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Abstract

The non-linear Fokker-Planck equation arises in describing the evolution of
stochastic system, which is a variant of the Boltzmann equation modeling the
evolution of the random system with Brownian motion, where the collision
term is replaced by a drift-diffusion operator. This model conserves mass,
momentum and energy; the dissipation is much weaker than that in a simpli-
fied model we considered before which conserved only mass, thus more dif-
ficult to analyze. The macro-micro decomposition of the solution around the
local Maxwellian introduced by T.-P. Liu, T. Yang and S.-H. Yu for
Boltzmann equation is used, to reformulate the model into a fluid-type sys-
tem incorporate viscosity and heat diffusion terms, coupled with an equation
of the microscopic part. The viscosity and heat diffusion terms can give dis-
sipative mechanism for the analysis of the model.
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1. Introduction

The non-linear Fokker-Planck equations arise in describing the evolution of

stochastic system such as the erratic motions of small particles immersed in flu-

ids, fluctuations of the intensity of laser light, velocity distributions of fluid par-

ticles in turbulent flows, or the stochastic behavior of exchange rates. This model

has been widely applied in physics, biology, ecology, economy and social science,

see [1]-[6] and references therein. In this paper, we study the fully non-linear
Fokker-Planck equation [7]

o f+v-V, f=pV [TV, f+(v-u)f], (1.1)
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where the unknown function f = f(t,x,v) is the distribution of particles at
time ¢ position x and velocity v for (t,x,v)eR, xR*xR®, ae[0,1] is the
friction parameter, p,U,T are the mass density, the mean velocity and the local

temperature, which are coupled to by

p(tx)= [ F(txv)dv, pu(t,x)= [ vf (t,xv)dv,

i (12)
3pT (t,X) = J.]RS v—ul" f(t,x,v)dv.

As a variant of the Boltzmann equation modeling the evolution of the random
system with Brownian motion, the collision term is replaced by a drift-diffusion
operator. Note that this famous model conserves mass, momentum and energy
[8] [9], and the right hand side of the equation is strongly non-linear, more pre-
cisely, the dissipation is much weaker than that in a simplified model considered
in [10], thus more difficult to analyze.

Some related models. When relativistic/quantum effect is included, the relati-
vistic/quantum Fokker-Planck equations are considered in [11] [12] [13] [14]
and references therein, and the famous Fokker-Planck-Boltzmann considered
both Boltzmann collision operator and Fokker-Planck operator, see [15] [16]
[17] and references therein. We mention also that the Fokker-Planck equation
can be coupled with other external field, thus Vlasov-type Fokker-Planck equa-
tions with an additional force term are considered. For example, the Vla-
sov-Poisson-Fokker-Planck model incorporates the self-consistent effects de-
scribed by mean-field interactions, when the interaction is Coulomb [18] [19].
Moreover, when the Vlasov-Fokker-Planck equation is coupled with Maxwell
equations, Euler equations or Navier-Stokes equations, respectively, we have
Vlasov-Maxwell-Fokker-Planck model (see [20] and references therein), Vla-
sov-Euler-Fokker-Planck system (see [21] and references therein), and Vla-
sov-Fokker-Planck-Navier-Stokes system (see [22] [23] [24] and references
therein).

Motivation of the present study. Note that this fully non-linear model (1.1)
preserves mass, momentum and energy; the dissipation is much weaker than
that in the simplified model considered in [25], thus more difficult to analyze.
The aim of the present study is to recover the dissipative nature of the model,
and establish the connection between the fully non-linear Fokker-Planck equa-
tion and the Boltzmann equation. That is, we use the macro-micro decomposi-
tion of the solution around the local Maxwellian introduced in [25] for
Boltzmann equation, to reformulate the model into a fluid-type system coupled
with an equation of the microscopic part. Especially, by careful computation, we
derived the viscosity and heat diffusion terms in the fluid-type system from the
microscopic part, which give the dissipative mechanism for the analysis of the

model.

2. Macro-Micro Decomposition of the Solution

Following [25], we decompose the unknown function faround the local Max-
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wellian as

f(t,x,v):M(t,x,v)+G(t,x,v), (2.1)

where the local Maxwellian M =M (t,x,v):M[p‘u‘T] (V) depending on the
macroscopic quantities (p,u,T) defined in (1.2), is given by

2
__ P v-ul
M[p,u,T] (V) = We)(p[—?], (2.2)

and G(t,x,v) is the microscopic, non-fluid part. Define the weighted inner

product
. 1
(g:h), = [ 9(Vh(v) v (2:3)
for two functions gand 4 of vsuch that the integral is well defined. Denote
2
1 wo ViU w1 [|v-y|
Zo =—M, 7" ="—=M(i=123), p)) =——|——-3|M, (24)
Jp VTP Vel T

which are orthonormal with respect to the inner product (2.3), that is,
(28 22, =84 By=01234.

Then the macroscopic projection P} and microscopic projection B" of a

function A are defined as [25]:
Mp, . 4 M M M M
R'h= () 2y BMh=(1-R")h. (2.5)

The projections will be used to decompose the nonlinear Fokker-Planck Equ-

ation (1.1) into a system of fluid equations coupled with a microscopic equation.

3. Decomposition of the Equation

Take the right hand side of (1.1) as the “collision term”, it has five collision inva-

riants {y/ﬁ}zzo,where
. 1
vo=1 v, =vi (i=128), v, =2V, (3.1)

thus, by multiplying Equation (1.1) with collision invariants and integrating, one

has five conservation laws

[svp(f+v-v,f)av=0, f=01234,

that is,
p, +div, (pu)=0,
(pU), + 2,05 (U, )+0, (pT)+0, [ Guvdv=0, =123, (3.2)

uf* sr 5 1 o 1, 0
[p[T—i—? +ZjaXj U EpT+Ep|u| +IR3E|V| V-V, Gdv =0.
t

This is a fluid-type system, coupled with the microscopic part G, which satis-
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fies the microscopic equation derived by applying the microscopic projection
PM to Equation (1.1):

G +P" (Vv-V,M +v-V,G)
=p“V,-(TV,M +(v=U)M )+ p“V, -(TV,G +(v-u)G) (3.3)
=pV,-(TV,G+(v-u)G).

Note that
g) V,g (v-u)g (gj
V|2 |= = v, (Tv, - =TV,|M-V | =],
(M) M ™ (TV.9+(v-u)g) { M

then (3.3) can be rewritten as
G +R" (v-V,M +v-V,G)= p“L,G, (3.4)

where L,, isthe Fokker-Planck operator given by
L,g:=TV, {M v, (%ﬂ (3.5)

In summary, the nonlinear Fokker-Planck Equation (1.1) is decomposed into
the fluid-type system (3.2) coupled with the microscopic Equation (3.4). Note
that the system (3.2) becomes Euler equations when the microscopic part G is
set to be zero, as in the traditional Hilbert expansion. To recover Navier-Stokes
type system [25] [26], one need to analyze more carefully the viscosity and heat
diffusion from the microscope part, similar to the Chapman-Enskog expansion
for Boltzmann equation. The details of the computation will be given in next

section.

4. Derivation of the Viscosity and Heat Diffusion

Note that the nonlocal integration terms in the fluid-type system (3.2) are re-
lated to the microscopic component G, which are the origin of viscosity and heat
diffusion. This is derived by applying Chapman-Enskog expansion as for
Boltzmann equation, keeping the leading order term in the microscopic part (see
[25] [26]). Before analyzing the microscopic component G, we give the following
basic properties of the Fokker-Planck operator.

Lemma 4.1. The Fokker-Planck operator L,, defined in (3.5) satisfies

LMZ(;VI =0, LMZiM :_ZiM (i:1,2,3), LM;&?A :_2}(2/':
(Lug.h)y =(g.Lyh),, .

—<Pl“" h, L, R h>M > 2 || RV h"; for some constant 4, > 0, (4.1)
1+ N
e, <01
and
L, N, =—2N,, LN, =-3N,, (4.2)
where
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i MV .u
Nl::zij(vi—ui)(vJ u, )ij?_ 3T v-uf'Mm,

N, ::(|v—u|2 —5T>(vi —u,)M.

Proof. The proof of (4.1) is direct. Note that this is also similar to the micro-
scopic version of the H-theorem for Boltzmann equation in [25]. Next, we

compute
L [ (% =) (v; ;)M |
=TV, [ MV, (% ~u) (v, -u,))
= ;Tavk [M 8 (Vi —u,)+M S (V,— —U; )]
- [—(vi —u) (v, —u )M +;MT5k15ki}*2’

that is, for fixed |, j,

(4.3)

Next,

L, (|v—u|2 M):TVV .[Mvv-(%MJ]

=21V, [(v-u)M | (4.4)
=—2jv-ul'M +6TM.

Combining (4.3) and (4.4) to get

Lo 200y, o, S |

i M i TM V U
= Zu |:—2(Vi —ui)(v]. —uj)uxj T+ 25Uy T} =

“2=(-2v-uf M +6TM ) (45)

thus the first equation in (4.2) is proved. Next,

Ly (v —u)M) =TV, [MV, (v, -u;)]

=Y 7o, [ Mo, (v-u,)] )
=To,M
=—(v, —u; )M,
then
Ly [5T (v —u;)M | =-5(v; —u, ) TM. (4.7)
Furthermore,
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Ly ((vi —u;)v-uf’ M):TVv -[MVV ((vi —ui)|v—u|2)}
=To, [Mdi v=u[* +2M (v, —u;)(v —uj)J
=Ta,, (Mv-uf’)+21a, (M (v -u)(v, -u,)) (4.8)
= (v, —u )V =u[* M +2(v, =u; ) TM = 2Jv—u[* (v; —u; )M
+6T( - -)M +2TM( L — )
=-3(v, —u; )[v—ul' M +10(v, —u; ) TM.
Combine (4.7)-(4.8):

Ly [(|v—u|2 —5T)(vi -u; )M } :—3(|v—u|2 —5T)(vi -u )M, (4.9)

this is the second equation in (4.2).
Now, using the properties of the Fokker-Planck operator L,, , one can invert
L, on(3.4) to get

G=p“Ly(R" (v-VM))+p “Liz, =G +P" (v-V,G).  (4.10)
By substituting (4.10) into (3.2), one has the fluid-type equations
p+div, (pu)=0,

(puy), +Zj:8xJ (puiuj)+6XI (pT)

= —Zaxj [P Limvvidv=30, [ p L (R" (v-V,M))vvdv, (4.11)
J

u
{p[% —H +26X[ ( oT+= p|u| ﬂ
1
= —Z&Xj IR3§|V| vp* '-KﬂlﬂdV—Zaxi IR3E|V|2 Vo Ly (Pl“" (v-v,M ))dv.

As the same to the Boltzmann equation, the terms containing
Ly (PlM (v-v,M )) in above yield the viscosity and heat conductivity, which
can be specified more precisely, by using the following lemma.

Lemma 4.2. The Fokker-Planck operator L,, defined in (3.5) satisfies

LR (v-V,M) == =uf =T )(v=u)- VTM

S, - |

Proof. Notice that the x-derivative of the local Maxwellian Min (2.2) is

(4.12)

then
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R (v, M) =R ((v-u)-¥,M)+ B (u-V,M)

.
=PM| (v, —u)=|v—ul'M
(-u) ot .
o ((mu), v, ), 3
iT
=1L +1,.

Use the definition of the microscopic projection, one has

’ T, vV, —Uu;
I, =(v-u)- VT| 2T2| M — 3(v]. —uj)(vi—ui)z_l_'2 |v—u|2 Mdv - JTpJ M

ool (4.14)
v—u 5

{jkg(viui)(vjjuﬂul, T ('V . J ]Gi(

=l + 1, +1,,.
Note that
LR3 v, —u;|* Mdv :%IR3 v—u[* Mdv = pT, jR3|Vi —u;|* Mdv =155T?2,
then

1, M
” =Z‘”LR3|Vi —uf* Mdv?uxl -;=(V-U)M, (4.16)

2 |V_u|2 Uixi |v—u|2
22 =Zi[.[R3|Vi —Ui| (7—3] Mvaﬁ[T_3 M
1 o[ v -u voullv—uf’
=2 [P | E -3 ey |2 B 3| (4.17)
3 T 6pT| T
:E(IV—UIZ_,&]M.
3| T

Combining the above to get

and

Iz=Zij(vi—ui)(vj—uj)uixj?——_'l_|v—u|2M. (4.18)

Plug (4.14) and (4.18) into (4.13), one gets
o s
PlM (V'VXM ) 2{21_—2—? (V—U)'VTM

+Z (v, — )(v —uj)uij?—?v—uFM.

(4.19)
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Then (4.12) is proved with the help of Lemma 4.1.
Now we compute the viscosity and heat conductivity, which are given in be-
low.

Theorem 4.3. For each index 1, j, we have
- T ( P2,
.[RS Ly R (v-V,M)vv,dv = —%[u;j +Uy —g(dlvu)éj j (4.20)

[ LaPM (v-V,M)y, V[’ dv

: o (4.21)
==2pTo,T-pTE,u (uxj g~ (V-u)d J

Remark: The right hand sides of (4.20) and (4.21), respectively, give the vis-
cosity and heat conductivity to the fluid-type system.
Proof. Using (4.12), one compute

IR3 Ly R (v-V,M)vv,dv

_ 6T2J.R3(|V u| —ST) (v=u)-VTv,v;Mdv )
o] 00w, ~ - |
=J,+J,,
where
Jl=—6_|_LZJ.R3(|V—U|Z—5T)(v—u)-VT(vi—ui)(vj—uj)Mdv
_6_'1_2IR3(|v—u|2—5T)(v—u).vT(ui(vj—uj)+(vi—ui)uj+uiuj)Mdv
U, .
:_ff('\/ uf —5T)(v u)- VT(vj—uj)Mdv—--'(|<—>J) )
ui Xj
= 6T12 J'R (|v u| —5T)|v —u| Mdv —--
uo, T
—— 18T12 IR (|v u| ~5T [v— u| )Mdv
-0,
and

J, :_.[R3%{Z(Vk —u ) (vi -y, )lek _%h’_u'z}(\/i _ui)(vi _ui)Mdv

Kl

fo S -wl, - |
><(Ui (vj —uj)+(vi—uj)ui+uiui)Mdv (4.24)
- _J.RS%{%(W _uk)(vl -y )Uik _%|V—U|Z}(|Vi —ui|2 5ij +uiuj)|\/|dv

- _%(u‘xj +u) —%(divu)éij )

Combining (4.22)-(4.24), one has (4.20). Next, for fixed index j,
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jR3 LaPM (v-V,M)v, |v|" dv
o, T

== [ (v=uf =5T )(v, —u,)v, V" Md
v o (=" =T ) = v, wiw (4.25)
1 AV
_J.R3E|:Zkl (Vk _uk)(V| -y )U)I(k —TU|V—U|2j|Vj |V|2 Mdv
=J,+J,,
in which
o, T )
J3 = 6T2 IR3(|V U| _ST)(V -4 )<VJ' —Uj)|V| Mdv
o, T
ung'z J 3(|V—u|2 —ST)(Vi —u; )M Mav (4.26)
5
:_EpTanT’
and
1 V-u
Jy = o R{Zk. (Vk _uk)(vl -4 )ULk _T|V—U|2}(VJ— —Uu; )|V|2 Mdv
u; .
e Tl w )l S e 2

D2
=-pTH .y (uxj +u; —g(v-u)@jj.

Put (4.26) and (4.27) into (4.25), one gets (4.21).

Now with the help of Theorem 4.3, the macroscopic Equation (4.11) becomes
p, +div, (pu)=0,
(pu), +2,05, (puiuj )+aXi (pT)

1ﬁT . .

[ . (E 1 2] (4.28)
[p[ >t +V-lu 2pT+2p|u|

=->. % .[Rs |V| vip Ly 7rdv+ T [pl’ﬂV(Tz)]

1 B _ )
+Z., Xi [ T (U'x,- +u, —%(divu)éij n

Note that this is a Navier-Stokes type fluid system, coupled with 7 defined

in (4.10), the remainder term of the microscopic component.

5. Conclusion

The fully non-linear Fokker-Planck Equation (1.1) preserves mass, momentum
and energy; the dissipation is much weaker than that in the simplified model
considered in [10]. By decomposing the unknown function around the local

Maxwellian, the Fokker-Planck equation is rewritten into a fluid-type system
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(4.28), which includes viscosity and heat diffusion giving dissipative mechanism
of the system. The research tools for fluid-type system can be applied to further
study of the fully non-linear Fokker-Planck equation, for instance, the stability
of global equilibrium or the wave patterns to the Fokker-Planck equation, which

will be the pursuit of our future study.
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Nomenclatures

the distribution of particles at time ¢ position xand velocity v f (t,x,v),
. 1
collision invariants: w, =1y, =Vv;(i=1,2,3),y, = §|v

>

mass density, the mean velocity and the local temperature: (p,0,T),
perturbation of mass density, the mean velocity and the local temperature:
(o.uT),

local/global Maxwellian: M (t,x,v), M(t,x,v),

weighted inner product with respect to a Maxwellian A:
1
(g,h),, = 0 (v)h(v)ﬁdv ,

basis function of the macroscopic quantities:

2
A UL E R :L(M_?,}M,

SN o Joo| T

macroscopic projection P} and microscopic projection P™ of a function £:

POMh:zﬂf‘EJ(h,Z;”}M 2y RMh=(1-R")h,

<

macro-micro decomposition of £ f (t,x,v)=M (t,x,v)+G(t,x,V),

Fokker-Planck operator: L, g =TV, {M -V, (%ﬂ .
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