 
Euler angles are angles introduced by Leonhard Euler to describe the orienta-

tion of a solid. We have three: the roll angle (
2 2

φ−π π
< < ), pitch angle (

2 2
θ−π π

< < ) 
and the yaw angle ( ψ−π < < π ). A rotation is obtained by varying one of Euler’s 
three angles and a sequence of three rotations is sufficient to describe any trans-
formation based on Euler’s theorem (Figure 2). 

3) Kinematic parameters 
They include four vectors of three elements describing the state of the system. 

The first two define the position and speed of the center of gravity of the qua-
drotor and the other two relate to its orientation and angular speed. 

( ) [ ]Tr t xyz=  is the position of the center of gravity of the quadrirotor with 
respect to the reference {E} and defined in the reference {E}. 
 

 
Figure 1. Repères. 

 

 

Figure 2. Angles d’Euler. 
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( ) [ ]Ttη φθψ=  is the vector of Euler angles representing the angular position 
of the frame {B} linked to the quadrirotor with respect to the frame {E} and de-
fined in the frame {E}. 

( ) [ ] [ ]T T

E Bt xyz uvwυ = =   is the speed of the center of gravity compared to the 
reference vector E and described in the reference {B}. Also called linear speed.
( ) [ ] TT

E B
t pqr φθψ Ω = =  

 

  is the instantaneous speed vector of rotation between 
the reference marks {E} and {B} and described in the reference {B}. Also called 
angular speed of rotation. 

4) Kinetic parameters 
They establish the link between the forces and the variation of the kinematic 

parameters. They are constant in our study. We can cite: the mass m of the qua-
drotor, the center of gravity G, the matrix of inertia J of the point G of the mov-
ing frame 

0 0

0 0

0 0

xx

yy

zz

J

J J

J

 
 

=  
 
 

                        (1) 

5) Rotation matrix 
The rotation matrix is an orthogonal matrix and in fact it belongs to the sub-

space of orthogonal matrices, called special orthogonal group, denoted by SO 
(3), defined by: 

( ){ }3 3 T
3 3/ et det 1I×
×∈ = =R R R R  

In the case where the mobile frame {B} linked to the quadrirotor rotates in in-
ertial relation {E} with an angular speed Ω, the rotation matrix varies; this results 
in the kinematic height matrix: ( )R Rsk= Ω  

sk(Ω) is the antisymmetric tensor associated with the angular speed Ω ∈ R3. 
The rotation matrix defines three angles of Euler rotation around the axes re-
spectively described as: 

( )x φR ; ( )y θR ; ( )z ψR . The product of these three elementary matrices of 
rotation forms the matrix of rotation R. 

( )
1 0 0
0 cos sin
0 sin cos

x φ φ φ
φ φ

 
 = − 
  

R  

( )
cos 0 sin

0 1 0
sin 0 cos

y

θ θ
θ

θ θ

 
 =  
 − 

R  

( )
cos sin 0
sin cos 0

0 0 1
z

ψ ψ
ψ ψ ψ

− 
 =  
  

R  

( ) ( ) ( )x y zφ θ ψ= × ×R R R R                    (2) 
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1 2c c c s s c s c s c s s
c s s s s c c c s s s c

s s c c c

θ ψ ψ φ θ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ φ θ φ θ

 − +
 

= + − 
 − 

R  

6) Aerodynamic forces 
A moving quadrirotor is under the action of four (4) main forces: the weight 

P, the total thrust U1, the drag in the propellers Tr (propeller) and the drag along 
the axes Tr(ax).  

Note: 
0
0

ezP mg
mg

 
 = =  
  

 

4
2

1
1

i
i

U bω
=

= ∑  

( ) 2helice irT dω=  

( )axe
ftx ftx

r ft fty fty

ftz ftz

K x K x
T K V K y K y

K z K z

    
    = = =    
        

 

 

 

 

Avec:  
m is the mass of the quadrirotor in kg; g is the gravitational acceleration in 

m/s2; [ ]T0 0 1ez =  is a unit vector in the terrestrial inertial frame {E}. 
b is the coefficient of lift; ωi the speed of rotation of a motor number i (i rang-

ing from 1 to 4). 
d is the coefficient of proportionality of drag. 

ftxK  Translation drag coefficient along the x axis. 

ftyK  Translation drag coefficient along the y axis. 

ftzK  Translation drag coefficient along the z axis. 
7) Moments due to thrust forces of rotors along the axes 

 We have two moments due to the pushing force: 
 Moment due to thrust forces on the axis x: 

( )2 2
2 4 2U b ω ω= −                         (3) 

2U  is called roll control. 
Moment due to thrust forces on the axis: 

( )2 2
3 3 1U b ω ω= −                         (4) 

3U  is called pitch control. 
8) Moments due to drag forces 

 They left as follows: 
 The moment due to the drag forces in the propellers along the axis z: 

( )2 2 2 2
4 1 2 3 4U d ω ω ω ω= − + −                     (5) 

4U  is called lace command. 

 

 

1c: cosines. 
2s: sinus. 
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By grouping together with the expression of the total thrust 1U  and Equa-
tions (3), (4) and (5), 

( )
( )
( )
( )

2 2 2 2
1 1 2 3 4

2 2
2 4 2

2 2
3 3 1

2 2 2 2
4 1 2 3 4

U b

U b

U b

U d

ω ω ω ω

ω ω

ω ω

ω ω ω ω

 = + + +

 = −


= −


= − + −





                    (6) 

 The moment resulting from aerodynamic friction: 
2

2 2

2

ax

a ay

az

f

a f f

f

K

M K K

K

φ

θ

ψ

 
 

= Ω =  
 
  







                      (7) 

axfK  coefficient of aerodynamic friction along the axis x. 

ayfK  coefficient of aerodynamic friction along the axis y. 

azfK  coefficient of aerodynamic friction along the axis z. 
9) Gyroscopic effects 
The gyroscopic effect is defined as the difficulty of modifying the position or 

the orientation of the plane of rotation of a rotating mass. Each rotor can thus 
rotate around its own vertical axis with a speed of rotation ωi. Even the vertical 
axis moves as the vehicle rotates. This action produces two additional moments 
among which, on one: the gyroscopic moment of the helices Mgh and the gyros-
copic moment due to the movements of the quadrirotor Mgm. Note: 

( )
4 T1

1
0 0 1 i

gh r r i
i

M J ω+

=

 = Ω ∧ − ∑  

0
0

0

r r

gh r r r

r

J
M J J

φ θ
θ φ
ψ

   Ω 
    = ∧ = − Ω    
    Ω    

 

 



                 (8) 

or ∧ : vector product operator; rJ  is the inertia of the rotors and  

2 4 1 3r ω ω ω ωΩ = + − −  

gmM J= Ω∧ Ω  

( )
( )
( )

zz yy

gm xx zz

yy xx

J J

M J J

J J

θψ

φψ

φθ

 −
 

= − 
 

−  









 

                     (9) 

10) Translational dynamics 
The equations governing the translational motion of a quadrotor are:  

[ ] ( )10 0 1 axer

r
mr U T P

υ=
 = × × − −



 R
               (10) 

11) Rotational dynamics 
The equations governing the rotational motion of a quadrotor are:  

( )
gm a gh f

sk

J M M M M

 = Ω


Ω = − − − +





R R
                 (11) 
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12) Complete dynamic model (12) 
From Equations (10) and (11) we obtain the complete dynamic model: 

1

1

1

2
2

2
3

2
4

1

1

cos cos

1

1

1

ax

ax

ax

ftx
x

fty
y

ftz

fyy zz r
r

xx xx xx xx

fzz xx r
r

yy yy yy yy

fxx yy

zz zz zz

K
x x U U

m m
K

y y U U
m m

K
z z U g

m m
KJ J J U

J J J J
KJ J J U

J J J J

KJ J
U

J J J

φ θ

φ θψ θ φ

θ φψ φ θ

ψ φθ ψ


= − +




= − +



= − + −

 −
= − Ω − +

−
= + Ω − +

−
= − +

 

 

 

   



   



 

 














 

and: 

cos sin cos sin sin
cos sin sin sin cos

x

y

U
U

φ θ ψ φ ψ
φ θ ψ φ ψ

= +
 = −

               (13) 

13) System state representation 
For a physical system there are a multitude of state representations, in our 

case we choose the state vector as follows: 
T T T TX r υ η = Ω                     (14) 

Each of the 4 vectors of relation (14) has 3 components. In total, our state 
vector contains (4 × 3) = 12 elements and the control vector U has 4 elements 
such that: 

[ ]

T

T
1 2 3 4

X x x y y z z

U U U U U

φ φ θ θ ψ ψ  =  

 =

 

   

 

We get the state representation in the form: 

( ),X f X U=  

1

2 1

3

4 3

5

6 5

7

8 7

9

10 9

11

12 11

x

x x
x

x x
x
x x
x x
x x x
x y
x x y
x z
x x z

φ

φ
θ

θ
ψ

ψ

=


= =
 =

 = =


=
 = =


=
 = =
 =
 = =
 =


= =











 

 

 

                        (15) 
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We ask: 

1 2 3

1 4 5

6 2 7

8 3 9

10 11

, ,

1 , ,

1, ,

1, ,

,

ax

ax

ax

fyy zz r

xx xx xx

fzz xx

xx yy yy

xx yyr

yy yy zz

f ftx

zz zz

fty ftz

KJ J Ja a a
J J J

KJ J
b a a

J J J
J JJa b a

J J J
K K

a b a
J J m
K K

a a
m m

−
= = − = −


 −

= = = −

 − = = =


 = − = = −


 = − = −


              (16) 

Taking into account relations (15) and (16), on Equation (17): 

1 2
2

2 1 4 6 2 2 3 4 1 2

3 4
2

4 4 2 6 5 4 6 2 2 3

5 6
2

6 7 2 4 8 6 3 4

7 8

8 9 8 1

9 10

10 10 10 1

11 12

12 11 12 1

1

1

cos cos

r

r

x

y

x x
x a x x a x a x bU
x x
x a x x a x a x b U
x x
x a x x a x b U
x x

x a x U U
m

x x

x a x U U
m

x x

x a x U g
m
φ θ

=
 = + + Ω +
 =


= + + Ω +
 =
 = + +


=

 = +

 =

 = +


=


= + −


























 

We can derive a simplified state representation of our state system as follows: 

( )

2
1 2 3 1 2

2
4 5 6 2 3

2
7 8 3 4

9 1

10 1

11 1

, 1

1

cos cos

r

r

x

y

a a a bU

a a a b U

a a b U
x

X f X U
xa U U

m
y

ya U U
m
z

za U g
m

φ
θψ φ θ

θ
φψ θ φ

ψ
φθ ψ

φ θ

 
 

+ + Ω + 
 
 

+ + Ω + 
 
 

+ + 
 
 = =  
 +
 
 
 
 + 
 
 
 

+ − 
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3. Return Control 

The Backstepping control algorithm is synthesized to force the system to follow 
a desired trajectory. 

The Backstepping command controls orientations (ϕ, θ, ψ) and positions (x, 
y, z). This design is based on the derived state vector (17) and relying on Lyapu-
nov’s theory (particularly Lyapunov’s second method). 

We first consider the command input for the angular rotations subsystem, 
then the position command input will be derived. On will deal for the subsystem 
of angular rotations: the roll controls U2, pitch U3 and yaw U4; with regard to the 
translations subsystem, we will highlight the commands for position in x Ux, po-
sition in y Uy and position z U1. 

1 2
2

2 1 4 6 2 2 3 4 1 2r

x x

x a x x a x a x bU

=


= + + Ω +





 

The synthesis of the roll command U2 is done in two stages: 
Step 1: 
We take the first equation: 1 2x x=  
We define the error e1 between φ  et dφ  by: 

1 1 1d de x xφ φ= − = −  

whose dynamics can be derived as follows: 

1 1 1 2 1d de x x x x= − = −     

This definition explicitly indicates our command objective: the error e1 must 
asymptotically converge towards zero. 

We choose the first candidate Lyapunov function of the following form: 

( ) 2
11

1
2

V e e=  

The calculation of the derivative of the Lyapunov function along the trajectory 
is solved as follows: 

( ) ( )1 1 1 1 2 1dV e e e e x x= = −

   

To ensure stability, it is necessary that ( )1 0V e ≤ ; for that we take as a virtual 
command 2x  avec 2 1 1 1dx ex k= −   avec 1 0k >  

This choice makes it possible to obtain: 

( ) ( )1 1 1 1 1
2
1V e e k e k e= − = −  

Step 2: As the virtual control cannot instantly take its desired value, we seek in 
what follows to stabilize the error between the virtual control and the stabilizing 
function. The second equation is defined by: 

2
22 1 4 6 2 3 4 1 2rx a x x a x a x bU= + + Ω +  

The new error variable between the virtual control and the stabilizing function 
is given by: 

2 2 2e x x= −   
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2 2 1 1 1de x x k e= − +  

By linear combination, on a:  

1 2 1 1e e k e= −  

And by derivation: 

( )2 2 1 1 2 1 1de x x k e k e= − + −    

The new Lyapunov function of the augmented system is ready as follows: 

( ) 2
21

2
12

1 1,
2 2

V e e e e+=  

Its derivative is given by: 

( ) ( ) ( )( )1 2 1 2 1 1 2 2 1 1 2 1 1, dV e e e e k e e x x k e k e= − + − + −

   

The choice of the control law must lead to a negative derivative of the Lyapu-
nov function ( )1 2, 0V e e ≤  as following: 

( )1 2 1
2 2
1 22,V e e k e k e= − −  avec ( )1 2, 0k k >  

The desirable dynamic for error at this stage is defined as: 

2 2 2 1e k e e= − −  

We find: 

( )2 2 1 2 1 1 2 1 1dk e e x x k e k e− − = − + −                  (18) 

By replacing with the expressions of (17) in (18): 

( ) 2
2 1 1 2 2 1 2 1 1 1 4 6 2 2 3 4

1

1
d rU x e k e k e k e a x x a x a x

b
 = − − − − − − − Ω   

3 4 1, , , ,x yU U U U U  are calculated in the same way.  

( )3 3 3 4 4 3 4 3 3 4 4 2 5
2
2 6 2

2

1
d rU x e k e k e k e a x x a x a x

b
 = − − − − − − − Ω   

( )4 5 5 6 6 5 6 5 5 7 2 4 8
3

2
6

1
dU x e k e k e k e a x x a x

b
 = − − − − − −   

( )1 11 11 12 12 11 12 11 11 11 12
1 3cos cos d
mU x g e k e k e k e a x

x x
= + − − − − −    

( )7 7 8 8 7 8 7 7 9 8
1

x d
mU x e k e k e k e a x
U

 = − − − − −   

( )9 9 10 10 9 10 9 9 10 10
1

y d
mU x e k e k e k e a x
U

 = − − − − −   

4. Simulation Results 

The six (6) control laws acquired in section II will be implemented in the Mat-
lab/Simulink environment with the parameters of Table 1. Through these com-
mands, it is a question of orienting and stabilizing the quadcopter to the desired 
values: [ ] [ ]0.2 0.2 0.2d d dφ θ ψ =  (en radian)  
[ ] [ ]20 20 20d d dx y z =  (en mètre).  
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Table 1. Physical parameters. 

Symbole The description Valeurs et unités 

m Mass of the quadrotor 0.486 kg 

l Distance between engine and center of gravity 0.25 m (mètre) 

Jxx Moment of inertia along the x axis 3.8278 × 10−3 kg∙m2 

Jyy Moment of inertia along the y axis 3.8278 × 10−3 kg∙m2 

Jzz Moment of inertia along the z axis 7.6566 × 10−3 kg∙m2 

b Thrust coefficient 2.9842 × 10−5 N/rad/s 

d Coefficient of drag 3.2320 × 10−6 N/rad/s 

Jr Rotor inertia 2.8385 × 10−5 kg∙m2 

g Gravitational acceleration 9.806 m/s2 

axfK  Aerodynamic coefficient of friction ax x 5.5670 × 10−4 N∙m/rad/s2 

ayfK  Coefficient of aerodynamic friction ax y 5.5670 × 10−4 N∙m/rad/s2 

azfK  Aerodynamic coefficient of friction ax z 6.3540 × 10−4 N∙m/rad/s2 

Kftx Coefficient of translational drag forces ax x 5.5670 × 10−4 N∙m/rad/s2 

Kfty Coefficient of translational drag forces ax y 5.5670 × 10−4 N∙m/rad/s2 

Kftz Coefficient of translational drag forces ax z 6.3540 × 10−4 N∙m/rad/s2 

 
The results of the simulations are shown in Figures 3-5. They are distributed 

as follows: 
Figure 4 presents the simulations of the Backstepping command applied to 

roll, pitch, yaw and the three positions (x, y, z), without disturbances. It can be 
seen that the Backstepping control correctly orientates and stabilizes the quadrirotor 
at the desired values. Ease of regaining gains favoring the stabilization of the 
quadrirotor. 

Figure 5 shows the influence of disturbances on the Backstepping command. 
Using the Beaufort scale, we applied wind frequencies (frequency = 0.049 Hz) 
corresponding to winds of at least 22 m/s to our dynamics. There is a slight 
phase shift between the measurement and the desired destination for roll, pitch 
and yaw: the quadrirotor tends asymptotically towards the reference. On the 
other hand, despite this significant disturbance, the air vehicle awaits its altitude 
z and the x and y positions with stabilization at the desired value. 

To validate the robustness of the backstepping control to a quadrirotor with 
six (6) degrees of freedom and to consolidate our work, we compared this con-
trol to the PID control. The PID controller was designed in the Matlab/Simulink en-
vironment and the results can be seen in Figure 5. From Figure 6, the response 
time of the system to the PID control is quite long compared to the Backstepping 
control, the difficulty of finding adequate gains allowing the quadrotor to reach 
the desired value and the stabilizer. This command is satisfactory at altitude. 
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Figure 3. Simulink model of Backstepping control and Quadrotor dynamics. 
 

 

Figure 4. Backstepping control of roll, pitch, yaw, x, y, z positions without disturbances. 
 

 

Figure 5. Backstepping control of roll, pitch, yaw, x, y, z positions with disturbances. 
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Figure 6. PID control of roll, pitch, yaw, x, y, z positions. 

5. Conclusion 

In this article, the stabilization in attitude and altitude of a quadrirotor by the 
Backstepping command has been successfully demonstrated. First, we presented 
the dynamic model of the quadcopter with six degrees of freedom, taking into 
account all the aerodynamic and gyroscopic effects. In the second part, we de-
veloped the Backstepping control strategy based on the Lyapunov function in 
order to guarantee the stability of the system. Then, this control algorithm was 
applied to the quadrirotor. Finally, the simulation results come from a high level 
of reliability, a very short and precise response time, stabilization with or without 
turbulence. All these advantages prove the robustness of the Backstepping com-
mand. 
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